mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
4f6ce420fd
Instead of indexing local variables by DIE offset, use the variable name + the path through the lexical block tree. This makes the lookup key consistent across duplicate abstract origins in different CUs. llvm-svn: 342776
276 lines
11 KiB
C++
276 lines
11 KiB
C++
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/DebugInfo/DIContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
|
|
#define DEBUG_TYPE "dwarfdump"
|
|
using namespace llvm;
|
|
using namespace object;
|
|
|
|
/// Holds statistics for one function (or other entity that has a PC range and
|
|
/// contains variables, such as a compile unit).
|
|
struct PerFunctionStats {
|
|
/// Number of inlined instances of this function.
|
|
unsigned NumFnInlined = 0;
|
|
/// Number of variables with location across all inlined instances.
|
|
unsigned TotalVarWithLoc = 0;
|
|
/// Number of constants with location across all inlined instances.
|
|
unsigned ConstantMembers = 0;
|
|
/// List of all Variables in this function.
|
|
StringSet<> VarsInFunction;
|
|
/// Compile units also cover a PC range, but have this flag set to false.
|
|
bool IsFunction = false;
|
|
};
|
|
|
|
/// Holds accumulated global statistics about local variables.
|
|
struct GlobalStats {
|
|
/// Total number of PC range bytes covered by DW_AT_locations.
|
|
unsigned ScopeBytesCovered = 0;
|
|
/// Total number of PC range bytes in each variable's enclosing scope,
|
|
/// starting from the first definition of the variable.
|
|
unsigned ScopeBytesFromFirstDefinition = 0;
|
|
};
|
|
|
|
/// Extract the low pc from a Die.
|
|
static uint64_t getLowPC(DWARFDie Die) {
|
|
auto RangesOrError = Die.getAddressRanges();
|
|
DWARFAddressRangesVector Ranges;
|
|
if (RangesOrError)
|
|
Ranges = RangesOrError.get();
|
|
else
|
|
llvm::consumeError(RangesOrError.takeError());
|
|
if (Ranges.size())
|
|
return Ranges[0].LowPC;
|
|
return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0);
|
|
}
|
|
|
|
/// Collect debug info quality metrics for one DIE.
|
|
static void collectStatsForDie(DWARFDie Die, std::string FnPrefix,
|
|
std::string VarPrefix, uint64_t ScopeLowPC,
|
|
uint64_t BytesInScope,
|
|
StringMap<PerFunctionStats> &FnStatMap,
|
|
GlobalStats &GlobalStats) {
|
|
bool HasLoc = false;
|
|
uint64_t BytesCovered = 0;
|
|
uint64_t OffsetToFirstDefinition = 0;
|
|
|
|
if (Die.getTag() != dwarf::DW_TAG_formal_parameter &&
|
|
Die.getTag() != dwarf::DW_TAG_variable &&
|
|
Die.getTag() != dwarf::DW_TAG_member) {
|
|
// Not a variable or constant member.
|
|
return;
|
|
}
|
|
|
|
if (Die.find(dwarf::DW_AT_const_value)) {
|
|
// This catches constant members *and* variables.
|
|
HasLoc = true;
|
|
BytesCovered = BytesInScope;
|
|
} else {
|
|
if (Die.getTag() == dwarf::DW_TAG_member) {
|
|
// Non-const member.
|
|
return;
|
|
}
|
|
// Handle variables and function arguments.
|
|
auto FormValue = Die.find(dwarf::DW_AT_location);
|
|
HasLoc = FormValue.hasValue();
|
|
if (HasLoc) {
|
|
// Get PC coverage.
|
|
if (auto DebugLocOffset = FormValue->getAsSectionOffset()) {
|
|
auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc();
|
|
if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) {
|
|
for (auto Entry : List->Entries)
|
|
BytesCovered += Entry.End - Entry.Begin;
|
|
if (List->Entries.size()) {
|
|
uint64_t FirstDef = List->Entries[0].Begin;
|
|
uint64_t UnitOfs = getLowPC(Die.getDwarfUnit()->getUnitDIE());
|
|
// Ranges sometimes start before the lexical scope.
|
|
if (UnitOfs + FirstDef >= ScopeLowPC)
|
|
OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC;
|
|
// Or even after it. Count that as a failure.
|
|
if (OffsetToFirstDefinition > BytesInScope)
|
|
OffsetToFirstDefinition = 0;
|
|
}
|
|
}
|
|
assert(BytesInScope);
|
|
} else {
|
|
// Assume the entire range is covered by a single location.
|
|
BytesCovered = BytesInScope;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect PC range coverage data.
|
|
auto &FnStats = FnStatMap[FnPrefix];
|
|
if (DWARFDie D =
|
|
Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
|
|
Die = D;
|
|
// By using the variable name + the path through the lexical block tree, the
|
|
// keys are consistent across duplicate abstract origins in different CUs.
|
|
std::string VarName = StringRef(Die.getName(DINameKind::ShortName));
|
|
FnStats.VarsInFunction.insert(VarPrefix+VarName);
|
|
if (BytesInScope) {
|
|
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
|
|
// Adjust for the fact the variables often start their lifetime in the
|
|
// middle of the scope.
|
|
BytesInScope -= OffsetToFirstDefinition;
|
|
// Turns out we have a lot of ranges that extend past the lexical scope.
|
|
GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered);
|
|
GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope;
|
|
assert(GlobalStats.ScopeBytesCovered <=
|
|
GlobalStats.ScopeBytesFromFirstDefinition);
|
|
} else {
|
|
FnStats.ConstantMembers++;
|
|
}
|
|
}
|
|
|
|
/// Recursively collect debug info quality metrics.
|
|
static void collectStatsRecursive(DWARFDie Die, std::string FnPrefix,
|
|
std::string VarPrefix, uint64_t ScopeLowPC,
|
|
uint64_t BytesInScope,
|
|
StringMap<PerFunctionStats> &FnStatMap,
|
|
GlobalStats &GlobalStats) {
|
|
// Handle any kind of lexical scope.
|
|
if (Die.getTag() == dwarf::DW_TAG_subprogram ||
|
|
Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
|
|
Die.getTag() == dwarf::DW_TAG_lexical_block) {
|
|
|
|
// Reset VarPrefix when entering a new function.
|
|
if (Die.getTag() == dwarf::DW_TAG_subprogram ||
|
|
Die.getTag() == dwarf::DW_TAG_inlined_subroutine)
|
|
VarPrefix = "v";
|
|
|
|
// Ignore forward declarations.
|
|
if (Die.find(dwarf::DW_AT_declaration))
|
|
return;
|
|
|
|
// Count the function.
|
|
if (Die.getTag() != dwarf::DW_TAG_lexical_block) {
|
|
StringRef Name = Die.getName(DINameKind::LinkageName);
|
|
if (Name.empty())
|
|
Name = Die.getName(DINameKind::ShortName);
|
|
FnPrefix = Name;
|
|
// Skip over abstract origins.
|
|
if (Die.find(dwarf::DW_AT_inline))
|
|
return;
|
|
// We've seen an (inlined) instance of this function.
|
|
auto &FnStats = FnStatMap[Name];
|
|
FnStats.NumFnInlined++;
|
|
FnStats.IsFunction = true;
|
|
}
|
|
|
|
// PC Ranges.
|
|
auto RangesOrError = Die.getAddressRanges();
|
|
if (!RangesOrError) {
|
|
llvm::consumeError(RangesOrError.takeError());
|
|
return;
|
|
}
|
|
|
|
auto Ranges = RangesOrError.get();
|
|
uint64_t BytesInThisScope = 0;
|
|
for (auto Range : Ranges)
|
|
BytesInThisScope += Range.HighPC - Range.LowPC;
|
|
ScopeLowPC = getLowPC(Die);
|
|
|
|
if (BytesInThisScope)
|
|
BytesInScope = BytesInThisScope;
|
|
} else {
|
|
// Not a scope, visit the Die itself. It could be a variable.
|
|
collectStatsForDie(Die, FnPrefix, VarPrefix, ScopeLowPC, BytesInScope,
|
|
FnStatMap, GlobalStats);
|
|
}
|
|
|
|
// Traverse children.
|
|
unsigned LexicalBlockIndex = 0;
|
|
DWARFDie Child = Die.getFirstChild();
|
|
while (Child) {
|
|
std::string ChildVarPrefix = VarPrefix;
|
|
if (Child.getTag() == dwarf::DW_TAG_lexical_block)
|
|
ChildVarPrefix += toHex(LexicalBlockIndex++) + '.';
|
|
|
|
collectStatsRecursive(Child, FnPrefix, ChildVarPrefix, ScopeLowPC,
|
|
BytesInScope, FnStatMap, GlobalStats);
|
|
Child = Child.getSibling();
|
|
}
|
|
}
|
|
|
|
/// Print machine-readable output.
|
|
/// The machine-readable format is single-line JSON output.
|
|
/// \{
|
|
static void printDatum(raw_ostream &OS, const char *Key, StringRef Value) {
|
|
OS << ",\"" << Key << "\":\"" << Value << '"';
|
|
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
|
|
}
|
|
static void printDatum(raw_ostream &OS, const char *Key, uint64_t Value) {
|
|
OS << ",\"" << Key << "\":" << Value;
|
|
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
|
|
}
|
|
/// \}
|
|
|
|
/// Collect debug info quality metrics for an entire DIContext.
|
|
///
|
|
/// Do the impossible and reduce the quality of the debug info down to a few
|
|
/// numbers. The idea is to condense the data into numbers that can be tracked
|
|
/// over time to identify trends in newer compiler versions and gauge the effect
|
|
/// of particular optimizations. The raw numbers themselves are not particularly
|
|
/// useful, only the delta between compiling the same program with different
|
|
/// compilers is.
|
|
bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
|
|
Twine Filename, raw_ostream &OS) {
|
|
StringRef FormatName = Obj.getFileFormatName();
|
|
GlobalStats GlobalStats;
|
|
StringMap<PerFunctionStats> Statistics;
|
|
for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units())
|
|
if (DWARFDie CUDie = CU->getUnitDIE(false))
|
|
collectStatsRecursive(CUDie, "/", "g", 0, 0, Statistics, GlobalStats);
|
|
|
|
/// The version number should be increased every time the algorithm is changed
|
|
/// (including bug fixes). New metrics may be added without increasing the
|
|
/// version.
|
|
unsigned Version = 1;
|
|
unsigned VarTotal = 0;
|
|
unsigned VarUnique = 0;
|
|
unsigned VarWithLoc = 0;
|
|
unsigned NumFunctions = 0;
|
|
unsigned NumInlinedFunctions = 0;
|
|
for (auto &Entry : Statistics) {
|
|
PerFunctionStats &Stats = Entry.getValue();
|
|
unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined;
|
|
unsigned Constants = Stats.ConstantMembers;
|
|
VarWithLoc += Stats.TotalVarWithLoc + Constants;
|
|
VarTotal += TotalVars + Constants;
|
|
VarUnique += Stats.VarsInFunction.size();
|
|
LLVM_DEBUG(for (auto &V : Stats.VarsInFunction) llvm::dbgs()
|
|
<< Entry.getKey() << ": " << V.getKey() << "\n");
|
|
NumFunctions += Stats.IsFunction;
|
|
NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
|
|
}
|
|
|
|
// Print summary.
|
|
OS.SetBufferSize(1024);
|
|
OS << "{\"version\":\"" << Version << '"';
|
|
LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
|
|
llvm::dbgs() << "---------------------------------\n");
|
|
printDatum(OS, "file", Filename.str());
|
|
printDatum(OS, "format", FormatName);
|
|
printDatum(OS, "source functions", NumFunctions);
|
|
printDatum(OS, "inlined functions", NumInlinedFunctions);
|
|
printDatum(OS, "unique source variables", VarUnique);
|
|
printDatum(OS, "source variables", VarTotal);
|
|
printDatum(OS, "variables with location", VarWithLoc);
|
|
printDatum(OS, "scope bytes total",
|
|
GlobalStats.ScopeBytesFromFirstDefinition);
|
|
printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered);
|
|
OS << "}\n";
|
|
LLVM_DEBUG(
|
|
llvm::dbgs() << "Total Availability: "
|
|
<< (int)std::round((VarWithLoc * 100.0) / VarTotal) << "%\n";
|
|
llvm::dbgs() << "PC Ranges covered: "
|
|
<< (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) /
|
|
GlobalStats.ScopeBytesFromFirstDefinition)
|
|
<< "%\n");
|
|
return true;
|
|
}
|