1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/lib/Analysis/ModuleSummaryAnalysis.cpp
Teresa Johnson bddf373bdc Restore "[ThinLTO] Prevent exporting of locals used/defined in module level asm"
This restores the rest of r286297 (part was restored in r286475).
Specifically, it restores the part requiring adding a dependency from
the Analysis to Object library (downstream use changed to correctly
model split BitReader vs BitWriter libraries).

Original description of this part of patch follows:

Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.

This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).

Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.

Fixes PR30610.

llvm-svn: 286844
2016-11-14 17:12:32 +00:00

362 lines
14 KiB
C++

//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass builds a ModuleSummaryIndex object for the module, to be written
// to bitcode or LLVM assembly.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Pass.h"
using namespace llvm;
#define DEBUG_TYPE "module-summary-analysis"
// Walk through the operands of a given User via worklist iteration and populate
// the set of GlobalValue references encountered. Invoked either on an
// Instruction or a GlobalVariable (which walks its initializer).
static void findRefEdges(const User *CurUser, DenseSet<const Value *> &RefEdges,
SmallPtrSet<const User *, 8> &Visited) {
SmallVector<const User *, 32> Worklist;
Worklist.push_back(CurUser);
while (!Worklist.empty()) {
const User *U = Worklist.pop_back_val();
if (!Visited.insert(U).second)
continue;
ImmutableCallSite CS(U);
for (const auto &OI : U->operands()) {
const User *Operand = dyn_cast<User>(OI);
if (!Operand)
continue;
if (isa<BlockAddress>(Operand))
continue;
if (isa<GlobalValue>(Operand)) {
// We have a reference to a global value. This should be added to
// the reference set unless it is a callee. Callees are handled
// specially by WriteFunction and are added to a separate list.
if (!(CS && CS.isCallee(&OI)))
RefEdges.insert(Operand);
continue;
}
Worklist.push_back(Operand);
}
}
}
static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
ProfileSummaryInfo *PSI) {
if (!PSI)
return CalleeInfo::HotnessType::Unknown;
if (PSI->isHotCount(ProfileCount))
return CalleeInfo::HotnessType::Hot;
if (PSI->isColdCount(ProfileCount))
return CalleeInfo::HotnessType::Cold;
return CalleeInfo::HotnessType::None;
}
static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
const Function &F, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI,
bool HasLocalsInUsed) {
// Summary not currently supported for anonymous functions, they should
// have been named.
assert(F.hasName());
unsigned NumInsts = 0;
// Map from callee ValueId to profile count. Used to accumulate profile
// counts for all static calls to a given callee.
DenseMap<const Value *, CalleeInfo> CallGraphEdges;
DenseMap<GlobalValue::GUID, CalleeInfo> IndirectCallEdges;
DenseSet<const Value *> RefEdges;
ICallPromotionAnalysis ICallAnalysis;
bool HasInlineAsmMaybeReferencingInternal = false;
SmallPtrSet<const User *, 8> Visited;
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
if (isa<DbgInfoIntrinsic>(I))
continue;
++NumInsts;
findRefEdges(&I, RefEdges, Visited);
auto CS = ImmutableCallSite(&I);
if (!CS)
continue;
const auto *CI = dyn_cast<CallInst>(&I);
// Since we don't know exactly which local values are referenced in inline
// assembly, conservatively mark the function as possibly referencing
// a local value from inline assembly to ensure we don't export a
// reference (which would require renaming and promotion of the
// referenced value).
if (HasLocalsInUsed && CI && CI->isInlineAsm())
HasInlineAsmMaybeReferencingInternal = true;
auto *CalledValue = CS.getCalledValue();
auto *CalledFunction = CS.getCalledFunction();
// Check if this is an alias to a function. If so, get the
// called aliasee for the checks below.
if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
assert(!CalledFunction && "Expected null called function in callsite for alias");
CalledFunction = dyn_cast<Function>(GA->getBaseObject());
}
// Check if this is a direct call to a known function.
if (CalledFunction) {
// Skip intrinsics.
if (CalledFunction->isIntrinsic())
continue;
// We should have named any anonymous globals
assert(CalledFunction->hasName());
auto ScaledCount = BFI ? BFI->getBlockProfileCount(&BB) : None;
// Use the original CalledValue, in case it was an alias. We want
// to record the call edge to the alias in that case. Eventually
// an alias summary will be created to associate the alias and
// aliasee.
auto *CalleeId =
M.getValueSymbolTable().lookup(CalledValue->getName());
auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
: CalleeInfo::HotnessType::Unknown;
CallGraphEdges[CalleeId].updateHotness(Hotness);
} else {
// Skip inline assembly calls.
if (CI && CI->isInlineAsm())
continue;
// Skip direct calls.
if (!CS.getCalledValue() || isa<Constant>(CS.getCalledValue()))
continue;
uint32_t NumVals, NumCandidates;
uint64_t TotalCount;
auto CandidateProfileData =
ICallAnalysis.getPromotionCandidatesForInstruction(
&I, NumVals, TotalCount, NumCandidates);
for (auto &Candidate : CandidateProfileData)
IndirectCallEdges[Candidate.Value].updateHotness(
getHotness(Candidate.Count, PSI));
}
}
GlobalValueSummary::GVFlags Flags(F);
std::unique_ptr<FunctionSummary> FuncSummary =
llvm::make_unique<FunctionSummary>(Flags, NumInsts);
FuncSummary->addCallGraphEdges(CallGraphEdges);
FuncSummary->addCallGraphEdges(IndirectCallEdges);
FuncSummary->addRefEdges(RefEdges);
if (HasInlineAsmMaybeReferencingInternal)
FuncSummary->setHasInlineAsmMaybeReferencingInternal();
Index.addGlobalValueSummary(F.getName(), std::move(FuncSummary));
}
static void computeVariableSummary(ModuleSummaryIndex &Index,
const GlobalVariable &V) {
DenseSet<const Value *> RefEdges;
SmallPtrSet<const User *, 8> Visited;
findRefEdges(&V, RefEdges, Visited);
GlobalValueSummary::GVFlags Flags(V);
std::unique_ptr<GlobalVarSummary> GVarSummary =
llvm::make_unique<GlobalVarSummary>(Flags);
GVarSummary->addRefEdges(RefEdges);
Index.addGlobalValueSummary(V.getName(), std::move(GVarSummary));
}
static void computeAliasSummary(ModuleSummaryIndex &Index,
const GlobalAlias &A) {
GlobalValueSummary::GVFlags Flags(A);
std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
auto *Aliasee = A.getBaseObject();
auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee);
assert(AliaseeSummary && "Alias expects aliasee summary to be parsed");
AS->setAliasee(AliaseeSummary);
Index.addGlobalValueSummary(A.getName(), std::move(AS));
}
ModuleSummaryIndex llvm::buildModuleSummaryIndex(
const Module &M,
std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
ProfileSummaryInfo *PSI) {
ModuleSummaryIndex Index;
// Identify the local values in the llvm.used and llvm.compiler.used sets,
// which should not be exported as they would then require renaming and
// promotion, but we may have opaque uses e.g. in inline asm. We collect them
// here because we use this information to mark functions containing inline
// assembly calls as not importable.
SmallPtrSet<GlobalValue *, 8> LocalsUsed;
SmallPtrSet<GlobalValue *, 8> Used;
// First collect those in the llvm.used set.
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
for (auto *V : Used) {
if (V->hasLocalLinkage())
LocalsUsed.insert(V);
}
Used.clear();
// Next collect those in the llvm.compiler.used set.
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
for (auto *V : Used) {
if (V->hasLocalLinkage())
LocalsUsed.insert(V);
}
// Compute summaries for all functions defined in module, and save in the
// index.
for (auto &F : M) {
if (F.isDeclaration())
continue;
BlockFrequencyInfo *BFI = nullptr;
std::unique_ptr<BlockFrequencyInfo> BFIPtr;
if (GetBFICallback)
BFI = GetBFICallback(F);
else if (F.getEntryCount().hasValue()) {
LoopInfo LI{DominatorTree(const_cast<Function &>(F))};
BranchProbabilityInfo BPI{F, LI};
BFIPtr = llvm::make_unique<BlockFrequencyInfo>(F, BPI, LI);
BFI = BFIPtr.get();
}
computeFunctionSummary(Index, M, F, BFI, PSI, !LocalsUsed.empty());
}
// Compute summaries for all variables defined in module, and save in the
// index.
for (const GlobalVariable &G : M.globals()) {
if (G.isDeclaration())
continue;
computeVariableSummary(Index, G);
}
// Compute summaries for all aliases defined in module, and save in the
// index.
for (const GlobalAlias &A : M.aliases())
computeAliasSummary(Index, A);
for (auto *V : LocalsUsed) {
auto *Summary = Index.getGlobalValueSummary(*V);
assert(Summary && "Missing summary for global value");
Summary->setNoRename();
}
if (!M.getModuleInlineAsm().empty()) {
// Collect the local values defined by module level asm, and set up
// summaries for these symbols so that they can be marked as NoRename,
// to prevent export of any use of them in regular IR that would require
// renaming within the module level asm. Note we don't need to create a
// summary for weak or global defs, as they don't need to be flagged as
// NoRename, and defs in module level asm can't be imported anyway.
// Also, any values used but not defined within module level asm should
// be listed on the llvm.used or llvm.compiler.used global and marked as
// referenced from there.
// FIXME: Rename CollectAsmUndefinedRefs to something more general, as we
// are also using it to find the file-scope locals defined in module asm.
object::IRObjectFile::CollectAsmUndefinedRefs(
Triple(M.getTargetTriple()), M.getModuleInlineAsm(),
[&M, &Index](StringRef Name, object::BasicSymbolRef::Flags Flags) {
// Symbols not marked as Weak or Global are local definitions.
if (Flags & (object::BasicSymbolRef::SF_Weak ||
object::BasicSymbolRef::SF_Global))
return;
GlobalValue *GV = M.getNamedValue(Name);
if (!GV)
return;
assert(GV->isDeclaration() && "Def in module asm already has definition");
GlobalValueSummary::GVFlags GVFlags(
GlobalValue::InternalLinkage,
/* NoRename */ true,
/* HasInlineAsmMaybeReferencingInternal */ false,
/* IsNotViableToInline */ true);
// Create the appropriate summary type.
if (isa<Function>(GV)) {
std::unique_ptr<FunctionSummary> Summary =
llvm::make_unique<FunctionSummary>(GVFlags, 0);
Summary->setNoRename();
Index.addGlobalValueSummary(Name, std::move(Summary));
} else {
std::unique_ptr<GlobalVarSummary> Summary =
llvm::make_unique<GlobalVarSummary>(GVFlags);
Summary->setNoRename();
Index.addGlobalValueSummary(Name, std::move(Summary));
}
});
}
return Index;
}
char ModuleSummaryIndexAnalysis::PassID;
ModuleSummaryIndex
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
return buildModuleSummaryIndex(
M,
[&FAM](const Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(
*const_cast<Function *>(&F));
},
&PSI);
}
char ModuleSummaryIndexWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
"Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
"Module Summary Analysis", false, true)
ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
return new ModuleSummaryIndexWrapperPass();
}
ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
: ModulePass(ID) {
initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
auto &PSI = *getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
Index = buildModuleSummaryIndex(
M,
[this](const Function &F) {
return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
*const_cast<Function *>(&F))
.getBFI());
},
&PSI);
return false;
}
bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
Index.reset();
return false;
}
void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
}