mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 13:11:39 +01:00
ba7695d4ea
This change compresses the context string by removing cycles due to recursive function for CS profile generation. Removing recursion cycles is a way to normalize the calling context which will be better for the sample aggregation and also make the context promoting deterministic. Specifically for implementation, we recognize adjacent repeated frames as cycles and deduplicated them through multiple round of iteration. For example: Considering a input context string stack: [“a”, “a”, “b”, “c”, “a”, “b”, “c”, “b”, “c”, “d”] For first iteration,, it removed all adjacent repeated frames of size 1: [“a”, “b”, “c”, “a”, “b”, “c”, “b”, “c”, “d”] For second iteration, it removed all adjacent repeated frames of size 2: [“a”, “b”, “c”, “a”, “b”, “c”, “d”] So in the end, we get compressed output: [“a”, “b”, “c”, “d”] Compression will be called in two place: one for sample's context key right after unwinding, one is for the eventual context string id in the ProfileGenerator. Added a switch `compress-recursion` to control the size of duplicated frames, default -1 means no size limit. Added unit tests and regression test for this. Differential Revision: https://reviews.llvm.org/D93556
266 lines
9.6 KiB
C++
266 lines
9.6 KiB
C++
//===-- ProfiledBinary.h - Binary decoder -----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
|
|
#define LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
|
|
|
|
#include "CallContext.h"
|
|
#include "PseudoProbe.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <list>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace sampleprof;
|
|
using namespace llvm::object;
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
class ProfiledBinary;
|
|
|
|
struct InstructionPointer {
|
|
ProfiledBinary *Binary;
|
|
union {
|
|
// Offset of the executable segment of the binary.
|
|
uint64_t Offset = 0;
|
|
// Also used as address in unwinder
|
|
uint64_t Address;
|
|
};
|
|
// Index to the sorted code address array of the binary.
|
|
uint64_t Index = 0;
|
|
InstructionPointer(ProfiledBinary *Binary, uint64_t Address,
|
|
bool RoundToNext = false);
|
|
void advance();
|
|
void backward();
|
|
void update(uint64_t Addr);
|
|
};
|
|
|
|
// PrologEpilog offset tracker, used to filter out broken stack samples
|
|
// Currently we use a heuristic size (two) to infer prolog and epilog
|
|
// based on the start address and return address. In the future,
|
|
// we will switch to Dwarf CFI based tracker
|
|
struct PrologEpilogTracker {
|
|
// A set of prolog and epilog offsets. Used by virtual unwinding.
|
|
std::unordered_set<uint64_t> PrologEpilogSet;
|
|
ProfiledBinary *Binary;
|
|
PrologEpilogTracker(ProfiledBinary *Bin) : Binary(Bin){};
|
|
|
|
// Take the two addresses from the start of function as prolog
|
|
void inferPrologOffsets(
|
|
std::unordered_map<uint64_t, std::string> &FuncStartAddrMap) {
|
|
for (auto I : FuncStartAddrMap) {
|
|
PrologEpilogSet.insert(I.first);
|
|
InstructionPointer IP(Binary, I.first);
|
|
IP.advance();
|
|
PrologEpilogSet.insert(IP.Offset);
|
|
}
|
|
}
|
|
|
|
// Take the last two addresses before the return address as epilog
|
|
void inferEpilogOffsets(std::unordered_set<uint64_t> &RetAddrs) {
|
|
for (auto Addr : RetAddrs) {
|
|
PrologEpilogSet.insert(Addr);
|
|
InstructionPointer IP(Binary, Addr);
|
|
IP.backward();
|
|
PrologEpilogSet.insert(IP.Offset);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ProfiledBinary {
|
|
// Absolute path of the binary.
|
|
std::string Path;
|
|
// The target triple.
|
|
Triple TheTriple;
|
|
// The runtime base address that the executable sections are loaded at.
|
|
mutable uint64_t BaseAddress = 0;
|
|
// The preferred base address that the executable sections are loaded at.
|
|
uint64_t PreferredBaseAddress = 0;
|
|
// Mutiple MC component info
|
|
std::unique_ptr<const MCRegisterInfo> MRI;
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo;
|
|
std::unique_ptr<const MCSubtargetInfo> STI;
|
|
std::unique_ptr<const MCInstrInfo> MII;
|
|
std::unique_ptr<MCDisassembler> DisAsm;
|
|
std::unique_ptr<const MCInstrAnalysis> MIA;
|
|
std::unique_ptr<MCInstPrinter> IPrinter;
|
|
// A list of text sections sorted by start RVA and size. Used to check
|
|
// if a given RVA is a valid code address.
|
|
std::set<std::pair<uint64_t, uint64_t>> TextSections;
|
|
// Function offset to name mapping.
|
|
std::unordered_map<uint64_t, std::string> FuncStartAddrMap;
|
|
// Offset to context location map. Used to expand the context.
|
|
std::unordered_map<uint64_t, FrameLocationStack> Offset2LocStackMap;
|
|
// An array of offsets of all instructions sorted in increasing order. The
|
|
// sorting is needed to fast advance to the next forward/backward instruction.
|
|
std::vector<uint64_t> CodeAddrs;
|
|
// A set of call instruction offsets. Used by virtual unwinding.
|
|
std::unordered_set<uint64_t> CallAddrs;
|
|
// A set of return instruction offsets. Used by virtual unwinding.
|
|
std::unordered_set<uint64_t> RetAddrs;
|
|
|
|
PrologEpilogTracker ProEpilogTracker;
|
|
|
|
// The symbolizer used to get inline context for an instruction.
|
|
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
|
|
|
|
// Pseudo probe decoder
|
|
PseudoProbeDecoder ProbeDecoder;
|
|
|
|
bool UsePseudoProbes = false;
|
|
|
|
void setPreferredBaseAddress(const ELFObjectFileBase *O);
|
|
|
|
void decodePseudoProbe(const ELFObjectFileBase *Obj);
|
|
|
|
// Set up disassembler and related components.
|
|
void setUpDisassembler(const ELFObjectFileBase *Obj);
|
|
void setupSymbolizer();
|
|
|
|
/// Dissassemble the text section and build various address maps.
|
|
void disassemble(const ELFObjectFileBase *O);
|
|
|
|
/// Helper function to dissassemble the symbol and extract info for unwinding
|
|
bool dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
|
|
SectionSymbolsTy &Symbols, const SectionRef &Section);
|
|
/// Symbolize a given instruction pointer and return a full call context.
|
|
FrameLocationStack symbolize(const InstructionPointer &IP,
|
|
bool UseCanonicalFnName = false);
|
|
|
|
/// Decode the interesting parts of the binary and build internal data
|
|
/// structures. On high level, the parts of interest are:
|
|
/// 1. Text sections, including the main code section and the PLT
|
|
/// entries that will be used to handle cross-module call transitions.
|
|
/// 2. The .debug_line section, used by Dwarf-based profile generation.
|
|
/// 3. Pseudo probe related sections, used by probe-based profile
|
|
/// generation.
|
|
void load();
|
|
const FrameLocationStack &getFrameLocationStack(uint64_t Offset) const {
|
|
auto I = Offset2LocStackMap.find(Offset);
|
|
assert(I != Offset2LocStackMap.end() &&
|
|
"Can't find location for offset in the binary");
|
|
return I->second;
|
|
}
|
|
|
|
public:
|
|
ProfiledBinary(StringRef Path) : Path(Path), ProEpilogTracker(this) {
|
|
setupSymbolizer();
|
|
load();
|
|
}
|
|
uint64_t virtualAddrToOffset(uint64_t VitualAddress) const {
|
|
return VitualAddress - BaseAddress;
|
|
}
|
|
uint64_t offsetToVirtualAddr(uint64_t Offset) const {
|
|
return Offset + BaseAddress;
|
|
}
|
|
StringRef getPath() const { return Path; }
|
|
StringRef getName() const { return llvm::sys::path::filename(Path); }
|
|
uint64_t getBaseAddress() const { return BaseAddress; }
|
|
void setBaseAddress(uint64_t Address) { BaseAddress = Address; }
|
|
uint64_t getPreferredBaseAddress() const { return PreferredBaseAddress; }
|
|
|
|
bool addressIsCode(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return Offset2LocStackMap.find(Offset) != Offset2LocStackMap.end();
|
|
}
|
|
bool addressIsCall(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return CallAddrs.count(Offset);
|
|
}
|
|
bool addressIsReturn(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return RetAddrs.count(Offset);
|
|
}
|
|
bool addressInPrologEpilog(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return ProEpilogTracker.PrologEpilogSet.count(Offset);
|
|
}
|
|
|
|
uint64_t getAddressforIndex(uint64_t Index) const {
|
|
return offsetToVirtualAddr(CodeAddrs[Index]);
|
|
}
|
|
|
|
bool usePseudoProbes() const { return UsePseudoProbes; }
|
|
// Get the index in CodeAddrs for the address
|
|
// As we might get an address which is not the code
|
|
// here it would round to the next valid code address by
|
|
// using lower bound operation
|
|
uint32_t getIndexForAddr(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
auto Low = llvm::lower_bound(CodeAddrs, Offset);
|
|
return Low - CodeAddrs.begin();
|
|
}
|
|
|
|
uint64_t getCallAddrFromFrameAddr(uint64_t FrameAddr) const {
|
|
return getAddressforIndex(getIndexForAddr(FrameAddr) - 1);
|
|
}
|
|
|
|
StringRef getFuncFromStartOffset(uint64_t Offset) {
|
|
return FuncStartAddrMap[Offset];
|
|
}
|
|
|
|
const FrameLocation &getInlineLeafFrameLoc(uint64_t Offset,
|
|
bool NameOnly = false) {
|
|
return getFrameLocationStack(Offset).back();
|
|
}
|
|
|
|
// Compare two addresses' inline context
|
|
bool inlineContextEqual(uint64_t Add1, uint64_t Add2) const;
|
|
|
|
// Get the context string of the current stack with inline context filled in.
|
|
// It will search the disassembling info stored in Offset2LocStackMap. This is
|
|
// used as the key of function sample map
|
|
std::string getExpandedContextStr(const std::list<uint64_t> &stack) const;
|
|
|
|
const PseudoProbe *getCallProbeForAddr(uint64_t Address) const {
|
|
return ProbeDecoder.getCallProbeForAddr(Address);
|
|
}
|
|
void
|
|
getInlineContextForProbe(const PseudoProbe *Probe,
|
|
SmallVectorImpl<std::string> &InlineContextStack,
|
|
bool IncludeLeaf = false) const {
|
|
return ProbeDecoder.getInlineContextForProbe(Probe, InlineContextStack,
|
|
IncludeLeaf);
|
|
}
|
|
const AddressProbesMap &getAddress2ProbesMap() const {
|
|
return ProbeDecoder.getAddress2ProbesMap();
|
|
}
|
|
const PseudoProbeFuncDesc *getFuncDescForGUID(uint64_t GUID) {
|
|
return ProbeDecoder.getFuncDescForGUID(GUID);
|
|
}
|
|
const PseudoProbeFuncDesc *getInlinerDescForProbe(const PseudoProbe *Probe) {
|
|
return ProbeDecoder.getInlinerDescForProbe(Probe);
|
|
}
|
|
};
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|
|
|
|
#endif
|