1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/unittests/ADT/BitVectorTest.cpp
serge-sans-paille 1ea67d638f Introduce a generic operator to apply complex operations to BitVector
This avoids temporary and memcpy call when computing large expressions.

It's basically some kind of poor man's expression template, but it seems easier
to maintain to have a single generic `apply` call instead of the whole
expression template machinery here.

Differential Revision: https://reviews.llvm.org/D98176
2021-03-23 14:23:26 +01:00

1302 lines
32 KiB
C++

//===- llvm/unittest/ADT/BitVectorTest.cpp - BitVector tests --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallBitVector.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
// Test fixture
template <typename T>
class BitVectorTest : public ::testing::Test { };
// Test both BitVector and SmallBitVector with the same suite of tests.
typedef ::testing::Types<BitVector, SmallBitVector> BitVectorTestTypes;
TYPED_TEST_CASE(BitVectorTest, BitVectorTestTypes);
TYPED_TEST(BitVectorTest, TrivialOperation) {
TypeParam Vec;
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(0U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_TRUE(Vec.empty());
Vec.resize(5, true);
EXPECT_EQ(5U, Vec.count());
EXPECT_EQ(5U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.resize(11);
EXPECT_EQ(5U, Vec.count());
EXPECT_EQ(11U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_FALSE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
TypeParam Inv = Vec;
Inv.flip();
EXPECT_EQ(6U, Inv.count());
EXPECT_EQ(11U, Inv.size());
EXPECT_TRUE(Inv.any());
EXPECT_FALSE(Inv.all());
EXPECT_FALSE(Inv.none());
EXPECT_FALSE(Inv.empty());
EXPECT_FALSE(Inv == Vec);
EXPECT_TRUE(Inv != Vec);
Vec.flip();
EXPECT_TRUE(Inv == Vec);
EXPECT_FALSE(Inv != Vec);
// Add some "interesting" data to Vec.
Vec.resize(23, true);
Vec.resize(25, false);
Vec.resize(26, true);
Vec.resize(29, false);
Vec.resize(33, true);
Vec.resize(57, false);
unsigned Count = 0;
for (unsigned i = Vec.find_first(); i != -1u; i = Vec.find_next(i)) {
++Count;
EXPECT_TRUE(Vec[i]);
EXPECT_TRUE(Vec.test(i));
}
EXPECT_EQ(Count, Vec.count());
EXPECT_EQ(Count, 23u);
EXPECT_FALSE(Vec[0]);
EXPECT_TRUE(Vec[32]);
EXPECT_FALSE(Vec[56]);
Vec.resize(61, false);
TypeParam Copy = Vec;
TypeParam Alt(3, false);
Alt.resize(6, true);
std::swap(Alt, Vec);
EXPECT_TRUE(Copy == Alt);
EXPECT_TRUE(Vec.size() == 6);
EXPECT_TRUE(Vec.count() == 3);
EXPECT_TRUE(Vec.find_first() == 3);
std::swap(Copy, Vec);
// Add some more "interesting" data.
Vec.resize(68, true);
Vec.resize(78, false);
Vec.resize(89, true);
Vec.resize(90, false);
Vec.resize(91, true);
Vec.resize(130, false);
Count = 0;
for (unsigned i = Vec.find_first(); i != -1u; i = Vec.find_next(i)) {
++Count;
EXPECT_TRUE(Vec[i]);
EXPECT_TRUE(Vec.test(i));
}
EXPECT_EQ(Count, Vec.count());
EXPECT_EQ(Count, 42u);
EXPECT_FALSE(Vec[0]);
EXPECT_TRUE(Vec[32]);
EXPECT_FALSE(Vec[60]);
EXPECT_FALSE(Vec[129]);
Vec.flip(60);
EXPECT_TRUE(Vec[60]);
EXPECT_EQ(Count + 1, Vec.count());
Vec.flip(60);
EXPECT_FALSE(Vec[60]);
EXPECT_EQ(Count, Vec.count());
Vec.reset(32);
EXPECT_FALSE(Vec[32]);
EXPECT_EQ(Count - 1, Vec.count());
Vec.set(32);
EXPECT_TRUE(Vec[32]);
EXPECT_EQ(Count, Vec.count());
Vec.flip();
EXPECT_EQ(Vec.size() - Count, Vec.count());
Vec.reset();
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(130U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_FALSE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.flip();
EXPECT_EQ(130U, Vec.count());
EXPECT_EQ(130U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.resize(64);
EXPECT_EQ(64U, Vec.count());
EXPECT_EQ(64U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.flip();
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(64U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_FALSE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_FALSE(Vec.empty());
Inv = TypeParam().flip();
EXPECT_EQ(0U, Inv.count());
EXPECT_EQ(0U, Inv.size());
EXPECT_FALSE(Inv.any());
EXPECT_TRUE(Inv.all());
EXPECT_TRUE(Inv.none());
EXPECT_TRUE(Inv.empty());
Vec.clear();
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(0U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_TRUE(Vec.empty());
}
TYPED_TEST(BitVectorTest, Equality) {
TypeParam A;
TypeParam B;
EXPECT_TRUE(A == B);
A.resize(10);
EXPECT_FALSE(A == B);
B.resize(10);
EXPECT_TRUE(A == B);
A.set(5);
EXPECT_FALSE(A == B);
B.set(5);
EXPECT_TRUE(A == B);
A.resize(20);
EXPECT_FALSE(A == B);
B.resize(20);
EXPECT_TRUE(A == B);
}
TYPED_TEST(BitVectorTest, SimpleFindOpsMultiWord) {
TypeParam A;
// Test finding next set and unset bits in a BitVector with multiple words
A.resize(100);
A.set(12);
A.set(13);
A.set(75);
EXPECT_EQ(75, A.find_last());
EXPECT_EQ(12, A.find_first());
EXPECT_EQ(13, A.find_next(12));
EXPECT_EQ(75, A.find_next(13));
EXPECT_EQ(-1, A.find_next(75));
EXPECT_EQ(-1, A.find_prev(12));
EXPECT_EQ(12, A.find_prev(13));
EXPECT_EQ(13, A.find_prev(75));
EXPECT_EQ(75, A.find_prev(90));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(99, A.find_last_unset());
EXPECT_EQ(14, A.find_next_unset(11));
EXPECT_EQ(14, A.find_next_unset(12));
EXPECT_EQ(14, A.find_next_unset(13));
EXPECT_EQ(16, A.find_next_unset(15));
EXPECT_EQ(76, A.find_next_unset(74));
EXPECT_EQ(76, A.find_next_unset(75));
EXPECT_EQ(-1, A.find_next_unset(99));
A.set(0, 100);
EXPECT_EQ(100U, A.count());
EXPECT_EQ(0, A.find_first());
EXPECT_EQ(-1, A.find_first_unset());
EXPECT_EQ(-1, A.find_last_unset());
EXPECT_EQ(99, A.find_last());
EXPECT_EQ(99, A.find_next(98));
A.reset(0, 100);
EXPECT_EQ(0U, A.count());
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(-1, A.find_last());
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(99, A.find_last_unset());
EXPECT_EQ(99, A.find_next_unset(98));
}
// Test finding next set and unset bits in a BitVector/SmallBitVector within a
// uintptr_t - check both 32-bit (Multi) and 64-bit (Small) targets.
TYPED_TEST(BitVectorTest, SimpleFindOps64Bit) {
TypeParam A;
A.resize(57);
A.set(12);
A.set(13);
A.set(47);
EXPECT_EQ(47, A.find_last());
EXPECT_EQ(12, A.find_first());
EXPECT_EQ(13, A.find_next(12));
EXPECT_EQ(47, A.find_next(13));
EXPECT_EQ(-1, A.find_next(47));
EXPECT_EQ(-1, A.find_prev(12));
EXPECT_EQ(12, A.find_prev(13));
EXPECT_EQ(13, A.find_prev(47));
EXPECT_EQ(47, A.find_prev(56));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(56, A.find_last_unset());
EXPECT_EQ(14, A.find_next_unset(11));
EXPECT_EQ(14, A.find_next_unset(12));
EXPECT_EQ(14, A.find_next_unset(13));
EXPECT_EQ(16, A.find_next_unset(15));
EXPECT_EQ(48, A.find_next_unset(46));
EXPECT_EQ(48, A.find_next_unset(47));
EXPECT_EQ(-1, A.find_next_unset(56));
}
// Check if a SmallBitVector is in small mode. This check is used in tests
// that run for both SmallBitVector and BitVector. This check doesn't apply
// to BitVector so we provide an overload that returns true to get the tests
// to compile.
static bool SmallBitVectorIsSmallMode(const SmallBitVector &bv) {
return bv.isSmall();
}
static bool SmallBitVectorIsSmallMode(const BitVector &) { return true; }
// These tests are intended to exercise the single-word case of BitVector
// and the small-mode case of SmallBitVector.
TYPED_TEST(BitVectorTest, SimpleFindOpsSingleWord) {
// Test finding in an empty BitVector.
TypeParam A;
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(-1, A.find_last());
EXPECT_EQ(-1, A.find_first_unset());
EXPECT_EQ(-1, A.find_last_unset());
A.resize(20);
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(-1, A.find_last());
EXPECT_EQ(-1, A.find_next(5));
EXPECT_EQ(-1, A.find_next(19));
EXPECT_EQ(-1, A.find_prev(5));
EXPECT_EQ(-1, A.find_prev(20));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(19, A.find_last_unset());
EXPECT_EQ(6, A.find_next_unset(5));
EXPECT_EQ(-1, A.find_next_unset(19));
A.set(3);
A.set(4);
A.set(16);
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(16, A.find_last());
EXPECT_EQ(3, A.find_first());
EXPECT_EQ(3, A.find_next(1));
EXPECT_EQ(4, A.find_next(3));
EXPECT_EQ(16, A.find_next(4));
EXPECT_EQ(-1, A.find_next(16));
EXPECT_EQ(-1, A.find_prev(3));
EXPECT_EQ(3, A.find_prev(4));
EXPECT_EQ(4, A.find_prev(16));
EXPECT_EQ(16, A.find_prev(18));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(19, A.find_last_unset());
EXPECT_EQ(5, A.find_next_unset(3));
EXPECT_EQ(5, A.find_next_unset(4));
EXPECT_EQ(13, A.find_next_unset(12));
EXPECT_EQ(17, A.find_next_unset(15));
A.set();
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(0, A.find_first());
EXPECT_EQ(19, A.find_last());
EXPECT_EQ(6, A.find_next(5));
EXPECT_EQ(-1, A.find_next(19));
EXPECT_EQ(4, A.find_prev(5));
EXPECT_EQ(19, A.find_prev(20));
EXPECT_EQ(-1, A.find_first_unset());
EXPECT_EQ(-1, A.find_last_unset());
EXPECT_EQ(-1, A.find_next_unset(5));
EXPECT_EQ(-1, A.find_next_unset(19));
}
TEST(BitVectorTest, FindInRangeMultiWord) {
BitVector Vec;
Vec.resize(200);
Vec.set(3, 7);
Vec.set(24, 35);
Vec.set(50, 70);
Vec.set(150);
Vec.set(152);
Vec.set(154);
// find first
EXPECT_EQ(-1, Vec.find_first_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_in(24, 24));
EXPECT_EQ(-1, Vec.find_first_in(7, 24));
EXPECT_EQ(3, Vec.find_first_in(0, 10));
EXPECT_EQ(4, Vec.find_first_in(4, 10));
EXPECT_EQ(150, Vec.find_first_in(100, 200));
EXPECT_EQ(152, Vec.find_first_in(151, 200));
EXPECT_EQ(154, Vec.find_first_in(153, 200));
EXPECT_EQ(-1, Vec.find_first_in(155, 200));
Vec.set(199);
EXPECT_EQ(199, Vec.find_first_in(199, 200));
Vec.reset(199);
// find last
EXPECT_EQ(-1, Vec.find_last_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_in(24, 24));
EXPECT_EQ(-1, Vec.find_last_in(7, 24));
EXPECT_EQ(6, Vec.find_last_in(0, 10));
EXPECT_EQ(5, Vec.find_last_in(0, 6));
EXPECT_EQ(154, Vec.find_last_in(100, 155));
EXPECT_EQ(152, Vec.find_last_in(100, 154));
EXPECT_EQ(150, Vec.find_last_in(100, 152));
EXPECT_EQ(-1, Vec.find_last_in(100, 150));
Vec.set(199);
EXPECT_EQ(199, Vec.find_last_in(199, 200));
Vec.reset(199);
// find first unset
EXPECT_EQ(-1, Vec.find_first_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_first_unset_in(24, 35));
EXPECT_EQ(0, Vec.find_first_unset_in(0, 10));
EXPECT_EQ(1, Vec.find_first_unset_in(1, 10));
EXPECT_EQ(7, Vec.find_first_unset_in(5, 25));
EXPECT_EQ(151, Vec.find_first_unset_in(150, 200));
EXPECT_EQ(151, Vec.find_first_unset_in(151, 200));
EXPECT_EQ(153, Vec.find_first_unset_in(152, 200));
EXPECT_EQ(153, Vec.find_first_unset_in(153, 200));
EXPECT_EQ(155, Vec.find_first_unset_in(154, 200));
EXPECT_EQ(155, Vec.find_first_unset_in(155, 200));
EXPECT_EQ(199, Vec.find_first_unset_in(199, 200));
// find last unset
EXPECT_EQ(-1, Vec.find_last_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_last_unset_in(24, 35));
EXPECT_EQ(9, Vec.find_last_unset_in(0, 10));
EXPECT_EQ(8, Vec.find_last_unset_in(0, 9));
EXPECT_EQ(2, Vec.find_last_unset_in(0, 7));
EXPECT_EQ(149, Vec.find_last_unset_in(100, 151));
EXPECT_EQ(151, Vec.find_last_unset_in(100, 152));
EXPECT_EQ(151, Vec.find_last_unset_in(100, 153));
EXPECT_EQ(153, Vec.find_last_unset_in(100, 154));
EXPECT_EQ(153, Vec.find_last_unset_in(100, 155));
EXPECT_EQ(155, Vec.find_last_unset_in(100, 156));
EXPECT_EQ(199, Vec.find_last_unset_in(199, 200));
}
TEST(BitVectorTest, FindInRangeSingleWord) {
// When the bit vector contains only a single word, this is slightly different
// than when the bit vector contains multiple words, because masks are applied
// to the front and back of the same word. So make sure this works.
BitVector Vec;
Vec.resize(25);
Vec.set(2, 4);
Vec.set(6, 9);
Vec.set(12, 15);
Vec.set(19);
Vec.set(21);
Vec.set(23);
// find first
EXPECT_EQ(-1, Vec.find_first_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_in(24, 24));
EXPECT_EQ(-1, Vec.find_first_in(9, 12));
EXPECT_EQ(2, Vec.find_first_in(0, 10));
EXPECT_EQ(6, Vec.find_first_in(4, 10));
EXPECT_EQ(19, Vec.find_first_in(18, 25));
EXPECT_EQ(21, Vec.find_first_in(20, 25));
EXPECT_EQ(23, Vec.find_first_in(22, 25));
EXPECT_EQ(-1, Vec.find_first_in(24, 25));
// find last
EXPECT_EQ(-1, Vec.find_last_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_in(24, 24));
EXPECT_EQ(-1, Vec.find_last_in(9, 12));
EXPECT_EQ(8, Vec.find_last_in(0, 10));
EXPECT_EQ(3, Vec.find_last_in(0, 6));
EXPECT_EQ(23, Vec.find_last_in(18, 25));
EXPECT_EQ(21, Vec.find_last_in(18, 23));
EXPECT_EQ(19, Vec.find_last_in(18, 21));
EXPECT_EQ(-1, Vec.find_last_in(18, 19));
// find first unset
EXPECT_EQ(-1, Vec.find_first_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_first_unset_in(6, 9));
EXPECT_EQ(0, Vec.find_first_unset_in(0, 6));
EXPECT_EQ(1, Vec.find_first_unset_in(1, 6));
EXPECT_EQ(9, Vec.find_first_unset_in(7, 13));
EXPECT_EQ(18, Vec.find_first_unset_in(18, 25));
EXPECT_EQ(20, Vec.find_first_unset_in(19, 25));
EXPECT_EQ(20, Vec.find_first_unset_in(20, 25));
EXPECT_EQ(22, Vec.find_first_unset_in(21, 25));
EXPECT_EQ(22, Vec.find_first_unset_in(22, 25));
EXPECT_EQ(24, Vec.find_first_unset_in(23, 25));
EXPECT_EQ(24, Vec.find_first_unset_in(24, 25));
// find last unset
EXPECT_EQ(-1, Vec.find_last_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_last_unset_in(6, 9));
EXPECT_EQ(5, Vec.find_last_unset_in(0, 6));
EXPECT_EQ(4, Vec.find_last_unset_in(0, 5));
EXPECT_EQ(1, Vec.find_last_unset_in(0, 4));
EXPECT_EQ(11, Vec.find_last_unset_in(7, 13));
EXPECT_EQ(24, Vec.find_last_unset_in(18, 25));
EXPECT_EQ(22, Vec.find_last_unset_in(18, 24));
EXPECT_EQ(22, Vec.find_last_unset_in(18, 23));
EXPECT_EQ(20, Vec.find_last_unset_in(18, 22));
EXPECT_EQ(20, Vec.find_last_unset_in(18, 21));
EXPECT_EQ(18, Vec.find_last_unset_in(18, 20));
EXPECT_EQ(18, Vec.find_last_unset_in(18, 19));
}
TYPED_TEST(BitVectorTest, CompoundAssignment) {
TypeParam A;
A.resize(10);
A.set(4);
A.set(7);
TypeParam B;
B.resize(50);
B.set(5);
B.set(18);
A |= B;
EXPECT_TRUE(A.test(4));
EXPECT_TRUE(A.test(5));
EXPECT_TRUE(A.test(7));
EXPECT_TRUE(A.test(18));
EXPECT_EQ(4U, A.count());
EXPECT_EQ(50U, A.size());
B.resize(10);
B.set();
B.reset(2);
B.reset(7);
A &= B;
EXPECT_FALSE(A.test(2));
EXPECT_FALSE(A.test(7));
EXPECT_TRUE(A.test(4));
EXPECT_TRUE(A.test(5));
EXPECT_EQ(2U, A.count());
EXPECT_EQ(50U, A.size());
B.resize(100);
B.set();
A ^= B;
EXPECT_TRUE(A.test(2));
EXPECT_TRUE(A.test(7));
EXPECT_EQ(98U, A.count());
EXPECT_EQ(100U, A.size());
}
// Test SmallBitVector operations with mixed big/small representations
TYPED_TEST(BitVectorTest, MixedBigSmall) {
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small &= Big;
EXPECT_TRUE(Small.test(0));
EXPECT_EQ(1u, Small.count());
// FIXME BitVector and SmallBitVector behave differently here.
// SmallBitVector resizes the LHS to max(LHS.size(), RHS.size())
// but BitVector does not.
// EXPECT_EQ(20u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big &= Small;
EXPECT_TRUE(Big.test(0));
EXPECT_EQ(1u, Big.count());
// FIXME BitVector and SmallBitVector behave differently here.
// SmallBitVector resizes the LHS to max(LHS.size(), RHS.size())
// but BitVector does not.
// EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small |= Big;
EXPECT_TRUE(Small.test(0));
EXPECT_TRUE(Small.test(1));
EXPECT_TRUE(Small.test(2));
EXPECT_TRUE(Small.test(16));
EXPECT_EQ(4u, Small.count());
EXPECT_EQ(20u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big |= Small;
EXPECT_TRUE(Big.test(0));
EXPECT_TRUE(Big.test(1));
EXPECT_TRUE(Big.test(2));
EXPECT_TRUE(Big.test(16));
EXPECT_EQ(4u, Big.count());
EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small ^= Big;
EXPECT_TRUE(Small.test(1));
EXPECT_TRUE(Small.test(2));
EXPECT_TRUE(Small.test(16));
EXPECT_EQ(3u, Small.count());
EXPECT_EQ(20u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big ^= Small;
EXPECT_TRUE(Big.test(1));
EXPECT_TRUE(Big.test(2));
EXPECT_TRUE(Big.test(16));
EXPECT_EQ(3u, Big.count());
EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small.reset(Big);
EXPECT_TRUE(Small.test(1));
EXPECT_EQ(1u, Small.count());
EXPECT_EQ(10u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big.reset(Small);
EXPECT_TRUE(Big.test(2));
EXPECT_TRUE(Big.test(16));
EXPECT_EQ(2u, Big.count());
EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(10);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
EXPECT_FALSE(Big == Small);
EXPECT_FALSE(Small == Big);
Big.set(1);
EXPECT_TRUE(Big == Small);
EXPECT_TRUE(Small == Big);
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Big.set(1);
EXPECT_FALSE(Small.anyCommon(Big));
EXPECT_FALSE(Big.anyCommon(Small));
Big.set(0);
EXPECT_TRUE(Small.anyCommon(Big));
EXPECT_TRUE(Big.anyCommon(Small));
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(10);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
EXPECT_TRUE(Small.test(Big));
EXPECT_FALSE(Big.test(Small));
Big.set(1);
EXPECT_FALSE(Small.test(Big));
EXPECT_FALSE(Big.test(Small));
}
}
TYPED_TEST(BitVectorTest, ProxyIndex) {
TypeParam Vec(3);
EXPECT_TRUE(Vec.none());
Vec[0] = Vec[1] = Vec[2] = true;
EXPECT_EQ(Vec.size(), Vec.count());
Vec[2] = Vec[1] = Vec[0] = false;
EXPECT_TRUE(Vec.none());
}
TYPED_TEST(BitVectorTest, PortableBitMask) {
TypeParam A;
const uint32_t Mask1[] = { 0x80000000, 6, 5 };
A.resize(10);
A.setBitsInMask(Mask1, 1);
EXPECT_EQ(10u, A.size());
EXPECT_FALSE(A.test(0));
A.resize(32);
A.setBitsInMask(Mask1, 1);
EXPECT_FALSE(A.test(0));
EXPECT_TRUE(A.test(31));
EXPECT_EQ(1u, A.count());
A.resize(33);
A.setBitsInMask(Mask1, 1);
EXPECT_EQ(1u, A.count());
A.setBitsInMask(Mask1, 2);
EXPECT_EQ(1u, A.count());
A.resize(34);
A.setBitsInMask(Mask1, 2);
EXPECT_EQ(2u, A.count());
A.resize(65);
A.setBitsInMask(Mask1, 3);
EXPECT_EQ(4u, A.count());
A.setBitsNotInMask(Mask1, 1);
EXPECT_EQ(32u+3u, A.count());
A.setBitsNotInMask(Mask1, 3);
EXPECT_EQ(65u, A.count());
A.resize(96);
EXPECT_EQ(65u, A.count());
A.clear();
A.resize(128);
A.setBitsNotInMask(Mask1, 3);
EXPECT_EQ(96u-5u, A.count());
A.clearBitsNotInMask(Mask1, 1);
EXPECT_EQ(64-4u, A.count());
}
TYPED_TEST(BitVectorTest, BinOps) {
TypeParam A;
TypeParam B;
A.resize(65);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(B));
B.resize(64);
A.set(64);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(A));
B.set(63);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(A));
A.set(63);
EXPECT_TRUE(A.anyCommon(B));
EXPECT_TRUE(B.anyCommon(A));
B.resize(70);
B.set(64);
B.reset(63);
A.resize(64);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(A));
}
typedef std::vector<std::pair<int, int>> RangeList;
template <typename VecType>
static inline VecType createBitVector(uint32_t Size,
const RangeList &setRanges) {
VecType V;
V.resize(Size);
for (auto &R : setRanges)
V.set(R.first, R.second);
return V;
}
TYPED_TEST(BitVectorTest, ShiftOpsSingleWord) {
// Test that shift ops work when the desired shift amount is less
// than one word.
// 1. Case where the number of bits in the BitVector also fit into a single
// word.
TypeParam A = createBitVector<TypeParam>(12, {{2, 4}, {8, 10}});
TypeParam B = A;
EXPECT_EQ(4U, A.count());
EXPECT_TRUE(A.test(2));
EXPECT_TRUE(A.test(3));
EXPECT_TRUE(A.test(8));
EXPECT_TRUE(A.test(9));
A >>= 1;
EXPECT_EQ(createBitVector<TypeParam>(12, {{1, 3}, {7, 9}}), A);
A <<= 1;
EXPECT_EQ(B, A);
A >>= 10;
EXPECT_EQ(createBitVector<TypeParam>(12, {}), A);
A = B;
A <<= 10;
EXPECT_EQ(createBitVector<TypeParam>(12, {}), A);
// 2. Case where the number of bits in the BitVector do not fit into a single
// word.
// 31----------------------------------------------------------------------0
// XXXXXXXX XXXXXXXX XXXXXXXX 00000111 | 11111110 00000000 00001111 11111111
A = createBitVector<TypeParam>(40, {{0, 12}, {25, 35}});
EXPECT_EQ(40U, A.size());
EXPECT_EQ(22U, A.count());
// 2a. Make sure that left shifting some 1 bits out of the vector works.
// 31----------------------------------------------------------------------0
// Before:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000111 | 11111110 00000000 00001111 11111111
// After:
// XXXXXXXX XXXXXXXX XXXXXXXX 11111100 | 00000000 00011111 11111110 00000000
A <<= 9;
EXPECT_EQ(createBitVector<TypeParam>(40, {{9, 21}, {34, 40}}), A);
// 2b. Make sure that keeping the number of one bits unchanged works.
// 31----------------------------------------------------------------------0
// Before:
// XXXXXXXX XXXXXXXX XXXXXXXX 11111100 | 00000000 00011111 11111110 00000000
// After:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000011 | 11110000 00000000 01111111 11111000
A >>= 6;
EXPECT_EQ(createBitVector<TypeParam>(40, {{3, 15}, {28, 34}}), A);
// 2c. Make sure that right shifting some 1 bits out of the vector works.
// 31----------------------------------------------------------------------0
// Before:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000011 | 11110000 00000000 01111111 11111000
// After:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000000 | 00000000 11111100 00000000 00011111
A >>= 10;
EXPECT_EQ(createBitVector<TypeParam>(40, {{0, 5}, {18, 24}}), A);
// 3. Big test.
A = createBitVector<TypeParam>(300, {{1, 30}, {60, 95}, {200, 275}});
A <<= 29;
EXPECT_EQ(createBitVector<TypeParam>(
300, {{1 + 29, 30 + 29}, {60 + 29, 95 + 29}, {200 + 29, 300}}),
A);
}
TYPED_TEST(BitVectorTest, ShiftOpsMultiWord) {
// Test that shift ops work when the desired shift amount is greater than or
// equal to the size of a single word.
auto A = createBitVector<TypeParam>(300, {{1, 30}, {60, 95}, {200, 275}});
// Make a copy so we can re-use it later.
auto B = A;
// 1. Shift left by an exact multiple of the word size. This should invoke
// only a memmove and no per-word bit operations.
A <<= 64;
auto Expected = createBitVector<TypeParam>(
300, {{1 + 64, 30 + 64}, {60 + 64, 95 + 64}, {200 + 64, 300}});
EXPECT_EQ(Expected, A);
// 2. Shift left by a non multiple of the word size. This should invoke both
// a memmove and per-word bit operations.
A = B;
A <<= 93;
EXPECT_EQ(createBitVector<TypeParam>(
300, {{1 + 93, 30 + 93}, {60 + 93, 95 + 93}, {200 + 93, 300}}),
A);
// 1. Shift right by an exact multiple of the word size. This should invoke
// only a memmove and no per-word bit operations.
A = B;
A >>= 64;
EXPECT_EQ(
createBitVector<TypeParam>(300, {{0, 95 - 64}, {200 - 64, 275 - 64}}), A);
// 2. Shift left by a non multiple of the word size. This should invoke both
// a memmove and per-word bit operations.
A = B;
A >>= 93;
EXPECT_EQ(
createBitVector<TypeParam>(300, {{0, 95 - 93}, {200 - 93, 275 - 93}}), A);
}
TYPED_TEST(BitVectorTest, RangeOps) {
TypeParam A;
A.resize(256);
A.reset();
A.set(1, 255);
EXPECT_FALSE(A.test(0));
EXPECT_TRUE( A.test(1));
EXPECT_TRUE( A.test(23));
EXPECT_TRUE( A.test(254));
EXPECT_FALSE(A.test(255));
TypeParam B;
B.resize(256);
B.set();
B.reset(1, 255);
EXPECT_TRUE( B.test(0));
EXPECT_FALSE(B.test(1));
EXPECT_FALSE(B.test(23));
EXPECT_FALSE(B.test(254));
EXPECT_TRUE( B.test(255));
TypeParam C;
C.resize(3);
C.reset();
C.set(0, 1);
EXPECT_TRUE(C.test(0));
EXPECT_FALSE( C.test(1));
EXPECT_FALSE( C.test(2));
TypeParam D;
D.resize(3);
D.set();
D.reset(0, 1);
EXPECT_FALSE(D.test(0));
EXPECT_TRUE( D.test(1));
EXPECT_TRUE( D.test(2));
TypeParam E;
E.resize(128);
E.reset();
E.set(1, 33);
EXPECT_FALSE(E.test(0));
EXPECT_TRUE( E.test(1));
EXPECT_TRUE( E.test(32));
EXPECT_FALSE(E.test(33));
TypeParam BufferOverrun;
unsigned size = sizeof(unsigned long) * 8;
BufferOverrun.resize(size);
BufferOverrun.reset(0, size);
BufferOverrun.set(0, size);
}
TYPED_TEST(BitVectorTest, CompoundTestReset) {
TypeParam A(50, true);
TypeParam B(50, false);
TypeParam C(100, true);
TypeParam D(100, false);
EXPECT_FALSE(A.test(A));
EXPECT_TRUE(A.test(B));
EXPECT_FALSE(A.test(C));
EXPECT_TRUE(A.test(D));
EXPECT_FALSE(B.test(A));
EXPECT_FALSE(B.test(B));
EXPECT_FALSE(B.test(C));
EXPECT_FALSE(B.test(D));
EXPECT_TRUE(C.test(A));
EXPECT_TRUE(C.test(B));
EXPECT_FALSE(C.test(C));
EXPECT_TRUE(C.test(D));
A.reset(B);
A.reset(D);
EXPECT_TRUE(A.all());
A.reset(A);
EXPECT_TRUE(A.none());
A.set();
A.reset(C);
EXPECT_TRUE(A.none());
A.set();
C.reset(A);
EXPECT_EQ(50, C.find_first());
C.reset(C);
EXPECT_TRUE(C.none());
}
TYPED_TEST(BitVectorTest, MoveConstructor) {
TypeParam A(10, true);
TypeParam B(std::move(A));
// Check that the move ctor leaves the moved-from object in a valid state.
// The following line used to crash.
A = B;
TypeParam C(10, true);
EXPECT_EQ(C, A);
EXPECT_EQ(C, B);
}
TYPED_TEST(BitVectorTest, MoveAssignment) {
TypeParam A(10, true);
TypeParam B;
B = std::move(A);
// Check that move assignment leaves the moved-from object in a valid state.
// The following line used to crash.
A = B;
TypeParam C(10, true);
EXPECT_EQ(C, A);
EXPECT_EQ(C, B);
}
template<class TypeParam>
static void testEmpty(const TypeParam &A) {
EXPECT_TRUE(A.empty());
EXPECT_EQ((size_t)0, A.size());
EXPECT_EQ((size_t)0, A.count());
EXPECT_FALSE(A.any());
EXPECT_TRUE(A.all());
EXPECT_TRUE(A.none());
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(A, TypeParam());
}
/// Tests whether BitVector behaves well with Bits==nullptr, Capacity==0
TYPED_TEST(BitVectorTest, EmptyVector) {
TypeParam A;
testEmpty(A);
TypeParam B;
B.reset();
testEmpty(B);
TypeParam C;
C.clear();
testEmpty(C);
TypeParam D(A);
testEmpty(D);
TypeParam E;
E = A;
testEmpty(E);
TypeParam F;
E.reset(A);
testEmpty(E);
}
TYPED_TEST(BitVectorTest, Iterators) {
TypeParam Filled(10, true);
EXPECT_NE(Filled.set_bits_begin(), Filled.set_bits_end());
unsigned Counter = 0;
for (unsigned Bit : Filled.set_bits())
EXPECT_EQ(Bit, Counter++);
TypeParam Empty;
EXPECT_EQ(Empty.set_bits_begin(), Empty.set_bits_end());
int BitCount = 0;
for (unsigned Bit : Empty.set_bits()) {
(void)Bit;
BitCount++;
}
ASSERT_EQ(BitCount, 0);
TypeParam ToFill(100, false);
ToFill.set(0);
EXPECT_NE(ToFill.set_bits_begin(), ToFill.set_bits_end());
EXPECT_EQ(++ToFill.set_bits_begin(), ToFill.set_bits_end());
EXPECT_EQ(*ToFill.set_bits_begin(), 0U);
ToFill.reset(0);
EXPECT_EQ(ToFill.set_bits_begin(), ToFill.set_bits_end());
const unsigned List[] = {1, 10, 25, 99};
for (unsigned Num : List)
ToFill.set(Num);
unsigned i = 0;
for (unsigned Bit : ToFill.set_bits())
EXPECT_EQ(List[i++], Bit);
}
TYPED_TEST(BitVectorTest, PushBack) {
TypeParam Vec(10, false);
EXPECT_EQ(-1, Vec.find_first());
EXPECT_EQ(10U, Vec.size());
EXPECT_EQ(0U, Vec.count());
Vec.push_back(true);
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(11U, Vec.size());
EXPECT_EQ(1U, Vec.count());
Vec.push_back(false);
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(12U, Vec.size());
EXPECT_EQ(1U, Vec.count());
Vec.push_back(true);
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(13U, Vec.size());
EXPECT_EQ(2U, Vec.count());
// Add a lot of values to cause reallocation.
for (int i = 0; i != 100; ++i) {
Vec.push_back(true);
Vec.push_back(false);
}
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(213U, Vec.size());
EXPECT_EQ(102U, Vec.count());
}
TYPED_TEST(BitVectorTest, DenseSet) {
DenseSet<TypeParam> Set;
TypeParam A(10, true);
auto I = Set.insert(A);
EXPECT_EQ(true, I.second);
TypeParam B(5, true);
I = Set.insert(B);
EXPECT_EQ(true, I.second);
TypeParam C(20, false);
C.set(19);
I = Set.insert(C);
EXPECT_EQ(true, I.second);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
TypeParam D;
EXPECT_DEATH(Set.insert(D),
"Empty/Tombstone value shouldn't be inserted into map!");
#endif
EXPECT_EQ(3U, Set.size());
EXPECT_EQ(1U, Set.count(A));
EXPECT_EQ(1U, Set.count(B));
EXPECT_EQ(1U, Set.count(C));
EXPECT_EQ(true, Set.erase(B));
EXPECT_EQ(2U, Set.size());
EXPECT_EQ(true, Set.erase(C));
EXPECT_EQ(1U, Set.size());
EXPECT_EQ(true, Set.erase(A));
EXPECT_EQ(0U, Set.size());
}
/// Test that capacity doesn't affect hashing.
TYPED_TEST(BitVectorTest, DenseMapHashing) {
using DMI = DenseMapInfo<TypeParam>;
{
TypeParam A;
A.resize(200);
A.set(100);
TypeParam B;
B.resize(200);
B.set(100);
B.reserve(1000);
EXPECT_EQ(DMI::getHashValue(A), DMI::getHashValue(B));
}
{
TypeParam A;
A.resize(20);
A.set(10);
TypeParam B;
B.resize(20);
B.set(10);
B.reserve(1000);
EXPECT_EQ(DMI::getHashValue(A), DMI::getHashValue(B));
}
}
TEST(BitVectoryTest, Apply) {
for (int i = 0; i < 2; ++i) {
int j = i * 100 + 3;
const BitVector x =
createBitVector<BitVector>(j + 5, {{i, i + 1}, {j - 1, j}});
const BitVector y = createBitVector<BitVector>(j + 5, {{i, j}});
const BitVector z =
createBitVector<BitVector>(j + 5, {{i + 1, i + 2}, {j, j + 1}});
auto op0 = [](auto x) { return ~x; };
BitVector expected0 = x;
expected0.flip();
BitVector out0(j - 2);
BitVector::apply(op0, out0, x);
EXPECT_EQ(out0, expected0);
auto op1 = [](auto x, auto y) { return x & ~y; };
BitVector expected1 = x;
expected1.reset(y);
BitVector out1;
BitVector::apply(op1, out1, x, y);
EXPECT_EQ(out1, expected1);
auto op2 = [](auto x, auto y, auto z) { return (x ^ ~y) | z; };
BitVector expected2 = y;
expected2.flip();
expected2 ^= x;
expected2 |= z;
BitVector out2(j + 5);
BitVector::apply(op2, out2, x, y, z);
EXPECT_EQ(out2, expected2);
}
}
} // namespace