1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Transforms/Scalar/DecomposeMultiDimRefs.cpp
Vikram S. Adve bbe47f2e7d Eliminate cast instructions: use only GEPs in decomposed sequence.
Don't decompose if there are 2 indices with 0 as first index.
Compute Changed flag correctly in runOnBasicBlock().

llvm-svn: 3233
2002-08-03 13:21:15 +00:00

170 lines
5.1 KiB
C++

//===- llvm/Transforms/DecomposeMultiDimRefs.cpp - Lower array refs to 1D -===//
//
// DecomposeMultiDimRefs - Convert multi-dimensional references consisting of
// any combination of 2 or more array and structure indices into a sequence of
// instructions (using getelementpr and cast) so that each instruction has at
// most one index (except structure references, which need an extra leading
// index of [0]).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Constant.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
#include "llvm/Pass.h"
#include "Support/StatisticReporter.h"
static Statistic<> NumAdded("lowerrefs\t\t- New instructions added");
namespace {
struct DecomposePass : public BasicBlockPass {
virtual bool runOnBasicBlock(BasicBlock &BB);
private:
static bool decomposeArrayRef(BasicBlock::iterator &BBI);
};
RegisterOpt<DecomposePass> X("lowerrefs", "Decompose multi-dimensional "
"structure/array references");
}
Pass
*createDecomposeMultiDimRefsPass()
{
return new DecomposePass();
}
// runOnBasicBlock - Entry point for array or structure references with multiple
// indices.
//
bool
DecomposePass::runOnBasicBlock(BasicBlock &BB)
{
bool Changed = false;
for (BasicBlock::iterator II = BB.begin(); II != BB.end(); ) {
if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(&*II))
if (MAI->getNumIndices() >= 2) {
Changed = decomposeArrayRef(II) || Changed; // always modifies II
continue;
}
++II;
}
return Changed;
}
// Check for a constant (uint) 0.
inline bool
IsZero(Value* idx)
{
return (isa<ConstantInt>(idx) && cast<ConstantInt>(idx)->isNullValue());
}
// For any MemAccessInst with 2 or more array and structure indices:
//
// opCode CompositeType* P, [uint|ubyte] idx1, ..., [uint|ubyte] idxN
//
// this function generates the foll sequence:
//
// ptr1 = getElementPtr P, idx1
// ptr2 = getElementPtr ptr1, 0, idx2
// ...
// ptrN-1 = getElementPtr ptrN-2, 0, idxN-1
// opCode ptrN-1, 0, idxN // New-MAI
//
// Then it replaces the original instruction with this sequence,
// and replaces all uses of the original instruction with New-MAI.
// If idx1 is 0, we simply omit the first getElementPtr instruction.
//
// On return: BBI points to the instruction after the current one
// (whether or not *BBI was replaced).
//
// Return value: true if the instruction was replaced; false otherwise.
//
bool
DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI)
{
MemAccessInst &MAI = cast<MemAccessInst>(*BBI);
// If this instr two or fewer arguments and the first argument is 0,
// the decomposed version is identical to the instruction itself.
// This is common enough that it is worth checking for explicitly...
if (MAI.getNumIndices() == 0 ||
(MAI.getNumIndices() <= 2 && IsZero(*MAI.idx_begin()))) {
++BBI;
return false;
}
BasicBlock *BB = MAI.getParent();
Value *LastPtr = MAI.getPointerOperand();
// Remove the instruction from the stream
BB->getInstList().remove(BBI);
// The vector of new instructions to be created
std::vector<Instruction*> NewInsts;
// Process each index except the last one.
User::const_op_iterator OI = MAI.idx_begin(), OE = MAI.idx_end();
for (; OI+1 != OE; ++OI) {
std::vector<Value*> Indices;
// If this is the first index and is 0, skip it and move on!
if (OI == MAI.idx_begin()) {
if (IsZero(*OI)) continue;
} else
// Not the first index: include initial [0] to deref the last ptr
Indices.push_back(Constant::getNullValue(Type::UIntTy));
Indices.push_back(*OI);
// New Instruction: nextPtr1 = GetElementPtr LastPtr, Indices
LastPtr = new GetElementPtrInst(LastPtr, Indices, "ptr1");
NewInsts.push_back(cast<Instruction>(LastPtr));
++NumAdded;
}
// Now create a new instruction to replace the original one
//
const PointerType *PtrTy = cast<PointerType>(LastPtr->getType());
// Get the final index vector, including an initial [0] as before.
std::vector<Value*> Indices;
Indices.push_back(Constant::getNullValue(Type::UIntTy));
Indices.push_back(*OI);
Instruction *NewI = 0;
switch(MAI.getOpcode()) {
case Instruction::Load:
NewI = new LoadInst(LastPtr, Indices, MAI.getName());
break;
case Instruction::Store:
NewI = new StoreInst(MAI.getOperand(0), LastPtr, Indices);
break;
case Instruction::GetElementPtr:
NewI = new GetElementPtrInst(LastPtr, Indices, MAI.getName());
break;
default:
assert(0 && "Unrecognized memory access instruction");
}
NewInsts.push_back(NewI);
// Replace all uses of the old instruction with the new
MAI.replaceAllUsesWith(NewI);
// Now delete the old instruction...
delete &MAI;
// Insert all of the new instructions...
BB->getInstList().insert(BBI, NewInsts.begin(), NewInsts.end());
// Advance the iterator to the instruction following the one just inserted...
BBI = NewInsts.back();
++BBI;
return true;
}