mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
2bcecae492
We already support 8-bits adds in convertToThreeAddress. But we can also support 8-bit OR if the bits are disjoint. We already do this for 16/32/64. Differential Revision: https://reviews.llvm.org/D58863 llvm-svn: 355423
637 lines
29 KiB
C++
637 lines
29 KiB
C++
//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
|
|
#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
|
|
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
|
#include "X86InstrFMA3Info.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include <vector>
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
class MachineInstrBuilder;
|
|
class X86RegisterInfo;
|
|
class X86Subtarget;
|
|
|
|
namespace X86 {
|
|
|
|
enum AsmComments {
|
|
// For instr that was compressed from EVEX to VEX.
|
|
AC_EVEX_2_VEX = MachineInstr::TAsmComments
|
|
};
|
|
|
|
// X86 specific condition code. These correspond to X86_*_COND in
|
|
// X86InstrInfo.td. They must be kept in synch.
|
|
enum CondCode {
|
|
COND_A = 0,
|
|
COND_AE = 1,
|
|
COND_B = 2,
|
|
COND_BE = 3,
|
|
COND_E = 4,
|
|
COND_G = 5,
|
|
COND_GE = 6,
|
|
COND_L = 7,
|
|
COND_LE = 8,
|
|
COND_NE = 9,
|
|
COND_NO = 10,
|
|
COND_NP = 11,
|
|
COND_NS = 12,
|
|
COND_O = 13,
|
|
COND_P = 14,
|
|
COND_S = 15,
|
|
LAST_VALID_COND = COND_S,
|
|
|
|
// Artificial condition codes. These are used by AnalyzeBranch
|
|
// to indicate a block terminated with two conditional branches that together
|
|
// form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
|
|
// which can't be represented on x86 with a single condition. These
|
|
// are never used in MachineInstrs and are inverses of one another.
|
|
COND_NE_OR_P,
|
|
COND_E_AND_NP,
|
|
|
|
COND_INVALID
|
|
};
|
|
|
|
// Turn condition code into conditional branch opcode.
|
|
unsigned GetCondBranchFromCond(CondCode CC);
|
|
|
|
/// Return a pair of condition code for the given predicate and whether
|
|
/// the instruction operands should be swaped to match the condition code.
|
|
std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
|
|
|
|
/// Return a set opcode for the given condition and whether it has
|
|
/// a memory operand.
|
|
unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
|
|
|
|
/// Return a cmov opcode for the given condition, register size in
|
|
/// bytes, and operand type.
|
|
unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
|
|
bool HasMemoryOperand = false);
|
|
|
|
// Turn jCC opcode into condition code.
|
|
CondCode getCondFromBranchOpc(unsigned Opc);
|
|
|
|
// Turn setCC opcode into condition code.
|
|
CondCode getCondFromSETOpc(unsigned Opc);
|
|
|
|
// Turn CMov opcode into condition code.
|
|
CondCode getCondFromCMovOpc(unsigned Opc);
|
|
|
|
/// GetOppositeBranchCondition - Return the inverse of the specified cond,
|
|
/// e.g. turning COND_E to COND_NE.
|
|
CondCode GetOppositeBranchCondition(CondCode CC);
|
|
|
|
/// Get the VPCMP immediate for the given condition.
|
|
unsigned getVPCMPImmForCond(ISD::CondCode CC);
|
|
|
|
/// Get the VPCMP immediate if the opcodes are swapped.
|
|
unsigned getSwappedVPCMPImm(unsigned Imm);
|
|
|
|
/// Get the VPCOM immediate if the opcodes are swapped.
|
|
unsigned getSwappedVPCOMImm(unsigned Imm);
|
|
|
|
} // namespace X86
|
|
|
|
/// isGlobalStubReference - Return true if the specified TargetFlag operand is
|
|
/// a reference to a stub for a global, not the global itself.
|
|
inline static bool isGlobalStubReference(unsigned char TargetFlag) {
|
|
switch (TargetFlag) {
|
|
case X86II::MO_DLLIMPORT: // dllimport stub.
|
|
case X86II::MO_GOTPCREL: // rip-relative GOT reference.
|
|
case X86II::MO_GOT: // normal GOT reference.
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
|
|
case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
|
|
case X86II::MO_COFFSTUB: // COFF .refptr stub.
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isGlobalRelativeToPICBase - Return true if the specified global value
|
|
/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
|
|
/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
|
|
inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
|
|
switch (TargetFlag) {
|
|
case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
|
|
case X86II::MO_GOT: // isPICStyleGOT: other global.
|
|
case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
|
|
case X86II::MO_TLVP: // ??? Pretty sure..
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline static bool isScale(const MachineOperand &MO) {
|
|
return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
|
|
MO.getImm() == 4 || MO.getImm() == 8);
|
|
}
|
|
|
|
inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
|
|
if (MI.getOperand(Op).isFI())
|
|
return true;
|
|
return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
|
|
MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
|
|
isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
|
|
MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
|
|
(MI.getOperand(Op + X86::AddrDisp).isImm() ||
|
|
MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
|
|
MI.getOperand(Op + X86::AddrDisp).isCPI() ||
|
|
MI.getOperand(Op + X86::AddrDisp).isJTI());
|
|
}
|
|
|
|
inline static bool isMem(const MachineInstr &MI, unsigned Op) {
|
|
if (MI.getOperand(Op).isFI())
|
|
return true;
|
|
return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
|
|
MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
|
|
}
|
|
|
|
class X86InstrInfo final : public X86GenInstrInfo {
|
|
X86Subtarget &Subtarget;
|
|
const X86RegisterInfo RI;
|
|
|
|
virtual void anchor();
|
|
|
|
bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
SmallVectorImpl<MachineInstr *> &CondBranches,
|
|
bool AllowModify) const;
|
|
|
|
public:
|
|
explicit X86InstrInfo(X86Subtarget &STI);
|
|
|
|
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
|
|
/// such, whenever a client has an instance of instruction info, it should
|
|
/// always be able to get register info as well (through this method).
|
|
///
|
|
const X86RegisterInfo &getRegisterInfo() const { return RI; }
|
|
|
|
/// Returns the stack pointer adjustment that happens inside the frame
|
|
/// setup..destroy sequence (e.g. by pushes, or inside the callee).
|
|
int64_t getFrameAdjustment(const MachineInstr &I) const {
|
|
assert(isFrameInstr(I));
|
|
if (isFrameSetup(I))
|
|
return I.getOperand(2).getImm();
|
|
return I.getOperand(1).getImm();
|
|
}
|
|
|
|
/// Sets the stack pointer adjustment made inside the frame made up by this
|
|
/// instruction.
|
|
void setFrameAdjustment(MachineInstr &I, int64_t V) const {
|
|
assert(isFrameInstr(I));
|
|
if (isFrameSetup(I))
|
|
I.getOperand(2).setImm(V);
|
|
else
|
|
I.getOperand(1).setImm(V);
|
|
}
|
|
|
|
/// getSPAdjust - This returns the stack pointer adjustment made by
|
|
/// this instruction. For x86, we need to handle more complex call
|
|
/// sequences involving PUSHes.
|
|
int getSPAdjust(const MachineInstr &MI) const override;
|
|
|
|
/// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
|
|
/// extension instruction. That is, it's like a copy where it's legal for the
|
|
/// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
|
|
/// true, then it's expected the pre-extension value is available as a subreg
|
|
/// of the result register. This also returns the sub-register index in
|
|
/// SubIdx.
|
|
bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
|
|
unsigned &DstReg, unsigned &SubIdx) const override;
|
|
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
unsigned &MemBytes) const override;
|
|
/// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
|
|
/// stack locations as well. This uses a heuristic so it isn't
|
|
/// reliable for correctness.
|
|
unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
unsigned &MemBytes) const override;
|
|
/// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
|
|
/// stack locations as well. This uses a heuristic so it isn't
|
|
/// reliable for correctness.
|
|
unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AliasAnalysis *AA) const override;
|
|
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, unsigned SubIdx,
|
|
const MachineInstr &Orig,
|
|
const TargetRegisterInfo &TRI) const override;
|
|
|
|
/// Given an operand within a MachineInstr, insert preceding code to put it
|
|
/// into the right format for a particular kind of LEA instruction. This may
|
|
/// involve using an appropriate super-register instead (with an implicit use
|
|
/// of the original) or creating a new virtual register and inserting COPY
|
|
/// instructions to get the data into the right class.
|
|
///
|
|
/// Reference parameters are set to indicate how caller should add this
|
|
/// operand to the LEA instruction.
|
|
bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
|
|
unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
|
|
bool &isKill, MachineOperand &ImplicitOp,
|
|
LiveVariables *LV) const;
|
|
|
|
/// convertToThreeAddress - This method must be implemented by targets that
|
|
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
|
/// may be able to convert a two-address instruction into a true
|
|
/// three-address instruction on demand. This allows the X86 target (for
|
|
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
|
/// would require register copies due to two-addressness.
|
|
///
|
|
/// This method returns a null pointer if the transformation cannot be
|
|
/// performed, otherwise it returns the new instruction.
|
|
///
|
|
MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineInstr &MI,
|
|
LiveVariables *LV) const override;
|
|
|
|
/// Returns true iff the routine could find two commutable operands in the
|
|
/// given machine instruction.
|
|
/// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
|
|
/// input values can be re-defined in this method only if the input values
|
|
/// are not pre-defined, which is designated by the special value
|
|
/// 'CommuteAnyOperandIndex' assigned to it.
|
|
/// If both of indices are pre-defined and refer to some operands, then the
|
|
/// method simply returns true if the corresponding operands are commutable
|
|
/// and returns false otherwise.
|
|
///
|
|
/// For example, calling this method this way:
|
|
/// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
|
|
/// findCommutedOpIndices(MI, Op1, Op2);
|
|
/// can be interpreted as a query asking to find an operand that would be
|
|
/// commutable with the operand#1.
|
|
bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const override;
|
|
|
|
/// Returns an adjusted FMA opcode that must be used in FMA instruction that
|
|
/// performs the same computations as the given \p MI but which has the
|
|
/// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
|
|
/// It may return 0 if it is unsafe to commute the operands.
|
|
/// Note that a machine instruction (instead of its opcode) is passed as the
|
|
/// first parameter to make it possible to analyze the instruction's uses and
|
|
/// commute the first operand of FMA even when it seems unsafe when you look
|
|
/// at the opcode. For example, it is Ok to commute the first operand of
|
|
/// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
|
|
///
|
|
/// The returned FMA opcode may differ from the opcode in the given \p MI.
|
|
/// For example, commuting the operands #1 and #3 in the following FMA
|
|
/// FMA213 #1, #2, #3
|
|
/// results into instruction with adjusted opcode:
|
|
/// FMA231 #3, #2, #1
|
|
unsigned
|
|
getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
|
|
unsigned SrcOpIdx2,
|
|
const X86InstrFMA3Group &FMA3Group) const;
|
|
|
|
// Branch analysis.
|
|
bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
|
|
bool isUnconditionalTailCall(const MachineInstr &MI) const override;
|
|
bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
|
|
const MachineInstr &TailCall) const override;
|
|
void replaceBranchWithTailCall(MachineBasicBlock &MBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
const MachineInstr &TailCall) const override;
|
|
|
|
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const override;
|
|
|
|
bool getMemOperandWithOffset(MachineInstr &LdSt, MachineOperand *&BaseOp,
|
|
int64_t &Offset,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
bool analyzeBranchPredicate(MachineBasicBlock &MBB,
|
|
TargetInstrInfo::MachineBranchPredicate &MBP,
|
|
bool AllowModify = false) const override;
|
|
|
|
unsigned removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved = nullptr) const override;
|
|
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded = nullptr) const override;
|
|
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
|
|
unsigned, unsigned, int &, int &, int &) const override;
|
|
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, unsigned DstReg,
|
|
ArrayRef<MachineOperand> Cond, unsigned TrueReg,
|
|
unsigned FalseReg) const override;
|
|
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const override;
|
|
void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, unsigned SrcReg,
|
|
bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
ArrayRef<MachineMemOperand *> MMOs,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const;
|
|
|
|
void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, unsigned DestReg,
|
|
int FrameIndex, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
ArrayRef<MachineMemOperand *> MMOs,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const;
|
|
|
|
bool expandPostRAPseudo(MachineInstr &MI) const override;
|
|
|
|
/// Check whether the target can fold a load that feeds a subreg operand
|
|
/// (or a subreg operand that feeds a store).
|
|
bool isSubregFoldable() const override { return true; }
|
|
|
|
/// foldMemoryOperand - If this target supports it, fold a load or store of
|
|
/// the specified stack slot into the specified machine instruction for the
|
|
/// specified operand(s). If this is possible, the target should perform the
|
|
/// folding and return true, otherwise it should return false. If it folds
|
|
/// the instruction, it is likely that the MachineInstruction the iterator
|
|
/// references has been changed.
|
|
MachineInstr *
|
|
foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
|
|
ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, int FrameIndex,
|
|
LiveIntervals *LIS = nullptr) const override;
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
MachineInstr *foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
|
|
LiveIntervals *LIS = nullptr) const override;
|
|
|
|
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
|
|
/// a store or a load and a store into two or more instruction. If this is
|
|
/// possible, returns true as well as the new instructions by reference.
|
|
bool
|
|
unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
|
|
bool UnfoldLoad, bool UnfoldStore,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const override;
|
|
|
|
bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
|
|
SmallVectorImpl<SDNode *> &NewNodes) const override;
|
|
|
|
/// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
|
|
/// instruction after load / store are unfolded from an instruction of the
|
|
/// specified opcode. It returns zero if the specified unfolding is not
|
|
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
|
|
/// index of the operand which will hold the register holding the loaded
|
|
/// value.
|
|
unsigned
|
|
getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
|
|
unsigned *LoadRegIndex = nullptr) const override;
|
|
|
|
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
|
|
/// to determine if two loads are loading from the same base address. It
|
|
/// should only return true if the base pointers are the same and the
|
|
/// only differences between the two addresses are the offset. It also returns
|
|
/// the offsets by reference.
|
|
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
|
|
int64_t &Offset2) const override;
|
|
|
|
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
|
|
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
|
|
/// should be scheduled togther. On some targets if two loads are loading from
|
|
/// addresses in the same cache line, it's better if they are scheduled
|
|
/// together. This function takes two integers that represent the load offsets
|
|
/// from the common base address. It returns true if it decides it's desirable
|
|
/// to schedule the two loads together. "NumLoads" is the number of loads that
|
|
/// have already been scheduled after Load1.
|
|
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
|
|
int64_t Offset2,
|
|
unsigned NumLoads) const override;
|
|
|
|
void getNoop(MCInst &NopInst) const override;
|
|
|
|
bool
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
|
|
|
|
/// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
|
|
/// instruction that defines the specified register class.
|
|
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
|
|
|
|
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
|
|
/// would clobber the EFLAGS condition register. Note the result may be
|
|
/// conservative. If it cannot definitely determine the safety after visiting
|
|
/// a few instructions in each direction it assumes it's not safe.
|
|
bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
return MBB.computeRegisterLiveness(&RI, X86::EFLAGS, I, 4) ==
|
|
MachineBasicBlock::LQR_Dead;
|
|
}
|
|
|
|
/// True if MI has a condition code def, e.g. EFLAGS, that is
|
|
/// not marked dead.
|
|
bool hasLiveCondCodeDef(MachineInstr &MI) const;
|
|
|
|
/// getGlobalBaseReg - Return a virtual register initialized with the
|
|
/// the global base register value. Output instructions required to
|
|
/// initialize the register in the function entry block, if necessary.
|
|
///
|
|
unsigned getGlobalBaseReg(MachineFunction *MF) const;
|
|
|
|
std::pair<uint16_t, uint16_t>
|
|
getExecutionDomain(const MachineInstr &MI) const override;
|
|
|
|
uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
|
|
|
|
void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
|
|
|
|
bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
|
|
|
|
unsigned
|
|
getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
|
|
unsigned OpNum,
|
|
ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
unsigned Size, unsigned Alignment,
|
|
bool AllowCommute) const;
|
|
|
|
bool isHighLatencyDef(int opc) const override;
|
|
|
|
bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
|
|
const MachineRegisterInfo *MRI,
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const override;
|
|
|
|
bool useMachineCombiner() const override { return true; }
|
|
|
|
bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
|
|
|
|
bool hasReassociableOperands(const MachineInstr &Inst,
|
|
const MachineBasicBlock *MBB) const override;
|
|
|
|
void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
|
|
MachineInstr &NewMI1,
|
|
MachineInstr &NewMI2) const override;
|
|
|
|
/// analyzeCompare - For a comparison instruction, return the source registers
|
|
/// in SrcReg and SrcReg2 if having two register operands, and the value it
|
|
/// compares against in CmpValue. Return true if the comparison instruction
|
|
/// can be analyzed.
|
|
bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
|
|
unsigned &SrcReg2, int &CmpMask,
|
|
int &CmpValue) const override;
|
|
|
|
/// optimizeCompareInstr - Check if there exists an earlier instruction that
|
|
/// operates on the same source operands and sets flags in the same way as
|
|
/// Compare; remove Compare if possible.
|
|
bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
|
|
unsigned SrcReg2, int CmpMask, int CmpValue,
|
|
const MachineRegisterInfo *MRI) const override;
|
|
|
|
/// optimizeLoadInstr - Try to remove the load by folding it to a register
|
|
/// operand at the use. We fold the load instructions if and only if the
|
|
/// def and use are in the same BB. We only look at one load and see
|
|
/// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
|
|
/// defined by the load we are trying to fold. DefMI returns the machine
|
|
/// instruction that defines FoldAsLoadDefReg, and the function returns
|
|
/// the machine instruction generated due to folding.
|
|
MachineInstr *optimizeLoadInstr(MachineInstr &MI,
|
|
const MachineRegisterInfo *MRI,
|
|
unsigned &FoldAsLoadDefReg,
|
|
MachineInstr *&DefMI) const override;
|
|
|
|
std::pair<unsigned, unsigned>
|
|
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableDirectMachineOperandTargetFlags() const override;
|
|
|
|
virtual outliner::OutlinedFunction getOutliningCandidateInfo(
|
|
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
|
|
|
|
bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
|
|
bool OutlineFromLinkOnceODRs) const override;
|
|
|
|
outliner::InstrType
|
|
getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
|
|
|
|
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
|
|
const outliner::OutlinedFunction &OF) const override;
|
|
|
|
MachineBasicBlock::iterator
|
|
insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &It, MachineFunction &MF,
|
|
const outliner::Candidate &C) const override;
|
|
|
|
#define GET_INSTRINFO_HELPER_DECLS
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
protected:
|
|
/// Commutes the operands in the given instruction by changing the operands
|
|
/// order and/or changing the instruction's opcode and/or the immediate value
|
|
/// operand.
|
|
///
|
|
/// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
|
|
/// to be commuted.
|
|
///
|
|
/// Do not call this method for a non-commutable instruction or
|
|
/// non-commutable operands.
|
|
/// Even though the instruction is commutable, the method may still
|
|
/// fail to commute the operands, null pointer is returned in such cases.
|
|
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned CommuteOpIdx1,
|
|
unsigned CommuteOpIdx2) const override;
|
|
|
|
/// If the specific machine instruction is a instruction that moves/copies
|
|
/// value from one register to another register return true along with
|
|
/// @Source machine operand and @Destination machine operand.
|
|
bool isCopyInstrImpl(const MachineInstr &MI, const MachineOperand *&Source,
|
|
const MachineOperand *&Destination) const override;
|
|
|
|
private:
|
|
/// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
|
|
/// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
|
|
/// super-register and then truncating back down to a 8/16-bit sub-register.
|
|
MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
|
|
MachineFunction::iterator &MFI,
|
|
MachineInstr &MI,
|
|
LiveVariables *LV,
|
|
bool Is8BitOp) const;
|
|
|
|
/// Handles memory folding for special case instructions, for instance those
|
|
/// requiring custom manipulation of the address.
|
|
MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
|
|
unsigned OpNum,
|
|
ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
unsigned Size, unsigned Align) const;
|
|
|
|
/// isFrameOperand - Return true and the FrameIndex if the specified
|
|
/// operand and follow operands form a reference to the stack frame.
|
|
bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
|
|
int &FrameIndex) const;
|
|
|
|
/// Returns true iff the routine could find two commutable operands in the
|
|
/// given machine instruction with 3 vector inputs.
|
|
/// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
|
|
/// input values can be re-defined in this method only if the input values
|
|
/// are not pre-defined, which is designated by the special value
|
|
/// 'CommuteAnyOperandIndex' assigned to it.
|
|
/// If both of indices are pre-defined and refer to some operands, then the
|
|
/// method simply returns true if the corresponding operands are commutable
|
|
/// and returns false otherwise.
|
|
///
|
|
/// For example, calling this method this way:
|
|
/// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
|
|
/// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
|
|
/// can be interpreted as a query asking to find an operand that would be
|
|
/// commutable with the operand#1.
|
|
///
|
|
/// If IsIntrinsic is set, operand 1 will be ignored for commuting.
|
|
bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2,
|
|
bool IsIntrinsic = false) const;
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif
|