1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/IR/Module.cpp
Igor Kudrin 305dfa701a [DebugInfo] Keep the DWARF64 flag in the module metadata
This allows the option to affect the LTO output. Module::Max helps to
generate debug info for all modules in the same format.

Differential Revision: https://reviews.llvm.org/D96597
2021-02-17 17:03:34 +07:00

695 lines
24 KiB
C++

//===- Module.cpp - Implement the Module class ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Module.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/VersionTuple.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Methods to implement the globals and functions lists.
//
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file.
template class llvm::SymbolTableListTraits<Function>;
template class llvm::SymbolTableListTraits<GlobalVariable>;
template class llvm::SymbolTableListTraits<GlobalAlias>;
template class llvm::SymbolTableListTraits<GlobalIFunc>;
//===----------------------------------------------------------------------===//
// Primitive Module methods.
//
Module::Module(StringRef MID, LLVMContext &C)
: Context(C), ValSymTab(std::make_unique<ValueSymbolTable>()),
Materializer(), ModuleID(std::string(MID)),
SourceFileName(std::string(MID)), DL("") {
Context.addModule(this);
}
Module::~Module() {
Context.removeModule(this);
dropAllReferences();
GlobalList.clear();
FunctionList.clear();
AliasList.clear();
IFuncList.clear();
}
std::unique_ptr<RandomNumberGenerator>
Module::createRNG(const StringRef Name) const {
SmallString<32> Salt(Name);
// This RNG is guaranteed to produce the same random stream only
// when the Module ID and thus the input filename is the same. This
// might be problematic if the input filename extension changes
// (e.g. from .c to .bc or .ll).
//
// We could store this salt in NamedMetadata, but this would make
// the parameter non-const. This would unfortunately make this
// interface unusable by any Machine passes, since they only have a
// const reference to their IR Module. Alternatively we can always
// store salt metadata from the Module constructor.
Salt += sys::path::filename(getModuleIdentifier());
return std::unique_ptr<RandomNumberGenerator>(
new RandomNumberGenerator(Salt));
}
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
GlobalValue *Module::getNamedValue(StringRef Name) const {
return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
}
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
/// This ID is uniqued across modules in the current LLVMContext.
unsigned Module::getMDKindID(StringRef Name) const {
return Context.getMDKindID(Name);
}
/// getMDKindNames - Populate client supplied SmallVector with the name for
/// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
/// so it is filled in as an empty string.
void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
return Context.getMDKindNames(Result);
}
void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const {
return Context.getOperandBundleTags(Result);
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the functions in the module.
//
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return
// it. This is nice because it allows most passes to get away with not handling
// the symbol table directly for this common task.
//
FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty,
AttributeList AttributeList) {
// See if we have a definition for the specified function already.
GlobalValue *F = getNamedValue(Name);
if (!F) {
// Nope, add it
Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage,
DL.getProgramAddressSpace(), Name);
if (!New->isIntrinsic()) // Intrinsics get attrs set on construction
New->setAttributes(AttributeList);
FunctionList.push_back(New);
return {Ty, New}; // Return the new prototype.
}
// If the function exists but has the wrong type, return a bitcast to the
// right type.
auto *PTy = PointerType::get(Ty, F->getAddressSpace());
if (F->getType() != PTy)
return {Ty, ConstantExpr::getBitCast(F, PTy)};
// Otherwise, we just found the existing function or a prototype.
return {Ty, F};
}
FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) {
return getOrInsertFunction(Name, Ty, AttributeList());
}
// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
Function *Module::getFunction(StringRef Name) const {
return dyn_cast_or_null<Function>(getNamedValue(Name));
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
/// getGlobalVariable - Look up the specified global variable in the module
/// symbol table. If it does not exist, return null. The type argument
/// should be the underlying type of the global, i.e., it should not have
/// the top-level PointerType, which represents the address of the global.
/// If AllowLocal is set to true, this function will return types that
/// have an local. By default, these types are not returned.
///
GlobalVariable *Module::getGlobalVariable(StringRef Name,
bool AllowLocal) const {
if (GlobalVariable *Result =
dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
if (AllowLocal || !Result->hasLocalLinkage())
return Result;
return nullptr;
}
/// getOrInsertGlobal - Look up the specified global in the module symbol table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct declaration, return the
/// existing global.
Constant *Module::getOrInsertGlobal(
StringRef Name, Type *Ty,
function_ref<GlobalVariable *()> CreateGlobalCallback) {
// See if we have a definition for the specified global already.
GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
if (!GV)
GV = CreateGlobalCallback();
assert(GV && "The CreateGlobalCallback is expected to create a global");
// If the variable exists but has the wrong type, return a bitcast to the
// right type.
Type *GVTy = GV->getType();
PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
if (GVTy != PTy)
return ConstantExpr::getBitCast(GV, PTy);
// Otherwise, we just found the existing function or a prototype.
return GV;
}
// Overload to construct a global variable using its constructor's defaults.
Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
return getOrInsertGlobal(Name, Ty, [&] {
return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
nullptr, Name);
});
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
// getNamedAlias - Look up the specified global in the module symbol table.
// If it does not exist, return null.
//
GlobalAlias *Module::getNamedAlias(StringRef Name) const {
return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
}
GlobalIFunc *Module::getNamedIFunc(StringRef Name) const {
return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name));
}
/// getNamedMetadata - Return the first NamedMDNode in the module with the
/// specified name. This method returns null if a NamedMDNode with the
/// specified name is not found.
NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
SmallString<256> NameData;
StringRef NameRef = Name.toStringRef(NameData);
return NamedMDSymTab.lookup(NameRef);
}
/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
NamedMDNode *&NMD = NamedMDSymTab[Name];
if (!NMD) {
NMD = new NamedMDNode(Name);
NMD->setParent(this);
NamedMDList.push_back(NMD);
}
return NMD;
}
/// eraseNamedMetadata - Remove the given NamedMDNode from this module and
/// delete it.
void Module::eraseNamedMetadata(NamedMDNode *NMD) {
NamedMDSymTab.erase(NMD->getName());
NamedMDList.erase(NMD->getIterator());
}
bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) {
uint64_t Val = Behavior->getLimitedValue();
if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
MFB = static_cast<ModFlagBehavior>(Val);
return true;
}
}
return false;
}
bool Module::isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
MDString *&Key, Metadata *&Val) {
if (ModFlag.getNumOperands() < 3)
return false;
if (!isValidModFlagBehavior(ModFlag.getOperand(0), MFB))
return false;
MDString *K = dyn_cast_or_null<MDString>(ModFlag.getOperand(1));
if (!K)
return false;
Key = K;
Val = ModFlag.getOperand(2);
return true;
}
/// getModuleFlagsMetadata - Returns the module flags in the provided vector.
void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
const NamedMDNode *ModFlags = getModuleFlagsMetadata();
if (!ModFlags) return;
for (const MDNode *Flag : ModFlags->operands()) {
ModFlagBehavior MFB;
MDString *Key = nullptr;
Metadata *Val = nullptr;
if (isValidModuleFlag(*Flag, MFB, Key, Val)) {
// Check the operands of the MDNode before accessing the operands.
// The verifier will actually catch these failures.
Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
}
}
}
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Metadata *Module::getModuleFlag(StringRef Key) const {
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
getModuleFlagsMetadata(ModuleFlags);
for (const ModuleFlagEntry &MFE : ModuleFlags) {
if (Key == MFE.Key->getString())
return MFE.Val;
}
return nullptr;
}
/// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. This method returns null if there are no
/// module-level flags.
NamedMDNode *Module::getModuleFlagsMetadata() const {
return getNamedMetadata("llvm.module.flags");
}
/// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. If module-level flags aren't found, it
/// creates the named metadata that contains them.
NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
return getOrInsertNamedMetadata("llvm.module.flags");
}
/// addModuleFlag - Add a module-level flag to the module-level flags
/// metadata. It will create the module-level flags named metadata if it doesn't
/// already exist.
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Metadata *Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
Metadata *Ops[3] = {
ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
MDString::get(Context, Key), Val};
getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Constant *Val) {
addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
uint32_t Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
}
void Module::addModuleFlag(MDNode *Node) {
assert(Node->getNumOperands() == 3 &&
"Invalid number of operands for module flag!");
assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
isa<MDString>(Node->getOperand(1)) &&
"Invalid operand types for module flag!");
getOrInsertModuleFlagsMetadata()->addOperand(Node);
}
void Module::setModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Metadata *Val) {
NamedMDNode *ModFlags = getOrInsertModuleFlagsMetadata();
// Replace the flag if it already exists.
for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
MDNode *Flag = ModFlags->getOperand(I);
ModFlagBehavior MFB;
MDString *K = nullptr;
Metadata *V = nullptr;
if (isValidModuleFlag(*Flag, MFB, K, V) && K->getString() == Key) {
Flag->replaceOperandWith(2, Val);
return;
}
}
addModuleFlag(Behavior, Key, Val);
}
void Module::setDataLayout(StringRef Desc) {
DL.reset(Desc);
}
void Module::setDataLayout(const DataLayout &Other) { DL = Other; }
const DataLayout &Module::getDataLayout() const { return DL; }
DICompileUnit *Module::debug_compile_units_iterator::operator*() const {
return cast<DICompileUnit>(CUs->getOperand(Idx));
}
DICompileUnit *Module::debug_compile_units_iterator::operator->() const {
return cast<DICompileUnit>(CUs->getOperand(Idx));
}
void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
while (CUs && (Idx < CUs->getNumOperands()) &&
((*this)->getEmissionKind() == DICompileUnit::NoDebug))
++Idx;
}
iterator_range<Module::global_object_iterator> Module::global_objects() {
return concat<GlobalObject>(functions(), globals());
}
iterator_range<Module::const_global_object_iterator>
Module::global_objects() const {
return concat<const GlobalObject>(functions(), globals());
}
iterator_range<Module::global_value_iterator> Module::global_values() {
return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs());
}
iterator_range<Module::const_global_value_iterator>
Module::global_values() const {
return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs());
}
//===----------------------------------------------------------------------===//
// Methods to control the materialization of GlobalValues in the Module.
//
void Module::setMaterializer(GVMaterializer *GVM) {
assert(!Materializer &&
"Module already has a GVMaterializer. Call materializeAll"
" to clear it out before setting another one.");
Materializer.reset(GVM);
}
Error Module::materialize(GlobalValue *GV) {
if (!Materializer)
return Error::success();
return Materializer->materialize(GV);
}
Error Module::materializeAll() {
if (!Materializer)
return Error::success();
std::unique_ptr<GVMaterializer> M = std::move(Materializer);
return M->materializeModule();
}
Error Module::materializeMetadata() {
if (!Materializer)
return Error::success();
return Materializer->materializeMetadata();
}
//===----------------------------------------------------------------------===//
// Other module related stuff.
//
std::vector<StructType *> Module::getIdentifiedStructTypes() const {
// If we have a materializer, it is possible that some unread function
// uses a type that is currently not visible to a TypeFinder, so ask
// the materializer which types it created.
if (Materializer)
return Materializer->getIdentifiedStructTypes();
std::vector<StructType *> Ret;
TypeFinder SrcStructTypes;
SrcStructTypes.run(*this, true);
Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
return Ret;
}
// dropAllReferences() - This function causes all the subelements to "let go"
// of all references that they are maintaining. This allows one to 'delete' a
// whole module at a time, even though there may be circular references... first
// all references are dropped, and all use counts go to zero. Then everything
// is deleted for real. Note that no operations are valid on an object that
// has "dropped all references", except operator delete.
//
void Module::dropAllReferences() {
for (Function &F : *this)
F.dropAllReferences();
for (GlobalVariable &GV : globals())
GV.dropAllReferences();
for (GlobalAlias &GA : aliases())
GA.dropAllReferences();
for (GlobalIFunc &GIF : ifuncs())
GIF.dropAllReferences();
}
unsigned Module::getNumberRegisterParameters() const {
auto *Val =
cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters"));
if (!Val)
return 0;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
unsigned Module::getDwarfVersion() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
if (!Val)
return 0;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
bool Module::isDwarf64() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("DWARF64"));
return Val && cast<ConstantInt>(Val->getValue())->isOne();
}
unsigned Module::getCodeViewFlag() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView"));
if (!Val)
return 0;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
unsigned Module::getInstructionCount() {
unsigned NumInstrs = 0;
for (Function &F : FunctionList)
NumInstrs += F.getInstructionCount();
return NumInstrs;
}
Comdat *Module::getOrInsertComdat(StringRef Name) {
auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
Entry.second.Name = &Entry;
return &Entry.second;
}
PICLevel::Level Module::getPICLevel() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));
if (!Val)
return PICLevel::NotPIC;
return static_cast<PICLevel::Level>(
cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setPICLevel(PICLevel::Level PL) {
addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL);
}
PIELevel::Level Module::getPIELevel() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level"));
if (!Val)
return PIELevel::Default;
return static_cast<PIELevel::Level>(
cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setPIELevel(PIELevel::Level PL) {
addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL);
}
Optional<CodeModel::Model> Module::getCodeModel() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model"));
if (!Val)
return None;
return static_cast<CodeModel::Model>(
cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setCodeModel(CodeModel::Model CL) {
// Linking object files with different code models is undefined behavior
// because the compiler would have to generate additional code (to span
// longer jumps) if a larger code model is used with a smaller one.
// Therefore we will treat attempts to mix code models as an error.
addModuleFlag(ModFlagBehavior::Error, "Code Model", CL);
}
void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) {
if (Kind == ProfileSummary::PSK_CSInstr)
setModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M);
else
setModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M);
}
Metadata *Module::getProfileSummary(bool IsCS) const {
return (IsCS ? getModuleFlag("CSProfileSummary")
: getModuleFlag("ProfileSummary"));
}
bool Module::getSemanticInterposition() const {
Metadata *MF = getModuleFlag("SemanticInterposition");
auto *Val = cast_or_null<ConstantAsMetadata>(MF);
if (!Val)
return false;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
void Module::setSemanticInterposition(bool SI) {
addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI);
}
void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) {
OwnedMemoryBuffer = std::move(MB);
}
bool Module::getRtLibUseGOT() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT"));
return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
}
void Module::setRtLibUseGOT() {
addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1);
}
void Module::setSDKVersion(const VersionTuple &V) {
SmallVector<unsigned, 3> Entries;
Entries.push_back(V.getMajor());
if (auto Minor = V.getMinor()) {
Entries.push_back(*Minor);
if (auto Subminor = V.getSubminor())
Entries.push_back(*Subminor);
// Ignore the 'build' component as it can't be represented in the object
// file.
}
addModuleFlag(ModFlagBehavior::Warning, "SDK Version",
ConstantDataArray::get(Context, Entries));
}
VersionTuple Module::getSDKVersion() const {
auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version"));
if (!CM)
return {};
auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue());
if (!Arr)
return {};
auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> {
if (Index >= Arr->getNumElements())
return None;
return (unsigned)Arr->getElementAsInteger(Index);
};
auto Major = getVersionComponent(0);
if (!Major)
return {};
VersionTuple Result = VersionTuple(*Major);
if (auto Minor = getVersionComponent(1)) {
Result = VersionTuple(*Major, *Minor);
if (auto Subminor = getVersionComponent(2)) {
Result = VersionTuple(*Major, *Minor, *Subminor);
}
}
return Result;
}
GlobalVariable *llvm::collectUsedGlobalVariables(
const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) {
const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
GlobalVariable *GV = M.getGlobalVariable(Name);
if (!GV || !GV->hasInitializer())
return GV;
const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
for (Value *Op : Init->operands()) {
GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts());
Set.insert(G);
}
return GV;
}
void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex &Index) {
if (auto *SummaryMD = getProfileSummary(/*IsCS*/ false)) {
std::unique_ptr<ProfileSummary> ProfileSummary(
ProfileSummary::getFromMD(SummaryMD));
if (ProfileSummary) {
if (ProfileSummary->getKind() != ProfileSummary::PSK_Sample ||
!ProfileSummary->isPartialProfile())
return;
uint64_t BlockCount = Index.getBlockCount();
uint32_t NumCounts = ProfileSummary->getNumCounts();
if (!NumCounts)
return;
double Ratio = (double)BlockCount / NumCounts;
ProfileSummary->setPartialProfileRatio(Ratio);
setProfileSummary(ProfileSummary->getMD(getContext()),
ProfileSummary::PSK_Sample);
}
}
}