1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/SystemZ
Serge Pavlov b8ce9ec478 Add extra operand to CALLSEQ_START to keep frame part set up previously
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to  CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.

This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.

The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
  affects all targets that use frame pseudo instructions and touched many
  files although the changes are uniform.
- Access to frame properties are implemented using special instructions
  rather than calls getOperand(N).getImm(). For X86 and ARM such
  replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
  instruction. These involve proper instruction initialization and
  methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
  frame parts initialized inside frame instruction pair and outside it.

The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.

Differential Revision: https://reviews.llvm.org/D32394

llvm-svn: 302527
2017-05-09 13:35:13 +00:00
..
AsmParser [SystemZ] Fix some Include What You Use warnings; other minor fixes (NFC). 2017-02-03 23:39:06 +00:00
Disassembler
InstPrinter [SystemZ] Fix some Include What You Use warnings; other minor fixes (NFC). 2017-02-03 23:39:06 +00:00
MCTargetDesc Distinguish between code pointer size and DataLayout::getPointerSize() in DWARF info generation 2017-04-17 17:41:25 +00:00
TargetInfo
CMakeLists.txt
LLVMBuild.txt
README.txt
SystemZ.h
SystemZ.td
SystemZAsmPrinter.cpp
SystemZAsmPrinter.h
SystemZCallingConv.cpp
SystemZCallingConv.h
SystemZCallingConv.td
SystemZConstantPoolValue.cpp
SystemZConstantPoolValue.h
SystemZElimCompare.cpp
SystemZExpandPseudo.cpp
SystemZFeatures.td
SystemZFrameLowering.cpp
SystemZFrameLowering.h
SystemZHazardRecognizer.cpp
SystemZHazardRecognizer.h
SystemZInstrBuilder.h
SystemZInstrFormats.td
SystemZInstrFP.td
SystemZInstrInfo.cpp [SystemZ] Make copyPhysReg() add impl-use operands of super reg. 2017-05-04 13:33:30 +00:00
SystemZInstrInfo.h [SystemZ] Don't drop any operands in expandZExtPseudo() 2017-03-22 06:03:32 +00:00
SystemZInstrInfo.td Add extra operand to CALLSEQ_START to keep frame part set up previously 2017-05-09 13:35:13 +00:00
SystemZInstrVector.td
SystemZISelDAGToDAG.cpp [SelectionDAG] Use KnownBits struct in DAG's computeKnownBits and simplifyDemandedBits 2017-04-28 05:31:46 +00:00
SystemZISelLowering.cpp Add extra operand to CALLSEQ_START to keep frame part set up previously 2017-05-09 13:35:13 +00:00
SystemZISelLowering.h DAG: Make mayBeEmittedAsTailCall parameter const 2017-04-18 21:16:46 +00:00
SystemZLDCleanup.cpp
SystemZLongBranch.cpp
SystemZMachineFunctionInfo.cpp
SystemZMachineFunctionInfo.h
SystemZMachineScheduler.cpp
SystemZMachineScheduler.h
SystemZMCInstLower.cpp
SystemZMCInstLower.h
SystemZOperands.td
SystemZOperators.td Add extra operand to CALLSEQ_START to keep frame part set up previously 2017-05-09 13:35:13 +00:00
SystemZPatterns.td
SystemZProcessors.td
SystemZRegisterInfo.cpp
SystemZRegisterInfo.h
SystemZRegisterInfo.td
SystemZSchedule.td
SystemZScheduleZ13.td
SystemZScheduleZ196.td
SystemZScheduleZEC12.td
SystemZSelectionDAGInfo.cpp
SystemZSelectionDAGInfo.h
SystemZShortenInst.cpp
SystemZSubtarget.cpp
SystemZSubtarget.h
SystemZTargetMachine.cpp
SystemZTargetMachine.h
SystemZTargetTransformInfo.cpp [SystemZ] Properly check number of operands in getCmpOpsType() 2017-05-03 13:33:45 +00:00
SystemZTargetTransformInfo.h [LoopVectorizer, TTI] New method supportsEfficientVectorElementLoadStore() 2017-04-12 12:41:37 +00:00
SystemZTDC.cpp

//===---------------------------------------------------------------------===//
// Random notes about and ideas for the SystemZ backend.
//===---------------------------------------------------------------------===//

The initial backend is deliberately restricted to z10.  We should add support
for later architectures at some point.

--

If an inline asm ties an i32 "r" result to an i64 input, the input
will be treated as an i32, leaving the upper bits uninitialised.
For example:

define void @f4(i32 *%dst) {
  %val = call i32 asm "blah $0", "=r,0" (i64 103)
  store i32 %val, i32 *%dst
  ret void
}

from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
to load 103.  This seems to be a general target-independent problem.

--

The tuning of the choice between LOAD ADDRESS (LA) and addition in
SystemZISelDAGToDAG.cpp is suspect.  It should be tweaked based on
performance measurements.

--

There is no scheduling support.

--

We don't use the BRANCH ON INDEX instructions.

--

We only use MVC, XC and CLC for constant-length block operations.
We could extend them to variable-length operations too,
using EXECUTE RELATIVE LONG.

MVCIN, MVCLE and CLCLE may be worthwhile too.

--

We don't use CUSE or the TRANSLATE family of instructions for string
operations.  The TRANSLATE ones are probably more difficult to exploit.

--

We don't take full advantage of builtins like fabsl because the calling
conventions require f128s to be returned by invisible reference.

--

ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
produce a carry.  SUBTRACT LOGICAL IMMEDIATE could be useful when we
need to produce a borrow.  (Note that there are no memory forms of
ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
part of 128-bit memory operations would probably need to be done
via a register.)

--

We don't use ICM or STCM.

--

DAGCombiner doesn't yet fold truncations of extended loads.  Functions like:

    unsigned long f (unsigned long x, unsigned short *y)
    {
      return (x << 32) | *y;
    }

therefore end up as:

        sllg    %r2, %r2, 32
        llgh    %r0, 0(%r3)
        lr      %r2, %r0
        br      %r14

but truncating the load would give:

        sllg    %r2, %r2, 32
        lh      %r2, 0(%r3)
        br      %r14

--

Functions like:

define i64 @f1(i64 %a) {
  %and = and i64 %a, 1
  ret i64 %and
}

ought to be implemented as:

        lhi     %r0, 1
        ngr     %r2, %r0
        br      %r14

but two-address optimizations reverse the order of the AND and force:

        lhi     %r0, 1
        ngr     %r0, %r2
        lgr     %r2, %r0
        br      %r14

CodeGen/SystemZ/and-04.ll has several examples of this.

--

Out-of-range displacements are usually handled by loading the full
address into a register.  In many cases it would be better to create
an anchor point instead.  E.g. for:

define void @f4a(i128 *%aptr, i64 %base) {
  %addr = add i64 %base, 524288
  %bptr = inttoptr i64 %addr to i128 *
  %a = load volatile i128 *%aptr
  %b = load i128 *%bptr
  %add = add i128 %a, %b
  store i128 %add, i128 *%aptr
  ret void
}

(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
into separate registers, rather than using %base+524288 as a base for both.

--

Dynamic stack allocations round the size to 8 bytes and then allocate
that rounded amount.  It would be simpler to subtract the unrounded
size from the copy of the stack pointer and then align the result.
See CodeGen/SystemZ/alloca-01.ll for an example.

--

If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.

--

We might want to model all access registers and use them to spill
32-bit values.

--

We might want to use the 'overflow' condition of eg. AR to support
llvm.sadd.with.overflow.i32 and related instructions - the generated code
for signed overflow check is currently quite bad.  This would improve
the results of using -ftrapv.