1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Transforms/Utils/Local.cpp
2005-07-27 06:12:32 +00:00

443 lines
15 KiB
C++

//===-- Local.cpp - Functions to perform local transformations ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include <cerrno>
#include <cmath>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Local constant propagation...
//
/// doConstantPropagation - If an instruction references constants, try to fold
/// them together...
///
bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
if (Constant *C = ConstantFoldInstruction(II)) {
// Replaces all of the uses of a variable with uses of the constant.
II->replaceAllUsesWith(C);
// Remove the instruction from the basic block...
II = II->getParent()->getInstList().erase(II);
return true;
}
return false;
}
/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction. If successful, the constant result is returned, if not, null
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (PN->getNumIncomingValues() == 0)
return Constant::getNullValue(PN->getType());
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
if (Result == 0) return 0;
// Handle PHI nodes specially here...
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
return 0; // Not all the same incoming constants...
// If we reach here, all incoming values are the same constant.
return Result;
} else if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (Function *F = CI->getCalledFunction())
if (canConstantFoldCallTo(F)) {
std::vector<Constant*> Args;
for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i)))
Args.push_back(Op);
else
return 0;
return ConstantFoldCall(F, Args);
}
return 0;
}
Constant *Op0 = 0, *Op1 = 0;
switch (I->getNumOperands()) {
default:
case 2:
Op1 = dyn_cast<Constant>(I->getOperand(1));
if (Op1 == 0) return 0; // Not a constant?, can't fold
case 1:
Op0 = dyn_cast<Constant>(I->getOperand(0));
if (Op0 == 0) return 0; // Not a constant?, can't fold
break;
case 0: return 0;
}
if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
return ConstantExpr::get(I->getOpcode(), Op0, Op1);
switch (I->getOpcode()) {
default: return 0;
case Instruction::Cast:
return ConstantExpr::getCast(Op0, I->getType());
case Instruction::Select:
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
return ConstantExpr::getSelect(Op0, Op1, Op2);
return 0;
case Instruction::GetElementPtr:
std::vector<Constant*> IdxList;
IdxList.reserve(I->getNumOperands()-1);
if (Op1) IdxList.push_back(Op1);
for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
IdxList.push_back(C);
else
return 0; // Non-constant operand
return ConstantExpr::getGetElementPtr(Op0, IdxList);
}
}
// ConstantFoldTerminator - If a terminator instruction is predicated on a
// constant value, convert it into an unconditional branch to the constant
// destination.
//
bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
TerminatorInst *T = BB->getTerminator();
// Branch - See if we are conditional jumping on constant
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
// Are we branching on constant?
// YES. Change to unconditional branch...
BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
BasicBlock *OldDest = Cond->getValue() ? Dest2 : Dest1;
//cerr << "Function: " << T->getParent()->getParent()
// << "\nRemoving branch from " << T->getParent()
// << "\n\nTo: " << OldDest << endl;
// Let the basic block know that we are letting go of it. Based on this,
// it will adjust it's PHI nodes.
assert(BI->getParent() && "Terminator not inserted in block!");
OldDest->removePredecessor(BI->getParent());
// Set the unconditional destination, and change the insn to be an
// unconditional branch.
BI->setUnconditionalDest(Destination);
return true;
} else if (Dest2 == Dest1) { // Conditional branch to same location?
// This branch matches something like this:
// br bool %cond, label %Dest, label %Dest
// and changes it into: br label %Dest
// Let the basic block know that we are letting go of one copy of it.
assert(BI->getParent() && "Terminator not inserted in block!");
Dest1->removePredecessor(BI->getParent());
// Change a conditional branch to unconditional.
BI->setUnconditionalDest(Dest1);
return true;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
// If we are switching on a constant, we can convert the switch into a
// single branch instruction!
ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
BasicBlock *DefaultDest = TheOnlyDest;
assert(TheOnlyDest == SI->getDefaultDest() &&
"Default destination is not successor #0?");
// Figure out which case it goes to...
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
// Found case matching a constant operand?
if (SI->getSuccessorValue(i) == CI) {
TheOnlyDest = SI->getSuccessor(i);
break;
}
// Check to see if this branch is going to the same place as the default
// dest. If so, eliminate it as an explicit compare.
if (SI->getSuccessor(i) == DefaultDest) {
// Remove this entry...
DefaultDest->removePredecessor(SI->getParent());
SI->removeCase(i);
--i; --e; // Don't skip an entry...
continue;
}
// Otherwise, check to see if the switch only branches to one destination.
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
// destinations.
if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
}
if (CI && !TheOnlyDest) {
// Branching on a constant, but not any of the cases, go to the default
// successor.
TheOnlyDest = SI->getDefaultDest();
}
// If we found a single destination that we can fold the switch into, do so
// now.
if (TheOnlyDest) {
// Insert the new branch..
new BranchInst(TheOnlyDest, SI);
BasicBlock *BB = SI->getParent();
// Remove entries from PHI nodes which we no longer branch to...
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
// Found case matching a constant operand?
BasicBlock *Succ = SI->getSuccessor(i);
if (Succ == TheOnlyDest)
TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
else
Succ->removePredecessor(BB);
}
// Delete the old switch...
BB->getInstList().erase(SI);
return true;
} else if (SI->getNumSuccessors() == 2) {
// Otherwise, we can fold this switch into a conditional branch
// instruction if it has only one non-default destination.
Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
SI->getSuccessorValue(1), "cond", SI);
// Insert the new branch...
new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
// Delete the old switch...
SI->getParent()->getInstList().erase(SI);
return true;
}
}
return false;
}
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool llvm::canConstantFoldCallTo(Function *F) {
const std::string &Name = F->getName();
switch (F->getIntrinsicID()) {
case Intrinsic::isunordered: return true;
default: break;
}
switch (Name[0])
{
case 'a':
return Name == "acos" || Name == "asin" || Name == "atan" ||
Name == "atan2";
case 'c':
return Name == "ceil" || Name == "cos" || Name == "cosf" ||
Name == "cosh";
case 'e':
return Name == "exp";
case 'f':
return Name == "fabs" || Name == "fmod" || Name == "floor";
case 'l':
return Name == "log" || Name == "log10";
case 'p':
return Name == "pow";
case 's':
return Name == "sin" || Name == "sinh" || Name == "sqrt";
case 't':
return Name == "tan" || Name == "tanh";
default:
return false;
}
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty) {
errno = 0;
V = NativeFP(V);
if (errno == 0)
return ConstantFP::get(Ty, V);
return 0;
}
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *llvm::ConstantFoldCall(Function *F,
const std::vector<Constant*> &Operands) {
const std::string &Name = F->getName();
const Type *Ty = F->getReturnType();
if (Operands.size() == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
double V = Op->getValue();
switch (Name[0])
{
case 'a':
if (Name == "acos")
return ConstantFoldFP(acos, V, Ty);
else if (Name == "asin")
return ConstantFoldFP(asin, V, Ty);
else if (Name == "atan")
return ConstantFP::get(Ty, atan(V));
break;
case 'c':
if (Name == "ceil")
return ConstantFoldFP(ceil, V, Ty);
else if (Name == "cos")
return ConstantFP::get(Ty, cos(V));
else if (Name == "cosh")
return ConstantFP::get(Ty, cosh(V));
break;
case 'e':
if (Name == "exp")
return ConstantFP::get(Ty, exp(V));
break;
case 'f':
if (Name == "fabs")
return ConstantFP::get(Ty, fabs(V));
else if (Name == "floor")
return ConstantFoldFP(floor, V, Ty);
break;
case 'l':
if (Name == "log" && V > 0)
return ConstantFP::get(Ty, log(V));
else if (Name == "log10" && V > 0)
return ConstantFoldFP(log10, V, Ty);
break;
case 's':
if (Name == "sin")
return ConstantFP::get(Ty, sin(V));
else if (Name == "sinh")
return ConstantFP::get(Ty, sinh(V));
else if (Name == "sqrt" && V >= 0)
return ConstantFP::get(Ty, sqrt(V));
break;
case 't':
if (Name == "tan")
return ConstantFP::get(Ty, tan(V));
else if (Name == "tanh")
return ConstantFP::get(Ty, tanh(V));
break;
default:
break;
}
}
} else if (Operands.size() == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
double Op1V = Op1->getValue();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
double Op2V = Op2->getValue();
if (Name == "llvm.isunordered")
return ConstantBool::get(IsNAN(Op1V) || IsNAN(Op2V));
else
if (Name == "pow") {
errno = 0;
double V = pow(Op1V, Op2V);
if (errno == 0)
return ConstantFP::get(Ty, V);
} else if (Name == "fmod") {
errno = 0;
double V = fmod(Op1V, Op2V);
if (errno == 0)
return ConstantFP::get(Ty, V);
} else if (Name == "atan2")
return ConstantFP::get(Ty, atan2(Op1V,Op2V));
}
}
}
return 0;
}
//===----------------------------------------------------------------------===//
// Local dead code elimination...
//
bool llvm::isInstructionTriviallyDead(Instruction *I) {
if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
if (!I->mayWriteToMemory()) return true;
if (CallInst *CI = dyn_cast<CallInst>(I))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
default: break;
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
case Intrinsic::isunordered:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::sqrt:
return true; // These intrinsics have no side effects.
}
return false;
}
// dceInstruction - Inspect the instruction at *BBI and figure out if it's
// [trivially] dead. If so, remove the instruction and update the iterator
// to point to the instruction that immediately succeeded the original
// instruction.
//
bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
// Look for un"used" definitions...
if (isInstructionTriviallyDead(BBI)) {
BBI = BBI->getParent()->getInstList().erase(BBI); // Bye bye
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// PHI Instruction Simplification
//
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
///
Value *llvm::hasConstantValue(PHINode *PN) {
// If the PHI node only has one incoming value, eliminate the PHI node...
if (PN->getNumIncomingValues() == 1)
return PN->getIncomingValue(0);
// Otherwise if all of the incoming values are the same for the PHI, replace
// the PHI node with the incoming value.
//
Value *InVal = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) != PN && // Not the PHI node itself...
!isa<UndefValue>(PN->getIncomingValue(i)))
if (InVal && PN->getIncomingValue(i) != InVal)
return 0; // Not the same, bail out.
else
InVal = PN->getIncomingValue(i);
// The only case that could cause InVal to be null is if we have a PHI node
// that only has entries for itself. In this case, there is no entry into the
// loop, so kill the PHI.
//
if (InVal == 0) InVal = UndefValue::get(PN->getType());
// All of the incoming values are the same, return the value now.
return InVal;
}