1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Bitcode/Reader/MetadataLoader.cpp
Jonas Devlieghere 1e0529ec4c Ensure that variant part discriminator is read by MetadataLoader
https://reviews.llvm.org/D42082 introduced variant parts to debug info
in LLVM. Subsequent work on the Rust compiler has found a bug in that
patch; namely, there is a path in MetadataLoader that fails to restore
the discriminator.

This patch fixes the bug.

Patch by: Tom Tromey

Differential revision: https://reviews.llvm.org/D52340

llvm-svn: 342725
2018-09-21 12:03:14 +00:00

2021 lines
70 KiB
C++

//===- MetadataLoader.cpp - Internal BitcodeReader implementation ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MetadataLoader.h"
#include "ValueList.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalIndirectSymbol.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/TrackingMDRef.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "bitcode-reader"
STATISTIC(NumMDStringLoaded, "Number of MDStrings loaded");
STATISTIC(NumMDNodeTemporary, "Number of MDNode::Temporary created");
STATISTIC(NumMDRecordLoaded, "Number of Metadata records loaded");
/// Flag whether we need to import full type definitions for ThinLTO.
/// Currently needed for Darwin and LLDB.
static cl::opt<bool> ImportFullTypeDefinitions(
"import-full-type-definitions", cl::init(false), cl::Hidden,
cl::desc("Import full type definitions for ThinLTO."));
static cl::opt<bool> DisableLazyLoading(
"disable-ondemand-mds-loading", cl::init(false), cl::Hidden,
cl::desc("Force disable the lazy-loading on-demand of metadata when "
"loading bitcode for importing."));
namespace {
static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
class BitcodeReaderMetadataList {
/// Array of metadata references.
///
/// Don't use std::vector here. Some versions of libc++ copy (instead of
/// move) on resize, and TrackingMDRef is very expensive to copy.
SmallVector<TrackingMDRef, 1> MetadataPtrs;
/// The set of indices in MetadataPtrs above of forward references that were
/// generated.
SmallDenseSet<unsigned, 1> ForwardReference;
/// The set of indices in MetadataPtrs above of Metadata that need to be
/// resolved.
SmallDenseSet<unsigned, 1> UnresolvedNodes;
/// Structures for resolving old type refs.
struct {
SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
SmallDenseMap<MDString *, DICompositeType *, 1> Final;
SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
} OldTypeRefs;
LLVMContext &Context;
public:
BitcodeReaderMetadataList(LLVMContext &C) : Context(C) {}
// vector compatibility methods
unsigned size() const { return MetadataPtrs.size(); }
void resize(unsigned N) { MetadataPtrs.resize(N); }
void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
void clear() { MetadataPtrs.clear(); }
Metadata *back() const { return MetadataPtrs.back(); }
void pop_back() { MetadataPtrs.pop_back(); }
bool empty() const { return MetadataPtrs.empty(); }
Metadata *operator[](unsigned i) const {
assert(i < MetadataPtrs.size());
return MetadataPtrs[i];
}
Metadata *lookup(unsigned I) const {
if (I < MetadataPtrs.size())
return MetadataPtrs[I];
return nullptr;
}
void shrinkTo(unsigned N) {
assert(N <= size() && "Invalid shrinkTo request!");
assert(ForwardReference.empty() && "Unexpected forward refs");
assert(UnresolvedNodes.empty() && "Unexpected unresolved node");
MetadataPtrs.resize(N);
}
/// Return the given metadata, creating a replaceable forward reference if
/// necessary.
Metadata *getMetadataFwdRef(unsigned Idx);
/// Return the given metadata only if it is fully resolved.
///
/// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
/// would give \c false.
Metadata *getMetadataIfResolved(unsigned Idx);
MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
void assignValue(Metadata *MD, unsigned Idx);
void tryToResolveCycles();
bool hasFwdRefs() const { return !ForwardReference.empty(); }
int getNextFwdRef() {
assert(hasFwdRefs());
return *ForwardReference.begin();
}
/// Upgrade a type that had an MDString reference.
void addTypeRef(MDString &UUID, DICompositeType &CT);
/// Upgrade a type that had an MDString reference.
Metadata *upgradeTypeRef(Metadata *MaybeUUID);
/// Upgrade a type ref array that may have MDString references.
Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
private:
Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
};
void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
if (auto *MDN = dyn_cast<MDNode>(MD))
if (!MDN->isResolved())
UnresolvedNodes.insert(Idx);
if (Idx == size()) {
push_back(MD);
return;
}
if (Idx >= size())
resize(Idx + 1);
TrackingMDRef &OldMD = MetadataPtrs[Idx];
if (!OldMD) {
OldMD.reset(MD);
return;
}
// If there was a forward reference to this value, replace it.
TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
PrevMD->replaceAllUsesWith(MD);
ForwardReference.erase(Idx);
}
Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
if (Idx >= size())
resize(Idx + 1);
if (Metadata *MD = MetadataPtrs[Idx])
return MD;
// Track forward refs to be resolved later.
ForwardReference.insert(Idx);
// Create and return a placeholder, which will later be RAUW'd.
++NumMDNodeTemporary;
Metadata *MD = MDNode::getTemporary(Context, None).release();
MetadataPtrs[Idx].reset(MD);
return MD;
}
Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
Metadata *MD = lookup(Idx);
if (auto *N = dyn_cast_or_null<MDNode>(MD))
if (!N->isResolved())
return nullptr;
return MD;
}
MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
}
void BitcodeReaderMetadataList::tryToResolveCycles() {
if (!ForwardReference.empty())
// Still forward references... can't resolve cycles.
return;
// Give up on finding a full definition for any forward decls that remain.
for (const auto &Ref : OldTypeRefs.FwdDecls)
OldTypeRefs.Final.insert(Ref);
OldTypeRefs.FwdDecls.clear();
// Upgrade from old type ref arrays. In strange cases, this could add to
// OldTypeRefs.Unknown.
for (const auto &Array : OldTypeRefs.Arrays)
Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
OldTypeRefs.Arrays.clear();
// Replace old string-based type refs with the resolved node, if possible.
// If we haven't seen the node, leave it to the verifier to complain about
// the invalid string reference.
for (const auto &Ref : OldTypeRefs.Unknown) {
if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
Ref.second->replaceAllUsesWith(CT);
else
Ref.second->replaceAllUsesWith(Ref.first);
}
OldTypeRefs.Unknown.clear();
if (UnresolvedNodes.empty())
// Nothing to do.
return;
// Resolve any cycles.
for (unsigned I : UnresolvedNodes) {
auto &MD = MetadataPtrs[I];
auto *N = dyn_cast_or_null<MDNode>(MD);
if (!N)
continue;
assert(!N->isTemporary() && "Unexpected forward reference");
N->resolveCycles();
}
// Make sure we return early again until there's another unresolved ref.
UnresolvedNodes.clear();
}
void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
DICompositeType &CT) {
assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
if (CT.isForwardDecl())
OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
else
OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
}
Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
if (LLVM_LIKELY(!UUID))
return MaybeUUID;
if (auto *CT = OldTypeRefs.Final.lookup(UUID))
return CT;
auto &Ref = OldTypeRefs.Unknown[UUID];
if (!Ref)
Ref = MDNode::getTemporary(Context, None);
return Ref.get();
}
Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
if (!Tuple || Tuple->isDistinct())
return MaybeTuple;
// Look through the array immediately if possible.
if (!Tuple->isTemporary())
return resolveTypeRefArray(Tuple);
// Create and return a placeholder to use for now. Eventually
// resolveTypeRefArrays() will be resolve this forward reference.
OldTypeRefs.Arrays.emplace_back(
std::piecewise_construct, std::forward_as_tuple(Tuple),
std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
return OldTypeRefs.Arrays.back().second.get();
}
Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
if (!Tuple || Tuple->isDistinct())
return MaybeTuple;
// Look through the DITypeRefArray, upgrading each DITypeRef.
SmallVector<Metadata *, 32> Ops;
Ops.reserve(Tuple->getNumOperands());
for (Metadata *MD : Tuple->operands())
Ops.push_back(upgradeTypeRef(MD));
return MDTuple::get(Context, Ops);
}
namespace {
class PlaceholderQueue {
// Placeholders would thrash around when moved, so store in a std::deque
// instead of some sort of vector.
std::deque<DistinctMDOperandPlaceholder> PHs;
public:
~PlaceholderQueue() {
assert(empty() && "PlaceholderQueue hasn't been flushed before being destroyed");
}
bool empty() { return PHs.empty(); }
DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
void flush(BitcodeReaderMetadataList &MetadataList);
/// Return the list of temporaries nodes in the queue, these need to be
/// loaded before we can flush the queue.
void getTemporaries(BitcodeReaderMetadataList &MetadataList,
DenseSet<unsigned> &Temporaries) {
for (auto &PH : PHs) {
auto ID = PH.getID();
auto *MD = MetadataList.lookup(ID);
if (!MD) {
Temporaries.insert(ID);
continue;
}
auto *N = dyn_cast_or_null<MDNode>(MD);
if (N && N->isTemporary())
Temporaries.insert(ID);
}
}
};
} // end anonymous namespace
DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
PHs.emplace_back(ID);
return PHs.back();
}
void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
while (!PHs.empty()) {
auto *MD = MetadataList.lookup(PHs.front().getID());
assert(MD && "Flushing placeholder on unassigned MD");
#ifndef NDEBUG
if (auto *MDN = dyn_cast<MDNode>(MD))
assert(MDN->isResolved() &&
"Flushing Placeholder while cycles aren't resolved");
#endif
PHs.front().replaceUseWith(MD);
PHs.pop_front();
}
}
} // anonynous namespace
static Error error(const Twine &Message) {
return make_error<StringError>(
Message, make_error_code(BitcodeError::CorruptedBitcode));
}
class MetadataLoader::MetadataLoaderImpl {
BitcodeReaderMetadataList MetadataList;
BitcodeReaderValueList &ValueList;
BitstreamCursor &Stream;
LLVMContext &Context;
Module &TheModule;
std::function<Type *(unsigned)> getTypeByID;
/// Cursor associated with the lazy-loading of Metadata. This is the easy way
/// to keep around the right "context" (Abbrev list) to be able to jump in
/// the middle of the metadata block and load any record.
BitstreamCursor IndexCursor;
/// Index that keeps track of MDString values.
std::vector<StringRef> MDStringRef;
/// On-demand loading of a single MDString. Requires the index above to be
/// populated.
MDString *lazyLoadOneMDString(unsigned Idx);
/// Index that keeps track of where to find a metadata record in the stream.
std::vector<uint64_t> GlobalMetadataBitPosIndex;
/// Populate the index above to enable lazily loading of metadata, and load
/// the named metadata as well as the transitively referenced global
/// Metadata.
Expected<bool> lazyLoadModuleMetadataBlock();
/// On-demand loading of a single metadata. Requires the index above to be
/// populated.
void lazyLoadOneMetadata(unsigned Idx, PlaceholderQueue &Placeholders);
// Keep mapping of seens pair of old-style CU <-> SP, and update pointers to
// point from SP to CU after a block is completly parsed.
std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
/// Functions that need to be matched with subprograms when upgrading old
/// metadata.
SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
// Map the bitcode's custom MDKind ID to the Module's MDKind ID.
DenseMap<unsigned, unsigned> MDKindMap;
bool StripTBAA = false;
bool HasSeenOldLoopTags = false;
bool NeedUpgradeToDIGlobalVariableExpression = false;
bool NeedDeclareExpressionUpgrade = false;
/// True if metadata is being parsed for a module being ThinLTO imported.
bool IsImporting = false;
Error parseOneMetadata(SmallVectorImpl<uint64_t> &Record, unsigned Code,
PlaceholderQueue &Placeholders, StringRef Blob,
unsigned &NextMetadataNo);
Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob,
function_ref<void(StringRef)> CallBack);
Error parseGlobalObjectAttachment(GlobalObject &GO,
ArrayRef<uint64_t> Record);
Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
void resolveForwardRefsAndPlaceholders(PlaceholderQueue &Placeholders);
/// Upgrade old-style CU <-> SP pointers to point from SP to CU.
void upgradeCUSubprograms() {
for (auto CU_SP : CUSubprograms)
if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
for (auto &Op : SPs->operands())
if (auto *SP = dyn_cast_or_null<DISubprogram>(Op))
SP->replaceUnit(CU_SP.first);
CUSubprograms.clear();
}
/// Upgrade old-style bare DIGlobalVariables to DIGlobalVariableExpressions.
void upgradeCUVariables() {
if (!NeedUpgradeToDIGlobalVariableExpression)
return;
// Upgrade list of variables attached to the CUs.
if (NamedMDNode *CUNodes = TheModule.getNamedMetadata("llvm.dbg.cu"))
for (unsigned I = 0, E = CUNodes->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(CUNodes->getOperand(I));
if (auto *GVs = dyn_cast_or_null<MDTuple>(CU->getRawGlobalVariables()))
for (unsigned I = 0; I < GVs->getNumOperands(); I++)
if (auto *GV =
dyn_cast_or_null<DIGlobalVariable>(GVs->getOperand(I))) {
auto *DGVE = DIGlobalVariableExpression::getDistinct(
Context, GV, DIExpression::get(Context, {}));
GVs->replaceOperandWith(I, DGVE);
}
}
// Upgrade variables attached to globals.
for (auto &GV : TheModule.globals()) {
SmallVector<MDNode *, 1> MDs;
GV.getMetadata(LLVMContext::MD_dbg, MDs);
GV.eraseMetadata(LLVMContext::MD_dbg);
for (auto *MD : MDs)
if (auto *DGV = dyn_cast_or_null<DIGlobalVariable>(MD)) {
auto *DGVE = DIGlobalVariableExpression::getDistinct(
Context, DGV, DIExpression::get(Context, {}));
GV.addMetadata(LLVMContext::MD_dbg, *DGVE);
} else
GV.addMetadata(LLVMContext::MD_dbg, *MD);
}
}
/// Remove a leading DW_OP_deref from DIExpressions in a dbg.declare that
/// describes a function argument.
void upgradeDeclareExpressions(Function &F) {
if (!NeedDeclareExpressionUpgrade)
return;
for (auto &BB : F)
for (auto &I : BB)
if (auto *DDI = dyn_cast<DbgDeclareInst>(&I))
if (auto *DIExpr = DDI->getExpression())
if (DIExpr->startsWithDeref() &&
dyn_cast_or_null<Argument>(DDI->getAddress())) {
SmallVector<uint64_t, 8> Ops;
Ops.append(std::next(DIExpr->elements_begin()),
DIExpr->elements_end());
auto *E = DIExpression::get(Context, Ops);
DDI->setOperand(2, MetadataAsValue::get(Context, E));
}
}
/// Upgrade the expression from previous versions.
Error upgradeDIExpression(uint64_t FromVersion,
MutableArrayRef<uint64_t> &Expr,
SmallVectorImpl<uint64_t> &Buffer) {
auto N = Expr.size();
switch (FromVersion) {
default:
return error("Invalid record");
case 0:
if (N >= 3 && Expr[N - 3] == dwarf::DW_OP_bit_piece)
Expr[N - 3] = dwarf::DW_OP_LLVM_fragment;
LLVM_FALLTHROUGH;
case 1:
// Move DW_OP_deref to the end.
if (N && Expr[0] == dwarf::DW_OP_deref) {
auto End = Expr.end();
if (Expr.size() >= 3 &&
*std::prev(End, 3) == dwarf::DW_OP_LLVM_fragment)
End = std::prev(End, 3);
std::move(std::next(Expr.begin()), End, Expr.begin());
*std::prev(End) = dwarf::DW_OP_deref;
}
NeedDeclareExpressionUpgrade = true;
LLVM_FALLTHROUGH;
case 2: {
// Change DW_OP_plus to DW_OP_plus_uconst.
// Change DW_OP_minus to DW_OP_uconst, DW_OP_minus
auto SubExpr = ArrayRef<uint64_t>(Expr);
while (!SubExpr.empty()) {
// Skip past other operators with their operands
// for this version of the IR, obtained from
// from historic DIExpression::ExprOperand::getSize().
size_t HistoricSize;
switch (SubExpr.front()) {
default:
HistoricSize = 1;
break;
case dwarf::DW_OP_constu:
case dwarf::DW_OP_minus:
case dwarf::DW_OP_plus:
HistoricSize = 2;
break;
case dwarf::DW_OP_LLVM_fragment:
HistoricSize = 3;
break;
}
// If the expression is malformed, make sure we don't
// copy more elements than we should.
HistoricSize = std::min(SubExpr.size(), HistoricSize);
ArrayRef<uint64_t> Args = SubExpr.slice(1, HistoricSize-1);
switch (SubExpr.front()) {
case dwarf::DW_OP_plus:
Buffer.push_back(dwarf::DW_OP_plus_uconst);
Buffer.append(Args.begin(), Args.end());
break;
case dwarf::DW_OP_minus:
Buffer.push_back(dwarf::DW_OP_constu);
Buffer.append(Args.begin(), Args.end());
Buffer.push_back(dwarf::DW_OP_minus);
break;
default:
Buffer.push_back(*SubExpr.begin());
Buffer.append(Args.begin(), Args.end());
break;
}
// Continue with remaining elements.
SubExpr = SubExpr.slice(HistoricSize);
}
Expr = MutableArrayRef<uint64_t>(Buffer);
LLVM_FALLTHROUGH;
}
case 3:
// Up-to-date!
break;
}
return Error::success();
}
void upgradeDebugInfo() {
upgradeCUSubprograms();
upgradeCUVariables();
}
public:
MetadataLoaderImpl(BitstreamCursor &Stream, Module &TheModule,
BitcodeReaderValueList &ValueList,
std::function<Type *(unsigned)> getTypeByID,
bool IsImporting)
: MetadataList(TheModule.getContext()), ValueList(ValueList),
Stream(Stream), Context(TheModule.getContext()), TheModule(TheModule),
getTypeByID(std::move(getTypeByID)), IsImporting(IsImporting) {}
Error parseMetadata(bool ModuleLevel);
bool hasFwdRefs() const { return MetadataList.hasFwdRefs(); }
Metadata *getMetadataFwdRefOrLoad(unsigned ID) {
if (ID < MDStringRef.size())
return lazyLoadOneMDString(ID);
if (auto *MD = MetadataList.lookup(ID))
return MD;
// If lazy-loading is enabled, we try recursively to load the operand
// instead of creating a temporary.
if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) {
PlaceholderQueue Placeholders;
lazyLoadOneMetadata(ID, Placeholders);
resolveForwardRefsAndPlaceholders(Placeholders);
return MetadataList.lookup(ID);
}
return MetadataList.getMetadataFwdRef(ID);
}
MDNode *getMDNodeFwdRefOrNull(unsigned Idx) {
return MetadataList.getMDNodeFwdRefOrNull(Idx);
}
DISubprogram *lookupSubprogramForFunction(Function *F) {
return FunctionsWithSPs.lookup(F);
}
bool hasSeenOldLoopTags() { return HasSeenOldLoopTags; }
Error parseMetadataAttachment(
Function &F, const SmallVectorImpl<Instruction *> &InstructionList);
Error parseMetadataKinds();
void setStripTBAA(bool Value) { StripTBAA = Value; }
bool isStrippingTBAA() { return StripTBAA; }
unsigned size() const { return MetadataList.size(); }
void shrinkTo(unsigned N) { MetadataList.shrinkTo(N); }
void upgradeDebugIntrinsics(Function &F) { upgradeDeclareExpressions(F); }
};
Expected<bool>
MetadataLoader::MetadataLoaderImpl::lazyLoadModuleMetadataBlock() {
IndexCursor = Stream;
SmallVector<uint64_t, 64> Record;
// Get the abbrevs, and preload record positions to make them lazy-loadable.
while (true) {
BitstreamEntry Entry = IndexCursor.advanceSkippingSubblocks(
BitstreamCursor::AF_DontPopBlockAtEnd);
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock: {
return true;
}
case BitstreamEntry::Record: {
// The interesting case.
++NumMDRecordLoaded;
uint64_t CurrentPos = IndexCursor.GetCurrentBitNo();
auto Code = IndexCursor.skipRecord(Entry.ID);
switch (Code) {
case bitc::METADATA_STRINGS: {
// Rewind and parse the strings.
IndexCursor.JumpToBit(CurrentPos);
StringRef Blob;
Record.clear();
IndexCursor.readRecord(Entry.ID, Record, &Blob);
unsigned NumStrings = Record[0];
MDStringRef.reserve(NumStrings);
auto IndexNextMDString = [&](StringRef Str) {
MDStringRef.push_back(Str);
};
if (auto Err = parseMetadataStrings(Record, Blob, IndexNextMDString))
return std::move(Err);
break;
}
case bitc::METADATA_INDEX_OFFSET: {
// This is the offset to the index, when we see this we skip all the
// records and load only an index to these.
IndexCursor.JumpToBit(CurrentPos);
Record.clear();
IndexCursor.readRecord(Entry.ID, Record);
if (Record.size() != 2)
return error("Invalid record");
auto Offset = Record[0] + (Record[1] << 32);
auto BeginPos = IndexCursor.GetCurrentBitNo();
IndexCursor.JumpToBit(BeginPos + Offset);
Entry = IndexCursor.advanceSkippingSubblocks(
BitstreamCursor::AF_DontPopBlockAtEnd);
assert(Entry.Kind == BitstreamEntry::Record &&
"Corrupted bitcode: Expected `Record` when trying to find the "
"Metadata index");
Record.clear();
auto Code = IndexCursor.readRecord(Entry.ID, Record);
(void)Code;
assert(Code == bitc::METADATA_INDEX && "Corrupted bitcode: Expected "
"`METADATA_INDEX` when trying "
"to find the Metadata index");
// Delta unpack
auto CurrentValue = BeginPos;
GlobalMetadataBitPosIndex.reserve(Record.size());
for (auto &Elt : Record) {
CurrentValue += Elt;
GlobalMetadataBitPosIndex.push_back(CurrentValue);
}
break;
}
case bitc::METADATA_INDEX:
// We don't expect to get there, the Index is loaded when we encounter
// the offset.
return error("Corrupted Metadata block");
case bitc::METADATA_NAME: {
// Named metadata need to be materialized now and aren't deferred.
IndexCursor.JumpToBit(CurrentPos);
Record.clear();
unsigned Code = IndexCursor.readRecord(Entry.ID, Record);
assert(Code == bitc::METADATA_NAME);
// Read name of the named metadata.
SmallString<8> Name(Record.begin(), Record.end());
Code = IndexCursor.ReadCode();
// Named Metadata comes in two parts, we expect the name to be followed
// by the node
Record.clear();
unsigned NextBitCode = IndexCursor.readRecord(Code, Record);
assert(NextBitCode == bitc::METADATA_NAMED_NODE);
(void)NextBitCode;
// Read named metadata elements.
unsigned Size = Record.size();
NamedMDNode *NMD = TheModule.getOrInsertNamedMetadata(Name);
for (unsigned i = 0; i != Size; ++i) {
// FIXME: We could use a placeholder here, however NamedMDNode are
// taking MDNode as operand and not using the Metadata infrastructure.
// It is acknowledged by 'TODO: Inherit from Metadata' in the
// NamedMDNode class definition.
MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
assert(MD && "Invalid record");
NMD->addOperand(MD);
}
break;
}
case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
// FIXME: we need to do this early because we don't materialize global
// value explicitly.
IndexCursor.JumpToBit(CurrentPos);
Record.clear();
IndexCursor.readRecord(Entry.ID, Record);
if (Record.size() % 2 == 0)
return error("Invalid record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size())
return error("Invalid record");
if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
if (Error Err = parseGlobalObjectAttachment(
*GO, ArrayRef<uint64_t>(Record).slice(1)))
return std::move(Err);
break;
}
case bitc::METADATA_KIND:
case bitc::METADATA_STRING_OLD:
case bitc::METADATA_OLD_FN_NODE:
case bitc::METADATA_OLD_NODE:
case bitc::METADATA_VALUE:
case bitc::METADATA_DISTINCT_NODE:
case bitc::METADATA_NODE:
case bitc::METADATA_LOCATION:
case bitc::METADATA_GENERIC_DEBUG:
case bitc::METADATA_SUBRANGE:
case bitc::METADATA_ENUMERATOR:
case bitc::METADATA_BASIC_TYPE:
case bitc::METADATA_DERIVED_TYPE:
case bitc::METADATA_COMPOSITE_TYPE:
case bitc::METADATA_SUBROUTINE_TYPE:
case bitc::METADATA_MODULE:
case bitc::METADATA_FILE:
case bitc::METADATA_COMPILE_UNIT:
case bitc::METADATA_SUBPROGRAM:
case bitc::METADATA_LEXICAL_BLOCK:
case bitc::METADATA_LEXICAL_BLOCK_FILE:
case bitc::METADATA_NAMESPACE:
case bitc::METADATA_MACRO:
case bitc::METADATA_MACRO_FILE:
case bitc::METADATA_TEMPLATE_TYPE:
case bitc::METADATA_TEMPLATE_VALUE:
case bitc::METADATA_GLOBAL_VAR:
case bitc::METADATA_LOCAL_VAR:
case bitc::METADATA_LABEL:
case bitc::METADATA_EXPRESSION:
case bitc::METADATA_OBJC_PROPERTY:
case bitc::METADATA_IMPORTED_ENTITY:
case bitc::METADATA_GLOBAL_VAR_EXPR:
// We don't expect to see any of these, if we see one, give up on
// lazy-loading and fallback.
MDStringRef.clear();
GlobalMetadataBitPosIndex.clear();
return false;
}
break;
}
}
}
}
/// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
/// module level metadata.
Error MetadataLoader::MetadataLoaderImpl::parseMetadata(bool ModuleLevel) {
if (!ModuleLevel && MetadataList.hasFwdRefs())
return error("Invalid metadata: fwd refs into function blocks");
// Record the entry position so that we can jump back here and efficiently
// skip the whole block in case we lazy-load.
auto EntryPos = Stream.GetCurrentBitNo();
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
return error("Invalid record");
SmallVector<uint64_t, 64> Record;
PlaceholderQueue Placeholders;
// We lazy-load module-level metadata: we build an index for each record, and
// then load individual record as needed, starting with the named metadata.
if (ModuleLevel && IsImporting && MetadataList.empty() &&
!DisableLazyLoading) {
auto SuccessOrErr = lazyLoadModuleMetadataBlock();
if (!SuccessOrErr)
return SuccessOrErr.takeError();
if (SuccessOrErr.get()) {
// An index was successfully created and we will be able to load metadata
// on-demand.
MetadataList.resize(MDStringRef.size() +
GlobalMetadataBitPosIndex.size());
// Reading the named metadata created forward references and/or
// placeholders, that we flush here.
resolveForwardRefsAndPlaceholders(Placeholders);
upgradeDebugInfo();
// Return at the beginning of the block, since it is easy to skip it
// entirely from there.
Stream.ReadBlockEnd(); // Pop the abbrev block context.
Stream.JumpToBit(EntryPos);
if (Stream.SkipBlock())
return error("Invalid record");
return Error::success();
}
// Couldn't load an index, fallback to loading all the block "old-style".
}
unsigned NextMetadataNo = MetadataList.size();
// Read all the records.
while (true) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
resolveForwardRefsAndPlaceholders(Placeholders);
upgradeDebugInfo();
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
StringRef Blob;
++NumMDRecordLoaded;
unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
if (Error Err =
parseOneMetadata(Record, Code, Placeholders, Blob, NextMetadataNo))
return Err;
}
}
MDString *MetadataLoader::MetadataLoaderImpl::lazyLoadOneMDString(unsigned ID) {
++NumMDStringLoaded;
if (Metadata *MD = MetadataList.lookup(ID))
return cast<MDString>(MD);
auto MDS = MDString::get(Context, MDStringRef[ID]);
MetadataList.assignValue(MDS, ID);
return MDS;
}
void MetadataLoader::MetadataLoaderImpl::lazyLoadOneMetadata(
unsigned ID, PlaceholderQueue &Placeholders) {
assert(ID < (MDStringRef.size()) + GlobalMetadataBitPosIndex.size());
assert(ID >= MDStringRef.size() && "Unexpected lazy-loading of MDString");
// Lookup first if the metadata hasn't already been loaded.
if (auto *MD = MetadataList.lookup(ID)) {
auto *N = dyn_cast_or_null<MDNode>(MD);
if (!N->isTemporary())
return;
}
SmallVector<uint64_t, 64> Record;
StringRef Blob;
IndexCursor.JumpToBit(GlobalMetadataBitPosIndex[ID - MDStringRef.size()]);
auto Entry = IndexCursor.advanceSkippingSubblocks();
++NumMDRecordLoaded;
unsigned Code = IndexCursor.readRecord(Entry.ID, Record, &Blob);
if (Error Err = parseOneMetadata(Record, Code, Placeholders, Blob, ID))
report_fatal_error("Can't lazyload MD");
}
/// Ensure that all forward-references and placeholders are resolved.
/// Iteratively lazy-loading metadata on-demand if needed.
void MetadataLoader::MetadataLoaderImpl::resolveForwardRefsAndPlaceholders(
PlaceholderQueue &Placeholders) {
DenseSet<unsigned> Temporaries;
while (1) {
// Populate Temporaries with the placeholders that haven't been loaded yet.
Placeholders.getTemporaries(MetadataList, Temporaries);
// If we don't have any temporary, or FwdReference, we're done!
if (Temporaries.empty() && !MetadataList.hasFwdRefs())
break;
// First, load all the temporaries. This can add new placeholders or
// forward references.
for (auto ID : Temporaries)
lazyLoadOneMetadata(ID, Placeholders);
Temporaries.clear();
// Second, load the forward-references. This can also add new placeholders
// or forward references.
while (MetadataList.hasFwdRefs())
lazyLoadOneMetadata(MetadataList.getNextFwdRef(), Placeholders);
}
// At this point we don't have any forward reference remaining, or temporary
// that haven't been loaded. We can safely drop RAUW support and mark cycles
// as resolved.
MetadataList.tryToResolveCycles();
// Finally, everything is in place, we can replace the placeholders operands
// with the final node they refer to.
Placeholders.flush(MetadataList);
}
Error MetadataLoader::MetadataLoaderImpl::parseOneMetadata(
SmallVectorImpl<uint64_t> &Record, unsigned Code,
PlaceholderQueue &Placeholders, StringRef Blob, unsigned &NextMetadataNo) {
bool IsDistinct = false;
auto getMD = [&](unsigned ID) -> Metadata * {
if (ID < MDStringRef.size())
return lazyLoadOneMDString(ID);
if (!IsDistinct) {
if (auto *MD = MetadataList.lookup(ID))
return MD;
// If lazy-loading is enabled, we try recursively to load the operand
// instead of creating a temporary.
if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) {
// Create a temporary for the node that is referencing the operand we
// will lazy-load. It is needed before recursing in case there are
// uniquing cycles.
MetadataList.getMetadataFwdRef(NextMetadataNo);
lazyLoadOneMetadata(ID, Placeholders);
return MetadataList.lookup(ID);
}
// Return a temporary.
return MetadataList.getMetadataFwdRef(ID);
}
if (auto *MD = MetadataList.getMetadataIfResolved(ID))
return MD;
return &Placeholders.getPlaceholderOp(ID);
};
auto getMDOrNull = [&](unsigned ID) -> Metadata * {
if (ID)
return getMD(ID - 1);
return nullptr;
};
auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
if (ID)
return MetadataList.getMetadataFwdRef(ID - 1);
return nullptr;
};
auto getMDString = [&](unsigned ID) -> MDString * {
// This requires that the ID is not really a forward reference. In
// particular, the MDString must already have been resolved.
auto MDS = getMDOrNull(ID);
return cast_or_null<MDString>(MDS);
};
// Support for old type refs.
auto getDITypeRefOrNull = [&](unsigned ID) {
return MetadataList.upgradeTypeRef(getMDOrNull(ID));
};
#define GET_OR_DISTINCT(CLASS, ARGS) \
(IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
switch (Code) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_NAME: {
// Read name of the named metadata.
SmallString<8> Name(Record.begin(), Record.end());
Record.clear();
Code = Stream.ReadCode();
++NumMDRecordLoaded;
unsigned NextBitCode = Stream.readRecord(Code, Record);
if (NextBitCode != bitc::METADATA_NAMED_NODE)
return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
// Read named metadata elements.
unsigned Size = Record.size();
NamedMDNode *NMD = TheModule.getOrInsertNamedMetadata(Name);
for (unsigned i = 0; i != Size; ++i) {
MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
if (!MD)
return error("Invalid record");
NMD->addOperand(MD);
}
break;
}
case bitc::METADATA_OLD_FN_NODE: {
// FIXME: Remove in 4.0.
// This is a LocalAsMetadata record, the only type of function-local
// metadata.
if (Record.size() % 2 == 1)
return error("Invalid record");
// If this isn't a LocalAsMetadata record, we're dropping it. This used
// to be legal, but there's no upgrade path.
auto dropRecord = [&] {
MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo);
NextMetadataNo++;
};
if (Record.size() != 2) {
dropRecord();
break;
}
Type *Ty = getTypeByID(Record[0]);
if (Ty->isMetadataTy() || Ty->isVoidTy()) {
dropRecord();
break;
}
MetadataList.assignValue(
LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_OLD_NODE: {
// FIXME: Remove in 4.0.
if (Record.size() % 2 == 1)
return error("Invalid record");
unsigned Size = Record.size();
SmallVector<Metadata *, 8> Elts;
for (unsigned i = 0; i != Size; i += 2) {
Type *Ty = getTypeByID(Record[i]);
if (!Ty)
return error("Invalid record");
if (Ty->isMetadataTy())
Elts.push_back(getMD(Record[i + 1]));
else if (!Ty->isVoidTy()) {
auto *MD =
ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
assert(isa<ConstantAsMetadata>(MD) &&
"Expected non-function-local metadata");
Elts.push_back(MD);
} else
Elts.push_back(nullptr);
}
MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_VALUE: {
if (Record.size() != 2)
return error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (Ty->isMetadataTy() || Ty->isVoidTy())
return error("Invalid record");
MetadataList.assignValue(
ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_DISTINCT_NODE:
IsDistinct = true;
LLVM_FALLTHROUGH;
case bitc::METADATA_NODE: {
SmallVector<Metadata *, 8> Elts;
Elts.reserve(Record.size());
for (unsigned ID : Record)
Elts.push_back(getMDOrNull(ID));
MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
: MDNode::get(Context, Elts),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_LOCATION: {
if (Record.size() != 5 && Record.size() != 6)
return error("Invalid record");
IsDistinct = Record[0];
unsigned Line = Record[1];
unsigned Column = Record[2];
Metadata *Scope = getMD(Record[3]);
Metadata *InlinedAt = getMDOrNull(Record[4]);
bool ImplicitCode = Record.size() == 6 && Record[5];
MetadataList.assignValue(
GET_OR_DISTINCT(DILocation, (Context, Line, Column, Scope, InlinedAt,
ImplicitCode)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_GENERIC_DEBUG: {
if (Record.size() < 4)
return error("Invalid record");
IsDistinct = Record[0];
unsigned Tag = Record[1];
unsigned Version = Record[2];
if (Tag >= 1u << 16 || Version != 0)
return error("Invalid record");
auto *Header = getMDString(Record[3]);
SmallVector<Metadata *, 8> DwarfOps;
for (unsigned I = 4, E = Record.size(); I != E; ++I)
DwarfOps.push_back(getMDOrNull(Record[I]));
MetadataList.assignValue(
GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_SUBRANGE: {
Metadata *Val = nullptr;
// Operand 'count' is interpreted as:
// - Signed integer (version 0)
// - Metadata node (version 1)
switch (Record[0] >> 1) {
case 0:
Val = GET_OR_DISTINCT(DISubrange,
(Context, Record[1], unrotateSign(Record.back())));
break;
case 1:
Val = GET_OR_DISTINCT(DISubrange, (Context, getMDOrNull(Record[1]),
unrotateSign(Record.back())));
break;
default:
return error("Invalid record: Unsupported version of DISubrange");
}
MetadataList.assignValue(Val, NextMetadataNo);
IsDistinct = Record[0] & 1;
NextMetadataNo++;
break;
}
case bitc::METADATA_ENUMERATOR: {
if (Record.size() != 3)
return error("Invalid record");
IsDistinct = Record[0] & 1;
bool IsUnsigned = Record[0] & 2;
MetadataList.assignValue(
GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
IsUnsigned, getMDString(Record[2]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_BASIC_TYPE: {
if (Record.size() < 6 || Record.size() > 7)
return error("Invalid record");
IsDistinct = Record[0];
DINode::DIFlags Flags = (Record.size() > 6) ?
static_cast<DINode::DIFlags>(Record[6]) : DINode::FlagZero;
MetadataList.assignValue(
GET_OR_DISTINCT(DIBasicType,
(Context, Record[1], getMDString(Record[2]), Record[3],
Record[4], Record[5], Flags)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_DERIVED_TYPE: {
if (Record.size() < 12 || Record.size() > 13)
return error("Invalid record");
// DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
// that there is no DWARF address space associated with DIDerivedType.
Optional<unsigned> DWARFAddressSpace;
if (Record.size() > 12 && Record[12])
DWARFAddressSpace = Record[12] - 1;
IsDistinct = Record[0];
DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
MetadataList.assignValue(
GET_OR_DISTINCT(DIDerivedType,
(Context, Record[1], getMDString(Record[2]),
getMDOrNull(Record[3]), Record[4],
getDITypeRefOrNull(Record[5]),
getDITypeRefOrNull(Record[6]), Record[7], Record[8],
Record[9], DWARFAddressSpace, Flags,
getDITypeRefOrNull(Record[11]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_COMPOSITE_TYPE: {
if (Record.size() < 16 || Record.size() > 17)
return error("Invalid record");
// If we have a UUID and this is not a forward declaration, lookup the
// mapping.
IsDistinct = Record[0] & 0x1;
bool IsNotUsedInTypeRef = Record[0] >= 2;
unsigned Tag = Record[1];
MDString *Name = getMDString(Record[2]);
Metadata *File = getMDOrNull(Record[3]);
unsigned Line = Record[4];
Metadata *Scope = getDITypeRefOrNull(Record[5]);
Metadata *BaseType = nullptr;
uint64_t SizeInBits = Record[7];
if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
return error("Alignment value is too large");
uint32_t AlignInBits = Record[8];
uint64_t OffsetInBits = 0;
DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
Metadata *Elements = nullptr;
unsigned RuntimeLang = Record[12];
Metadata *VTableHolder = nullptr;
Metadata *TemplateParams = nullptr;
Metadata *Discriminator = nullptr;
auto *Identifier = getMDString(Record[15]);
// If this module is being parsed so that it can be ThinLTO imported
// into another module, composite types only need to be imported
// as type declarations (unless full type definitions requested).
// Create type declarations up front to save memory. Also, buildODRType
// handles the case where this is type ODRed with a definition needed
// by the importing module, in which case the existing definition is
// used.
if (IsImporting && !ImportFullTypeDefinitions && Identifier &&
(Tag == dwarf::DW_TAG_enumeration_type ||
Tag == dwarf::DW_TAG_class_type ||
Tag == dwarf::DW_TAG_structure_type ||
Tag == dwarf::DW_TAG_union_type)) {
Flags = Flags | DINode::FlagFwdDecl;
} else {
BaseType = getDITypeRefOrNull(Record[6]);
OffsetInBits = Record[9];
Elements = getMDOrNull(Record[11]);
VTableHolder = getDITypeRefOrNull(Record[13]);
TemplateParams = getMDOrNull(Record[14]);
if (Record.size() > 16)
Discriminator = getMDOrNull(Record[16]);
}
DICompositeType *CT = nullptr;
if (Identifier)
CT = DICompositeType::buildODRType(
Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
VTableHolder, TemplateParams, Discriminator);
// Create a node if we didn't get a lazy ODR type.
if (!CT)
CT = GET_OR_DISTINCT(DICompositeType,
(Context, Tag, Name, File, Line, Scope, BaseType,
SizeInBits, AlignInBits, OffsetInBits, Flags,
Elements, RuntimeLang, VTableHolder, TemplateParams,
Identifier, Discriminator));
if (!IsNotUsedInTypeRef && Identifier)
MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
MetadataList.assignValue(CT, NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_SUBROUTINE_TYPE: {
if (Record.size() < 3 || Record.size() > 4)
return error("Invalid record");
bool IsOldTypeRefArray = Record[0] < 2;
unsigned CC = (Record.size() > 3) ? Record[3] : 0;
IsDistinct = Record[0] & 0x1;
DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
Metadata *Types = getMDOrNull(Record[2]);
if (LLVM_UNLIKELY(IsOldTypeRefArray))
Types = MetadataList.upgradeTypeRefArray(Types);
MetadataList.assignValue(
GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_MODULE: {
if (Record.size() != 6)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DIModule,
(Context, getMDOrNull(Record[1]),
getMDString(Record[2]), getMDString(Record[3]),
getMDString(Record[4]), getMDString(Record[5]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_FILE: {
if (Record.size() != 3 && Record.size() != 5 && Record.size() != 6)
return error("Invalid record");
IsDistinct = Record[0];
Optional<DIFile::ChecksumInfo<MDString *>> Checksum;
// The BitcodeWriter writes null bytes into Record[3:4] when the Checksum
// is not present. This matches up with the old internal representation,
// and the old encoding for CSK_None in the ChecksumKind. The new
// representation reserves the value 0 in the ChecksumKind to continue to
// encode None in a backwards-compatible way.
if (Record.size() > 4 && Record[3] && Record[4])
Checksum.emplace(static_cast<DIFile::ChecksumKind>(Record[3]),
getMDString(Record[4]));
MetadataList.assignValue(
GET_OR_DISTINCT(
DIFile,
(Context, getMDString(Record[1]), getMDString(Record[2]), Checksum,
Record.size() > 5 ? Optional<MDString *>(getMDString(Record[5]))
: None)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_COMPILE_UNIT: {
if (Record.size() < 14 || Record.size() > 19)
return error("Invalid record");
// Ignore Record[0], which indicates whether this compile unit is
// distinct. It's always distinct.
IsDistinct = true;
auto *CU = DICompileUnit::getDistinct(
Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
getMDOrNull(Record[12]), getMDOrNull(Record[13]),
Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
Record.size() <= 14 ? 0 : Record[14],
Record.size() <= 16 ? true : Record[16],
Record.size() <= 17 ? false : Record[17],
Record.size() <= 18 ? 0 : Record[18]);
MetadataList.assignValue(CU, NextMetadataNo);
NextMetadataNo++;
// Move the Upgrade the list of subprograms.
if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
CUSubprograms.push_back({CU, SPs});
break;
}
case bitc::METADATA_SUBPROGRAM: {
if (Record.size() < 18 || Record.size() > 21)
return error("Invalid record");
IsDistinct =
(Record[0] & 1) || Record[8]; // All definitions should be distinct.
// Version 1 has a Function as Record[15].
// Version 2 has removed Record[15].
// Version 3 has the Unit as Record[15].
// Version 4 added thisAdjustment.
bool HasUnit = Record[0] >= 2;
if (HasUnit && Record.size() < 19)
return error("Invalid record");
Metadata *CUorFn = getMDOrNull(Record[15]);
unsigned Offset = Record.size() >= 19 ? 1 : 0;
bool HasFn = Offset && !HasUnit;
bool HasThisAdj = Record.size() >= 20;
bool HasThrownTypes = Record.size() >= 21;
DISubprogram *SP = GET_OR_DISTINCT(
DISubprogram,
(Context,
getDITypeRefOrNull(Record[1]), // scope
getMDString(Record[2]), // name
getMDString(Record[3]), // linkageName
getMDOrNull(Record[4]), // file
Record[5], // line
getMDOrNull(Record[6]), // type
Record[7], // isLocal
Record[8], // isDefinition
Record[9], // scopeLine
getDITypeRefOrNull(Record[10]), // containingType
Record[11], // virtuality
Record[12], // virtualIndex
HasThisAdj ? Record[19] : 0, // thisAdjustment
static_cast<DINode::DIFlags>(Record[13]), // flags
Record[14], // isOptimized
HasUnit ? CUorFn : nullptr, // unit
getMDOrNull(Record[15 + Offset]), // templateParams
getMDOrNull(Record[16 + Offset]), // declaration
getMDOrNull(Record[17 + Offset]), // retainedNodes
HasThrownTypes ? getMDOrNull(Record[20]) : nullptr // thrownTypes
));
MetadataList.assignValue(SP, NextMetadataNo);
NextMetadataNo++;
// Upgrade sp->function mapping to function->sp mapping.
if (HasFn) {
if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
if (auto *F = dyn_cast<Function>(CMD->getValue())) {
if (F->isMaterializable())
// Defer until materialized; unmaterialized functions may not have
// metadata.
FunctionsWithSPs[F] = SP;
else if (!F->empty())
F->setSubprogram(SP);
}
}
break;
}
case bitc::METADATA_LEXICAL_BLOCK: {
if (Record.size() != 5)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DILexicalBlock,
(Context, getMDOrNull(Record[1]),
getMDOrNull(Record[2]), Record[3], Record[4])),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_LEXICAL_BLOCK_FILE: {
if (Record.size() != 4)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DILexicalBlockFile,
(Context, getMDOrNull(Record[1]),
getMDOrNull(Record[2]), Record[3])),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_NAMESPACE: {
// Newer versions of DINamespace dropped file and line.
MDString *Name;
if (Record.size() == 3)
Name = getMDString(Record[2]);
else if (Record.size() == 5)
Name = getMDString(Record[3]);
else
return error("Invalid record");
IsDistinct = Record[0] & 1;
bool ExportSymbols = Record[0] & 2;
MetadataList.assignValue(
GET_OR_DISTINCT(DINamespace,
(Context, getMDOrNull(Record[1]), Name, ExportSymbols)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_MACRO: {
if (Record.size() != 5)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DIMacro,
(Context, Record[1], Record[2], getMDString(Record[3]),
getMDString(Record[4]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_MACRO_FILE: {
if (Record.size() != 5)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DIMacroFile,
(Context, Record[1], Record[2], getMDOrNull(Record[3]),
getMDOrNull(Record[4]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_TEMPLATE_TYPE: {
if (Record.size() != 3)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
(Context, getMDString(Record[1]),
getDITypeRefOrNull(Record[2]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_TEMPLATE_VALUE: {
if (Record.size() != 5)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DITemplateValueParameter,
(Context, Record[1], getMDString(Record[2]),
getDITypeRefOrNull(Record[3]),
getMDOrNull(Record[4]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_GLOBAL_VAR: {
if (Record.size() < 11 || Record.size() > 12)
return error("Invalid record");
IsDistinct = Record[0] & 1;
unsigned Version = Record[0] >> 1;
if (Version == 1) {
MetadataList.assignValue(
GET_OR_DISTINCT(DIGlobalVariable,
(Context, getMDOrNull(Record[1]),
getMDString(Record[2]), getMDString(Record[3]),
getMDOrNull(Record[4]), Record[5],
getDITypeRefOrNull(Record[6]), Record[7], Record[8],
getMDOrNull(Record[10]), Record[11])),
NextMetadataNo);
NextMetadataNo++;
} else if (Version == 0) {
// Upgrade old metadata, which stored a global variable reference or a
// ConstantInt here.
NeedUpgradeToDIGlobalVariableExpression = true;
Metadata *Expr = getMDOrNull(Record[9]);
uint32_t AlignInBits = 0;
if (Record.size() > 11) {
if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
return error("Alignment value is too large");
AlignInBits = Record[11];
}
GlobalVariable *Attach = nullptr;
if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
Attach = GV;
Expr = nullptr;
} else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
Expr = DIExpression::get(Context,
{dwarf::DW_OP_constu, CI->getZExtValue(),
dwarf::DW_OP_stack_value});
} else {
Expr = nullptr;
}
}
DIGlobalVariable *DGV = GET_OR_DISTINCT(
DIGlobalVariable,
(Context, getMDOrNull(Record[1]), getMDString(Record[2]),
getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
getDITypeRefOrNull(Record[6]), Record[7], Record[8],
getMDOrNull(Record[10]), AlignInBits));
DIGlobalVariableExpression *DGVE = nullptr;
if (Attach || Expr)
DGVE = DIGlobalVariableExpression::getDistinct(
Context, DGV, Expr ? Expr : DIExpression::get(Context, {}));
if (Attach)
Attach->addDebugInfo(DGVE);
auto *MDNode = Expr ? cast<Metadata>(DGVE) : cast<Metadata>(DGV);
MetadataList.assignValue(MDNode, NextMetadataNo);
NextMetadataNo++;
} else
return error("Invalid record");
break;
}
case bitc::METADATA_LOCAL_VAR: {
// 10th field is for the obseleted 'inlinedAt:' field.
if (Record.size() < 8 || Record.size() > 10)
return error("Invalid record");
IsDistinct = Record[0] & 1;
bool HasAlignment = Record[0] & 2;
// 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
// DW_TAG_arg_variable, if we have alignment flag encoded it means, that
// this is newer version of record which doesn't have artificial tag.
bool HasTag = !HasAlignment && Record.size() > 8;
DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
uint32_t AlignInBits = 0;
if (HasAlignment) {
if (Record[8 + HasTag] > (uint64_t)std::numeric_limits<uint32_t>::max())
return error("Alignment value is too large");
AlignInBits = Record[8 + HasTag];
}
MetadataList.assignValue(
GET_OR_DISTINCT(DILocalVariable,
(Context, getMDOrNull(Record[1 + HasTag]),
getMDString(Record[2 + HasTag]),
getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
getDITypeRefOrNull(Record[5 + HasTag]),
Record[6 + HasTag], Flags, AlignInBits)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_LABEL: {
if (Record.size() != 5)
return error("Invalid record");
IsDistinct = Record[0] & 1;
MetadataList.assignValue(
GET_OR_DISTINCT(DILabel,
(Context, getMDOrNull(Record[1]),
getMDString(Record[2]),
getMDOrNull(Record[3]), Record[4])),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_EXPRESSION: {
if (Record.size() < 1)
return error("Invalid record");
IsDistinct = Record[0] & 1;
uint64_t Version = Record[0] >> 1;
auto Elts = MutableArrayRef<uint64_t>(Record).slice(1);
SmallVector<uint64_t, 6> Buffer;
if (Error Err = upgradeDIExpression(Version, Elts, Buffer))
return Err;
MetadataList.assignValue(
GET_OR_DISTINCT(DIExpression, (Context, Elts)), NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_GLOBAL_VAR_EXPR: {
if (Record.size() != 3)
return error("Invalid record");
IsDistinct = Record[0];
Metadata *Expr = getMDOrNull(Record[2]);
if (!Expr)
Expr = DIExpression::get(Context, {});
MetadataList.assignValue(
GET_OR_DISTINCT(DIGlobalVariableExpression,
(Context, getMDOrNull(Record[1]), Expr)),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_OBJC_PROPERTY: {
if (Record.size() != 8)
return error("Invalid record");
IsDistinct = Record[0];
MetadataList.assignValue(
GET_OR_DISTINCT(DIObjCProperty,
(Context, getMDString(Record[1]),
getMDOrNull(Record[2]), Record[3],
getMDString(Record[4]), getMDString(Record[5]),
Record[6], getDITypeRefOrNull(Record[7]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_IMPORTED_ENTITY: {
if (Record.size() != 6 && Record.size() != 7)
return error("Invalid record");
IsDistinct = Record[0];
bool HasFile = (Record.size() == 7);
MetadataList.assignValue(
GET_OR_DISTINCT(DIImportedEntity,
(Context, Record[1], getMDOrNull(Record[2]),
getDITypeRefOrNull(Record[3]),
HasFile ? getMDOrNull(Record[6]) : nullptr,
HasFile ? Record[4] : 0, getMDString(Record[5]))),
NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_STRING_OLD: {
std::string String(Record.begin(), Record.end());
// Test for upgrading !llvm.loop.
HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
++NumMDStringLoaded;
Metadata *MD = MDString::get(Context, String);
MetadataList.assignValue(MD, NextMetadataNo);
NextMetadataNo++;
break;
}
case bitc::METADATA_STRINGS: {
auto CreateNextMDString = [&](StringRef Str) {
++NumMDStringLoaded;
MetadataList.assignValue(MDString::get(Context, Str), NextMetadataNo);
NextMetadataNo++;
};
if (Error Err = parseMetadataStrings(Record, Blob, CreateNextMDString))
return Err;
break;
}
case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
if (Record.size() % 2 == 0)
return error("Invalid record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size())
return error("Invalid record");
if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
if (Error Err = parseGlobalObjectAttachment(
*GO, ArrayRef<uint64_t>(Record).slice(1)))
return Err;
break;
}
case bitc::METADATA_KIND: {
// Support older bitcode files that had METADATA_KIND records in a
// block with METADATA_BLOCK_ID.
if (Error Err = parseMetadataKindRecord(Record))
return Err;
break;
}
}
return Error::success();
#undef GET_OR_DISTINCT
}
Error MetadataLoader::MetadataLoaderImpl::parseMetadataStrings(
ArrayRef<uint64_t> Record, StringRef Blob,
function_ref<void(StringRef)> CallBack) {
// All the MDStrings in the block are emitted together in a single
// record. The strings are concatenated and stored in a blob along with
// their sizes.
if (Record.size() != 2)
return error("Invalid record: metadata strings layout");
unsigned NumStrings = Record[0];
unsigned StringsOffset = Record[1];
if (!NumStrings)
return error("Invalid record: metadata strings with no strings");
if (StringsOffset > Blob.size())
return error("Invalid record: metadata strings corrupt offset");
StringRef Lengths = Blob.slice(0, StringsOffset);
SimpleBitstreamCursor R(Lengths);
StringRef Strings = Blob.drop_front(StringsOffset);
do {
if (R.AtEndOfStream())
return error("Invalid record: metadata strings bad length");
unsigned Size = R.ReadVBR(6);
if (Strings.size() < Size)
return error("Invalid record: metadata strings truncated chars");
CallBack(Strings.slice(0, Size));
Strings = Strings.drop_front(Size);
} while (--NumStrings);
return Error::success();
}
Error MetadataLoader::MetadataLoaderImpl::parseGlobalObjectAttachment(
GlobalObject &GO, ArrayRef<uint64_t> Record) {
assert(Record.size() % 2 == 0);
for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
auto K = MDKindMap.find(Record[I]);
if (K == MDKindMap.end())
return error("Invalid ID");
MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
if (!MD)
return error("Invalid metadata attachment");
GO.addMetadata(K->second, *MD);
}
return Error::success();
}
/// Parse metadata attachments.
Error MetadataLoader::MetadataLoaderImpl::parseMetadataAttachment(
Function &F, const SmallVectorImpl<Instruction *> &InstructionList) {
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
return error("Invalid record");
SmallVector<uint64_t, 64> Record;
PlaceholderQueue Placeholders;
while (true) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
resolveForwardRefsAndPlaceholders(Placeholders);
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a metadata attachment record.
Record.clear();
++NumMDRecordLoaded;
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_ATTACHMENT: {
unsigned RecordLength = Record.size();
if (Record.empty())
return error("Invalid record");
if (RecordLength % 2 == 0) {
// A function attachment.
if (Error Err = parseGlobalObjectAttachment(F, Record))
return Err;
continue;
}
// An instruction attachment.
Instruction *Inst = InstructionList[Record[0]];
for (unsigned i = 1; i != RecordLength; i = i + 2) {
unsigned Kind = Record[i];
DenseMap<unsigned, unsigned>::iterator I = MDKindMap.find(Kind);
if (I == MDKindMap.end())
return error("Invalid ID");
if (I->second == LLVMContext::MD_tbaa && StripTBAA)
continue;
auto Idx = Record[i + 1];
if (Idx < (MDStringRef.size() + GlobalMetadataBitPosIndex.size()) &&
!MetadataList.lookup(Idx)) {
// Load the attachment if it is in the lazy-loadable range and hasn't
// been loaded yet.
lazyLoadOneMetadata(Idx, Placeholders);
resolveForwardRefsAndPlaceholders(Placeholders);
}
Metadata *Node = MetadataList.getMetadataFwdRef(Idx);
if (isa<LocalAsMetadata>(Node))
// Drop the attachment. This used to be legal, but there's no
// upgrade path.
break;
MDNode *MD = dyn_cast_or_null<MDNode>(Node);
if (!MD)
return error("Invalid metadata attachment");
if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
MD = upgradeInstructionLoopAttachment(*MD);
if (I->second == LLVMContext::MD_tbaa) {
assert(!MD->isTemporary() && "should load MDs before attachments");
MD = UpgradeTBAANode(*MD);
}
Inst->setMetadata(I->second, MD);
}
break;
}
}
}
}
/// Parse a single METADATA_KIND record, inserting result in MDKindMap.
Error MetadataLoader::MetadataLoaderImpl::parseMetadataKindRecord(
SmallVectorImpl<uint64_t> &Record) {
if (Record.size() < 2)
return error("Invalid record");
unsigned Kind = Record[0];
SmallString<8> Name(Record.begin() + 1, Record.end());
unsigned NewKind = TheModule.getMDKindID(Name.str());
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
return error("Conflicting METADATA_KIND records");
return Error::success();
}
/// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
Error MetadataLoader::MetadataLoaderImpl::parseMetadataKinds() {
if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
return error("Invalid record");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (true) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
++NumMDRecordLoaded;
unsigned Code = Stream.readRecord(Entry.ID, Record);
switch (Code) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_KIND: {
if (Error Err = parseMetadataKindRecord(Record))
return Err;
break;
}
}
}
}
MetadataLoader &MetadataLoader::operator=(MetadataLoader &&RHS) {
Pimpl = std::move(RHS.Pimpl);
return *this;
}
MetadataLoader::MetadataLoader(MetadataLoader &&RHS)
: Pimpl(std::move(RHS.Pimpl)) {}
MetadataLoader::~MetadataLoader() = default;
MetadataLoader::MetadataLoader(BitstreamCursor &Stream, Module &TheModule,
BitcodeReaderValueList &ValueList,
bool IsImporting,
std::function<Type *(unsigned)> getTypeByID)
: Pimpl(llvm::make_unique<MetadataLoaderImpl>(
Stream, TheModule, ValueList, std::move(getTypeByID), IsImporting)) {}
Error MetadataLoader::parseMetadata(bool ModuleLevel) {
return Pimpl->parseMetadata(ModuleLevel);
}
bool MetadataLoader::hasFwdRefs() const { return Pimpl->hasFwdRefs(); }
/// Return the given metadata, creating a replaceable forward reference if
/// necessary.
Metadata *MetadataLoader::getMetadataFwdRefOrLoad(unsigned Idx) {
return Pimpl->getMetadataFwdRefOrLoad(Idx);
}
MDNode *MetadataLoader::getMDNodeFwdRefOrNull(unsigned Idx) {
return Pimpl->getMDNodeFwdRefOrNull(Idx);
}
DISubprogram *MetadataLoader::lookupSubprogramForFunction(Function *F) {
return Pimpl->lookupSubprogramForFunction(F);
}
Error MetadataLoader::parseMetadataAttachment(
Function &F, const SmallVectorImpl<Instruction *> &InstructionList) {
return Pimpl->parseMetadataAttachment(F, InstructionList);
}
Error MetadataLoader::parseMetadataKinds() {
return Pimpl->parseMetadataKinds();
}
void MetadataLoader::setStripTBAA(bool StripTBAA) {
return Pimpl->setStripTBAA(StripTBAA);
}
bool MetadataLoader::isStrippingTBAA() { return Pimpl->isStrippingTBAA(); }
unsigned MetadataLoader::size() const { return Pimpl->size(); }
void MetadataLoader::shrinkTo(unsigned N) { return Pimpl->shrinkTo(N); }
void MetadataLoader::upgradeDebugIntrinsics(Function &F) {
return Pimpl->upgradeDebugIntrinsics(F);
}