1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp
Stephen Tozer 6422696166 [DebugInfo] Correctly update dbg.values with duplicated location ops
This patch fixes code that incorrectly handled dbg.values with duplicate
location operands, i.e. !DIArgList(i32 %a, i32 %a). The errors in
question were caused by either applying an update to dbg.value multiple
times when the update is only valid once, or by updating the
DIExpression for only the first instance of a value that appears
multiple times.

Differential Revision: https://reviews.llvm.org/D105831
2021-07-14 11:17:24 +01:00

1637 lines
64 KiB
C++

//===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file is a part of HWAddressSanitizer, an address sanity checker
/// based on tagged addressing.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <sstream>
using namespace llvm;
#define DEBUG_TYPE "hwasan"
const char kHwasanModuleCtorName[] = "hwasan.module_ctor";
const char kHwasanNoteName[] = "hwasan.note";
const char kHwasanInitName[] = "__hwasan_init";
const char kHwasanPersonalityThunkName[] = "__hwasan_personality_thunk";
const char kHwasanShadowMemoryDynamicAddress[] =
"__hwasan_shadow_memory_dynamic_address";
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
static const size_t kDefaultShadowScale = 4;
static const uint64_t kDynamicShadowSentinel =
std::numeric_limits<uint64_t>::max();
static const unsigned kShadowBaseAlignment = 32;
static cl::opt<std::string>
ClMemoryAccessCallbackPrefix("hwasan-memory-access-callback-prefix",
cl::desc("Prefix for memory access callbacks"),
cl::Hidden, cl::init("__hwasan_"));
static cl::opt<bool> ClInstrumentWithCalls(
"hwasan-instrument-with-calls",
cl::desc("instrument reads and writes with callbacks"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads",
cl::desc("instrument read instructions"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentWrites("hwasan-instrument-writes",
cl::desc("instrument write instructions"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClInstrumentAtomics(
"hwasan-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClInstrumentByval("hwasan-instrument-byval",
cl::desc("instrument byval arguments"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClRecover("hwasan-recover",
cl::desc("Enable recovery mode (continue-after-error)."),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack",
cl::desc("instrument stack (allocas)"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClUARRetagToZero(
"hwasan-uar-retag-to-zero",
cl::desc("Clear alloca tags before returning from the function to allow "
"non-instrumented and instrumented function calls mix. When set "
"to false, allocas are retagged before returning from the "
"function to detect use after return."),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClGenerateTagsWithCalls(
"hwasan-generate-tags-with-calls",
cl::desc("generate new tags with runtime library calls"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"),
cl::Hidden, cl::init(false), cl::ZeroOrMore);
static cl::opt<int> ClMatchAllTag(
"hwasan-match-all-tag",
cl::desc("don't report bad accesses via pointers with this tag"),
cl::Hidden, cl::init(-1));
static cl::opt<bool>
ClEnableKhwasan("hwasan-kernel",
cl::desc("Enable KernelHWAddressSanitizer instrumentation"),
cl::Hidden, cl::init(false));
// These flags allow to change the shadow mapping and control how shadow memory
// is accessed. The shadow mapping looks like:
// Shadow = (Mem >> scale) + offset
static cl::opt<uint64_t>
ClMappingOffset("hwasan-mapping-offset",
cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"),
cl::Hidden, cl::init(0));
static cl::opt<bool>
ClWithIfunc("hwasan-with-ifunc",
cl::desc("Access dynamic shadow through an ifunc global on "
"platforms that support this"),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClWithTls(
"hwasan-with-tls",
cl::desc("Access dynamic shadow through an thread-local pointer on "
"platforms that support this"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClRecordStackHistory("hwasan-record-stack-history",
cl::desc("Record stack frames with tagged allocations "
"in a thread-local ring buffer"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics",
cl::desc("instrument memory intrinsics"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentLandingPads("hwasan-instrument-landing-pads",
cl::desc("instrument landing pads"), cl::Hidden,
cl::init(false), cl::ZeroOrMore);
static cl::opt<bool> ClUseShortGranules(
"hwasan-use-short-granules",
cl::desc("use short granules in allocas and outlined checks"), cl::Hidden,
cl::init(false), cl::ZeroOrMore);
static cl::opt<bool> ClInstrumentPersonalityFunctions(
"hwasan-instrument-personality-functions",
cl::desc("instrument personality functions"), cl::Hidden, cl::init(false),
cl::ZeroOrMore);
static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks",
cl::desc("inline all checks"),
cl::Hidden, cl::init(false));
// Enabled from clang by "-fsanitize-hwaddress-experimental-aliasing".
static cl::opt<bool> ClUsePageAliases("hwasan-experimental-use-page-aliases",
cl::desc("Use page aliasing in HWASan"),
cl::Hidden, cl::init(false));
namespace {
/// An instrumentation pass implementing detection of addressability bugs
/// using tagged pointers.
class HWAddressSanitizer {
public:
explicit HWAddressSanitizer(Module &M, bool CompileKernel = false,
bool Recover = false)
: M(M) {
this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0
? ClEnableKhwasan
: CompileKernel;
initializeModule();
}
bool sanitizeFunction(Function &F);
void initializeModule();
void createHwasanCtorComdat();
void initializeCallbacks(Module &M);
Value *getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val);
Value *getDynamicShadowIfunc(IRBuilder<> &IRB);
Value *getShadowNonTls(IRBuilder<> &IRB);
void untagPointerOperand(Instruction *I, Value *Addr);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
void instrumentMemAccessInline(Value *Ptr, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore);
void instrumentMemIntrinsic(MemIntrinsic *MI);
bool instrumentMemAccess(InterestingMemoryOperand &O);
bool ignoreAccess(Value *Ptr);
void getInterestingMemoryOperands(
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
bool isInterestingAlloca(const AllocaInst &AI);
bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size);
Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag);
Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong);
bool instrumentStack(
SmallVectorImpl<AllocaInst *> &Allocas,
DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap,
SmallVectorImpl<Instruction *> &RetVec, Value *StackTag);
Value *readRegister(IRBuilder<> &IRB, StringRef Name);
bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec);
Value *getNextTagWithCall(IRBuilder<> &IRB);
Value *getStackBaseTag(IRBuilder<> &IRB);
Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI,
unsigned AllocaNo);
Value *getUARTag(IRBuilder<> &IRB, Value *StackTag);
Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty);
Value *applyTagMask(IRBuilder<> &IRB, Value *OldTag);
unsigned retagMask(unsigned AllocaNo);
void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord);
void instrumentGlobal(GlobalVariable *GV, uint8_t Tag);
void instrumentGlobals();
void instrumentPersonalityFunctions();
private:
LLVMContext *C;
Module &M;
Triple TargetTriple;
FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset;
FunctionCallee HWAsanHandleVfork;
/// This struct defines the shadow mapping using the rule:
/// shadow = (mem >> Scale) + Offset.
/// If InGlobal is true, then
/// extern char __hwasan_shadow[];
/// shadow = (mem >> Scale) + &__hwasan_shadow
/// If InTls is true, then
/// extern char *__hwasan_tls;
/// shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment)
///
/// If WithFrameRecord is true, then __hwasan_tls will be used to access the
/// ring buffer for storing stack allocations on targets that support it.
struct ShadowMapping {
int Scale;
uint64_t Offset;
bool InGlobal;
bool InTls;
bool WithFrameRecord;
void init(Triple &TargetTriple, bool InstrumentWithCalls);
unsigned getObjectAlignment() const { return 1U << Scale; }
};
ShadowMapping Mapping;
Type *VoidTy = Type::getVoidTy(M.getContext());
Type *IntptrTy;
Type *Int8PtrTy;
Type *Int8Ty;
Type *Int32Ty;
Type *Int64Ty = Type::getInt64Ty(M.getContext());
bool CompileKernel;
bool Recover;
bool OutlinedChecks;
bool UseShortGranules;
bool InstrumentLandingPads;
bool InstrumentWithCalls;
bool InstrumentStack;
bool UsePageAliases;
bool HasMatchAllTag = false;
uint8_t MatchAllTag = 0;
unsigned PointerTagShift;
uint64_t TagMaskByte;
Function *HwasanCtorFunction;
FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes];
FunctionCallee HwasanMemoryAccessCallbackSized[2];
FunctionCallee HwasanTagMemoryFunc;
FunctionCallee HwasanGenerateTagFunc;
Constant *ShadowGlobal;
Value *ShadowBase = nullptr;
Value *StackBaseTag = nullptr;
GlobalValue *ThreadPtrGlobal = nullptr;
};
class HWAddressSanitizerLegacyPass : public FunctionPass {
public:
// Pass identification, replacement for typeid.
static char ID;
explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false,
bool Recover = false)
: FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) {
initializeHWAddressSanitizerLegacyPassPass(
*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "HWAddressSanitizer"; }
bool doInitialization(Module &M) override {
HWASan = std::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover);
return true;
}
bool runOnFunction(Function &F) override {
return HWASan->sanitizeFunction(F);
}
bool doFinalization(Module &M) override {
HWASan.reset();
return false;
}
private:
std::unique_ptr<HWAddressSanitizer> HWASan;
bool CompileKernel;
bool Recover;
};
} // end anonymous namespace
char HWAddressSanitizerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(
HWAddressSanitizerLegacyPass, "hwasan",
"HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
false)
INITIALIZE_PASS_END(
HWAddressSanitizerLegacyPass, "hwasan",
"HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
false)
FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel,
bool Recover) {
assert(!CompileKernel || Recover);
return new HWAddressSanitizerLegacyPass(CompileKernel, Recover);
}
HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover)
: CompileKernel(CompileKernel), Recover(Recover) {}
PreservedAnalyses HWAddressSanitizerPass::run(Module &M,
ModuleAnalysisManager &MAM) {
HWAddressSanitizer HWASan(M, CompileKernel, Recover);
bool Modified = false;
for (Function &F : M)
Modified |= HWASan.sanitizeFunction(F);
if (Modified)
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
void HWAddressSanitizer::createHwasanCtorComdat() {
std::tie(HwasanCtorFunction, std::ignore) =
getOrCreateSanitizerCtorAndInitFunctions(
M, kHwasanModuleCtorName, kHwasanInitName,
/*InitArgTypes=*/{},
/*InitArgs=*/{},
// This callback is invoked when the functions are created the first
// time. Hook them into the global ctors list in that case:
[&](Function *Ctor, FunctionCallee) {
Comdat *CtorComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
Ctor->setComdat(CtorComdat);
appendToGlobalCtors(M, Ctor, 0, Ctor);
});
// Create a note that contains pointers to the list of global
// descriptors. Adding a note to the output file will cause the linker to
// create a PT_NOTE program header pointing to the note that we can use to
// find the descriptor list starting from the program headers. A function
// provided by the runtime initializes the shadow memory for the globals by
// accessing the descriptor list via the note. The dynamic loader needs to
// call this function whenever a library is loaded.
//
// The reason why we use a note for this instead of a more conventional
// approach of having a global constructor pass a descriptor list pointer to
// the runtime is because of an order of initialization problem. With
// constructors we can encounter the following problematic scenario:
//
// 1) library A depends on library B and also interposes one of B's symbols
// 2) B's constructors are called before A's (as required for correctness)
// 3) during construction, B accesses one of its "own" globals (actually
// interposed by A) and triggers a HWASAN failure due to the initialization
// for A not having happened yet
//
// Even without interposition it is possible to run into similar situations in
// cases where two libraries mutually depend on each other.
//
// We only need one note per binary, so put everything for the note in a
// comdat. This needs to be a comdat with an .init_array section to prevent
// newer versions of lld from discarding the note.
//
// Create the note even if we aren't instrumenting globals. This ensures that
// binaries linked from object files with both instrumented and
// non-instrumented globals will end up with a note, even if a comdat from an
// object file with non-instrumented globals is selected. The note is harmless
// if the runtime doesn't support it, since it will just be ignored.
Comdat *NoteComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
Type *Int8Arr0Ty = ArrayType::get(Int8Ty, 0);
auto Start =
new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
nullptr, "__start_hwasan_globals");
Start->setVisibility(GlobalValue::HiddenVisibility);
Start->setDSOLocal(true);
auto Stop =
new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
nullptr, "__stop_hwasan_globals");
Stop->setVisibility(GlobalValue::HiddenVisibility);
Stop->setDSOLocal(true);
// Null-terminated so actually 8 bytes, which are required in order to align
// the note properly.
auto *Name = ConstantDataArray::get(*C, "LLVM\0\0\0");
auto *NoteTy = StructType::get(Int32Ty, Int32Ty, Int32Ty, Name->getType(),
Int32Ty, Int32Ty);
auto *Note =
new GlobalVariable(M, NoteTy, /*isConstant=*/true,
GlobalValue::PrivateLinkage, nullptr, kHwasanNoteName);
Note->setSection(".note.hwasan.globals");
Note->setComdat(NoteComdat);
Note->setAlignment(Align(4));
Note->setDSOLocal(true);
// The pointers in the note need to be relative so that the note ends up being
// placed in rodata, which is the standard location for notes.
auto CreateRelPtr = [&](Constant *Ptr) {
return ConstantExpr::getTrunc(
ConstantExpr::getSub(ConstantExpr::getPtrToInt(Ptr, Int64Ty),
ConstantExpr::getPtrToInt(Note, Int64Ty)),
Int32Ty);
};
Note->setInitializer(ConstantStruct::getAnon(
{ConstantInt::get(Int32Ty, 8), // n_namesz
ConstantInt::get(Int32Ty, 8), // n_descsz
ConstantInt::get(Int32Ty, ELF::NT_LLVM_HWASAN_GLOBALS), // n_type
Name, CreateRelPtr(Start), CreateRelPtr(Stop)}));
appendToCompilerUsed(M, Note);
// Create a zero-length global in hwasan_globals so that the linker will
// always create start and stop symbols.
auto Dummy = new GlobalVariable(
M, Int8Arr0Ty, /*isConstantGlobal*/ true, GlobalVariable::PrivateLinkage,
Constant::getNullValue(Int8Arr0Ty), "hwasan.dummy.global");
Dummy->setSection("hwasan_globals");
Dummy->setComdat(NoteComdat);
Dummy->setMetadata(LLVMContext::MD_associated,
MDNode::get(*C, ValueAsMetadata::get(Note)));
appendToCompilerUsed(M, Dummy);
}
/// Module-level initialization.
///
/// inserts a call to __hwasan_init to the module's constructor list.
void HWAddressSanitizer::initializeModule() {
LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n");
auto &DL = M.getDataLayout();
TargetTriple = Triple(M.getTargetTriple());
// x86_64 currently has two modes:
// - Intel LAM (default)
// - pointer aliasing (heap only)
bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
UsePageAliases = ClUsePageAliases && IsX86_64;
InstrumentWithCalls = IsX86_64 ? true : ClInstrumentWithCalls;
InstrumentStack = UsePageAliases ? false : ClInstrumentStack;
PointerTagShift = IsX86_64 ? 57 : 56;
TagMaskByte = IsX86_64 ? 0x3F : 0xFF;
Mapping.init(TargetTriple, InstrumentWithCalls);
C = &(M.getContext());
IRBuilder<> IRB(*C);
IntptrTy = IRB.getIntPtrTy(DL);
Int8PtrTy = IRB.getInt8PtrTy();
Int8Ty = IRB.getInt8Ty();
Int32Ty = IRB.getInt32Ty();
HwasanCtorFunction = nullptr;
// Older versions of Android do not have the required runtime support for
// short granules, global or personality function instrumentation. On other
// platforms we currently require using the latest version of the runtime.
bool NewRuntime =
!TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30);
UseShortGranules =
ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime;
OutlinedChecks =
TargetTriple.isAArch64() && TargetTriple.isOSBinFormatELF() &&
(ClInlineAllChecks.getNumOccurrences() ? !ClInlineAllChecks : !Recover);
if (ClMatchAllTag.getNumOccurrences()) {
if (ClMatchAllTag != -1) {
HasMatchAllTag = true;
MatchAllTag = ClMatchAllTag & 0xFF;
}
} else if (CompileKernel) {
HasMatchAllTag = true;
MatchAllTag = 0xFF;
}
// If we don't have personality function support, fall back to landing pads.
InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences()
? ClInstrumentLandingPads
: !NewRuntime;
if (!CompileKernel) {
createHwasanCtorComdat();
bool InstrumentGlobals =
ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime;
if (InstrumentGlobals && !UsePageAliases)
instrumentGlobals();
bool InstrumentPersonalityFunctions =
ClInstrumentPersonalityFunctions.getNumOccurrences()
? ClInstrumentPersonalityFunctions
: NewRuntime;
if (InstrumentPersonalityFunctions)
instrumentPersonalityFunctions();
}
if (!TargetTriple.isAndroid()) {
Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] {
auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false,
GlobalValue::ExternalLinkage, nullptr,
"__hwasan_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
appendToCompilerUsed(M, GV);
return GV;
});
ThreadPtrGlobal = cast<GlobalVariable>(C);
}
}
void HWAddressSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
const std::string TypeStr = AccessIsWrite ? "store" : "load";
const std::string EndingStr = Recover ? "_noabort" : "";
HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr,
FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false));
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + TypeStr +
itostr(1ULL << AccessSizeIndex) + EndingStr,
FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false));
}
}
HwasanTagMemoryFunc = M.getOrInsertFunction(
"__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy);
HwasanGenerateTagFunc =
M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty);
ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow",
ArrayType::get(IRB.getInt8Ty(), 0));
const std::string MemIntrinCallbackPrefix =
CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy);
HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy);
HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt32Ty(), IntptrTy);
HWAsanHandleVfork =
M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy);
}
Value *HWAddressSanitizer::getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val) {
// An empty inline asm with input reg == output reg.
// An opaque no-op cast, basically.
// This prevents code bloat as a result of rematerializing trivial definitions
// such as constants or global addresses at every load and store.
InlineAsm *Asm =
InlineAsm::get(FunctionType::get(Int8PtrTy, {Val->getType()}, false),
StringRef(""), StringRef("=r,0"),
/*hasSideEffects=*/false);
return IRB.CreateCall(Asm, {Val}, ".hwasan.shadow");
}
Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) {
return getOpaqueNoopCast(IRB, ShadowGlobal);
}
Value *HWAddressSanitizer::getShadowNonTls(IRBuilder<> &IRB) {
if (Mapping.Offset != kDynamicShadowSentinel)
return getOpaqueNoopCast(
IRB, ConstantExpr::getIntToPtr(
ConstantInt::get(IntptrTy, Mapping.Offset), Int8PtrTy));
if (Mapping.InGlobal) {
return getDynamicShadowIfunc(IRB);
} else {
Value *GlobalDynamicAddress =
IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal(
kHwasanShadowMemoryDynamicAddress, Int8PtrTy);
return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress);
}
}
bool HWAddressSanitizer::ignoreAccess(Value *Ptr) {
// Do not instrument acesses from different address spaces; we cannot deal
// with them.
Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
if (PtrTy->getPointerAddressSpace() != 0)
return true;
// Ignore swifterror addresses.
// swifterror memory addresses are mem2reg promoted by instruction
// selection. As such they cannot have regular uses like an instrumentation
// function and it makes no sense to track them as memory.
if (Ptr->isSwiftError())
return true;
return false;
}
void HWAddressSanitizer::getInterestingMemoryOperands(
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
// Skip memory accesses inserted by another instrumentation.
if (I->hasMetadata("nosanitize"))
return;
// Do not instrument the load fetching the dynamic shadow address.
if (ShadowBase == I)
return;
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
return;
Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
LI->getType(), LI->getAlign());
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
return;
Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
SI->getValueOperand()->getType(), SI->getAlign());
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
return;
Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
RMW->getValOperand()->getType(), None);
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
return;
Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
XCHG->getCompareOperand()->getType(), None);
} else if (auto CI = dyn_cast<CallInst>(I)) {
for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
ignoreAccess(CI->getArgOperand(ArgNo)))
continue;
Type *Ty = CI->getParamByValType(ArgNo);
Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
}
}
}
static unsigned getPointerOperandIndex(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperandIndex();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperandIndex();
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I))
return RMW->getPointerOperandIndex();
if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I))
return XCHG->getPointerOperandIndex();
report_fatal_error("Unexpected instruction");
return -1;
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
size_t Res = countTrailingZeros(TypeSize / 8);
assert(Res < kNumberOfAccessSizes);
return Res;
}
void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) {
if (TargetTriple.isAArch64() || TargetTriple.getArch() == Triple::x86_64)
return;
IRBuilder<> IRB(I);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Value *UntaggedPtr =
IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType());
I->setOperand(getPointerOperandIndex(I), UntaggedPtr);
}
Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) {
// Mem >> Scale
Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale);
if (Mapping.Offset == 0)
return IRB.CreateIntToPtr(Shadow, Int8PtrTy);
// (Mem >> Scale) + Offset
return IRB.CreateGEP(Int8Ty, ShadowBase, Shadow);
}
void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore) {
assert(!UsePageAliases);
const int64_t AccessInfo =
(CompileKernel << HWASanAccessInfo::CompileKernelShift) +
(HasMatchAllTag << HWASanAccessInfo::HasMatchAllShift) +
(MatchAllTag << HWASanAccessInfo::MatchAllShift) +
(Recover << HWASanAccessInfo::RecoverShift) +
(IsWrite << HWASanAccessInfo::IsWriteShift) +
(AccessSizeIndex << HWASanAccessInfo::AccessSizeShift);
IRBuilder<> IRB(InsertBefore);
if (OutlinedChecks) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy);
IRB.CreateCall(Intrinsic::getDeclaration(
M, UseShortGranules
? Intrinsic::hwasan_check_memaccess_shortgranules
: Intrinsic::hwasan_check_memaccess),
{ShadowBase, Ptr, ConstantInt::get(Int32Ty, AccessInfo)});
return;
}
Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy);
Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, PointerTagShift),
IRB.getInt8Ty());
Value *AddrLong = untagPointer(IRB, PtrLong);
Value *Shadow = memToShadow(AddrLong, IRB);
Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow);
Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag);
if (HasMatchAllTag) {
Value *TagNotIgnored = IRB.CreateICmpNE(
PtrTag, ConstantInt::get(PtrTag->getType(), MatchAllTag));
TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored);
}
Instruction *CheckTerm =
SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false,
MDBuilder(*C).createBranchWeights(1, 100000));
IRB.SetInsertPoint(CheckTerm);
Value *OutOfShortGranuleTagRange =
IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15));
Instruction *CheckFailTerm =
SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover,
MDBuilder(*C).createBranchWeights(1, 100000));
IRB.SetInsertPoint(CheckTerm);
Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty);
PtrLowBits = IRB.CreateAdd(
PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1));
Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag);
SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false,
MDBuilder(*C).createBranchWeights(1, 100000),
(DomTreeUpdater *)nullptr, nullptr,
CheckFailTerm->getParent());
IRB.SetInsertPoint(CheckTerm);
Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15);
InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy);
Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr);
Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag);
SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false,
MDBuilder(*C).createBranchWeights(1, 100000),
(DomTreeUpdater *)nullptr, nullptr,
CheckFailTerm->getParent());
IRB.SetInsertPoint(CheckFailTerm);
InlineAsm *Asm;
switch (TargetTriple.getArch()) {
case Triple::x86_64:
// The signal handler will find the data address in rdi.
Asm = InlineAsm::get(
FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
"int3\nnopl " +
itostr(0x40 + (AccessInfo & HWASanAccessInfo::RuntimeMask)) +
"(%rax)",
"{rdi}",
/*hasSideEffects=*/true);
break;
case Triple::aarch64:
case Triple::aarch64_be:
// The signal handler will find the data address in x0.
Asm = InlineAsm::get(
FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
"brk #" + itostr(0x900 + (AccessInfo & HWASanAccessInfo::RuntimeMask)),
"{x0}",
/*hasSideEffects=*/true);
break;
default:
report_fatal_error("unsupported architecture");
}
IRB.CreateCall(Asm, PtrLong);
if (Recover)
cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent());
}
void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
IRBuilder<> IRB(MI);
if (isa<MemTransferInst>(MI)) {
IRB.CreateCall(
isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy,
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
} else if (isa<MemSetInst>(MI)) {
IRB.CreateCall(
HWAsanMemset,
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
}
MI->eraseFromParent();
}
bool HWAddressSanitizer::instrumentMemAccess(InterestingMemoryOperand &O) {
Value *Addr = O.getPtr();
LLVM_DEBUG(dbgs() << "Instrumenting: " << O.getInsn() << "\n");
if (O.MaybeMask)
return false; // FIXME
IRBuilder<> IRB(O.getInsn());
if (isPowerOf2_64(O.TypeSize) &&
(O.TypeSize / 8 <= (1ULL << (kNumberOfAccessSizes - 1))) &&
(!O.Alignment || *O.Alignment >= (1ULL << Mapping.Scale) ||
*O.Alignment >= O.TypeSize / 8)) {
size_t AccessSizeIndex = TypeSizeToSizeIndex(O.TypeSize);
if (InstrumentWithCalls) {
IRB.CreateCall(HwasanMemoryAccessCallback[O.IsWrite][AccessSizeIndex],
IRB.CreatePointerCast(Addr, IntptrTy));
} else {
instrumentMemAccessInline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn());
}
} else {
IRB.CreateCall(HwasanMemoryAccessCallbackSized[O.IsWrite],
{IRB.CreatePointerCast(Addr, IntptrTy),
ConstantInt::get(IntptrTy, O.TypeSize / 8)});
}
untagPointerOperand(O.getInsn(), Addr);
return true;
}
static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) {
uint64_t ArraySize = 1;
if (AI.isArrayAllocation()) {
const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
assert(CI && "non-constant array size");
ArraySize = CI->getZExtValue();
}
Type *Ty = AI.getAllocatedType();
uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
return SizeInBytes * ArraySize;
}
bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag,
size_t Size) {
size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
if (!UseShortGranules)
Size = AlignedSize;
Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty());
if (InstrumentWithCalls) {
IRB.CreateCall(HwasanTagMemoryFunc,
{IRB.CreatePointerCast(AI, Int8PtrTy), JustTag,
ConstantInt::get(IntptrTy, AlignedSize)});
} else {
size_t ShadowSize = Size >> Mapping.Scale;
Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB);
// If this memset is not inlined, it will be intercepted in the hwasan
// runtime library. That's OK, because the interceptor skips the checks if
// the address is in the shadow region.
// FIXME: the interceptor is not as fast as real memset. Consider lowering
// llvm.memset right here into either a sequence of stores, or a call to
// hwasan_tag_memory.
if (ShadowSize)
IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, Align(1));
if (Size != AlignedSize) {
IRB.CreateStore(
ConstantInt::get(Int8Ty, Size % Mapping.getObjectAlignment()),
IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize));
IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32(
Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy),
AlignedSize - 1));
}
}
return true;
}
unsigned HWAddressSanitizer::retagMask(unsigned AllocaNo) {
if (TargetTriple.getArch() == Triple::x86_64)
return AllocaNo & TagMaskByte;
// A list of 8-bit numbers that have at most one run of non-zero bits.
// x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these
// masks.
// The list does not include the value 255, which is used for UAR.
//
// Because we are more likely to use earlier elements of this list than later
// ones, it is sorted in increasing order of probability of collision with a
// mask allocated (temporally) nearby. The program that generated this list
// can be found at:
// https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py
static unsigned FastMasks[] = {0, 128, 64, 192, 32, 96, 224, 112, 240,
48, 16, 120, 248, 56, 24, 8, 124, 252,
60, 28, 12, 4, 126, 254, 62, 30, 14,
6, 2, 127, 63, 31, 15, 7, 3, 1};
return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))];
}
Value *HWAddressSanitizer::applyTagMask(IRBuilder<> &IRB, Value *OldTag) {
if (TargetTriple.getArch() == Triple::x86_64) {
Constant *TagMask = ConstantInt::get(IntptrTy, TagMaskByte);
Value *NewTag = IRB.CreateAnd(OldTag, TagMask);
return NewTag;
}
// aarch64 uses 8-bit tags, so no mask is needed.
return OldTag;
}
Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) {
return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy);
}
Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) {
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
if (StackBaseTag)
return StackBaseTag;
// FIXME: use addressofreturnaddress (but implement it in aarch64 backend
// first).
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
auto GetStackPointerFn = Intrinsic::getDeclaration(
M, Intrinsic::frameaddress,
IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
Value *StackPointer = IRB.CreateCall(
GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())});
// Extract some entropy from the stack pointer for the tags.
// Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ
// between functions).
Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy);
Value *StackTag =
applyTagMask(IRB, IRB.CreateXor(StackPointerLong,
IRB.CreateLShr(StackPointerLong, 20)));
StackTag->setName("hwasan.stack.base.tag");
return StackTag;
}
Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag,
AllocaInst *AI, unsigned AllocaNo) {
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
return IRB.CreateXor(StackTag,
ConstantInt::get(IntptrTy, retagMask(AllocaNo)));
}
Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) {
if (ClUARRetagToZero)
return ConstantInt::get(IntptrTy, 0);
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, TagMaskByte));
}
// Add a tag to an address.
Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty,
Value *PtrLong, Value *Tag) {
assert(!UsePageAliases);
Value *TaggedPtrLong;
if (CompileKernel) {
// Kernel addresses have 0xFF in the most significant byte.
Value *ShiftedTag =
IRB.CreateOr(IRB.CreateShl(Tag, PointerTagShift),
ConstantInt::get(IntptrTy, (1ULL << PointerTagShift) - 1));
TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag);
} else {
// Userspace can simply do OR (tag << PointerTagShift);
Value *ShiftedTag = IRB.CreateShl(Tag, PointerTagShift);
TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag);
}
return IRB.CreateIntToPtr(TaggedPtrLong, Ty);
}
// Remove tag from an address.
Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) {
assert(!UsePageAliases);
Value *UntaggedPtrLong;
if (CompileKernel) {
// Kernel addresses have 0xFF in the most significant byte.
UntaggedPtrLong =
IRB.CreateOr(PtrLong, ConstantInt::get(PtrLong->getType(),
0xFFULL << PointerTagShift));
} else {
// Userspace addresses have 0x00.
UntaggedPtrLong =
IRB.CreateAnd(PtrLong, ConstantInt::get(PtrLong->getType(),
~(0xFFULL << PointerTagShift)));
}
return UntaggedPtrLong;
}
Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) {
// Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER
// in Bionic's libc/private/bionic_tls.h.
Function *ThreadPointerFunc =
Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
Value *SlotPtr = IRB.CreatePointerCast(
IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
IRB.CreateCall(ThreadPointerFunc), 0x30),
Ty->getPointerTo(0));
return SlotPtr;
}
if (ThreadPtrGlobal)
return ThreadPtrGlobal;
return nullptr;
}
void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) {
if (!Mapping.InTls)
ShadowBase = getShadowNonTls(IRB);
else if (!WithFrameRecord && TargetTriple.isAndroid())
ShadowBase = getDynamicShadowIfunc(IRB);
if (!WithFrameRecord && ShadowBase)
return;
Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy);
assert(SlotPtr);
Value *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
// Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI.
Value *ThreadLongMaybeUntagged =
TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong);
if (WithFrameRecord) {
Function *F = IRB.GetInsertBlock()->getParent();
StackBaseTag = IRB.CreateAShr(ThreadLong, 3);
// Prepare ring buffer data.
Value *PC;
if (TargetTriple.getArch() == Triple::aarch64)
PC = readRegister(IRB, "pc");
else
PC = IRB.CreatePtrToInt(F, IntptrTy);
Module *M = F->getParent();
auto GetStackPointerFn = Intrinsic::getDeclaration(
M, Intrinsic::frameaddress,
IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
Value *SP = IRB.CreatePtrToInt(
IRB.CreateCall(GetStackPointerFn,
{Constant::getNullValue(IRB.getInt32Ty())}),
IntptrTy);
// Mix SP and PC.
// Assumptions:
// PC is 0x0000PPPPPPPPPPPP (48 bits are meaningful, others are zero)
// SP is 0xsssssssssssSSSS0 (4 lower bits are zero)
// We only really need ~20 lower non-zero bits (SSSS), so we mix like this:
// 0xSSSSPPPPPPPPPPPP
SP = IRB.CreateShl(SP, 44);
// Store data to ring buffer.
Value *RecordPtr =
IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0));
IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr);
// Update the ring buffer. Top byte of ThreadLong defines the size of the
// buffer in pages, it must be a power of two, and the start of the buffer
// must be aligned by twice that much. Therefore wrap around of the ring
// buffer is simply Addr &= ~((ThreadLong >> 56) << 12).
// The use of AShr instead of LShr is due to
// https://bugs.llvm.org/show_bug.cgi?id=39030
// Runtime library makes sure not to use the highest bit.
Value *WrapMask = IRB.CreateXor(
IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true),
ConstantInt::get(IntptrTy, (uint64_t)-1));
Value *ThreadLongNew = IRB.CreateAnd(
IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask);
IRB.CreateStore(ThreadLongNew, SlotPtr);
}
if (!ShadowBase) {
// Get shadow base address by aligning RecordPtr up.
// Note: this is not correct if the pointer is already aligned.
// Runtime library will make sure this never happens.
ShadowBase = IRB.CreateAdd(
IRB.CreateOr(
ThreadLongMaybeUntagged,
ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)),
ConstantInt::get(IntptrTy, 1), "hwasan.shadow");
ShadowBase = IRB.CreateIntToPtr(ShadowBase, Int8PtrTy);
}
}
Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Function *ReadRegister =
Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy);
MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)});
Value *Args[] = {MetadataAsValue::get(*C, MD)};
return IRB.CreateCall(ReadRegister, Args);
}
bool HWAddressSanitizer::instrumentLandingPads(
SmallVectorImpl<Instruction *> &LandingPadVec) {
for (auto *LP : LandingPadVec) {
IRBuilder<> IRB(LP->getNextNode());
IRB.CreateCall(
HWAsanHandleVfork,
{readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp"
: "sp")});
}
return true;
}
bool HWAddressSanitizer::instrumentStack(
SmallVectorImpl<AllocaInst *> &Allocas,
DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap,
SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) {
// Ideally, we want to calculate tagged stack base pointer, and rewrite all
// alloca addresses using that. Unfortunately, offsets are not known yet
// (unless we use ASan-style mega-alloca). Instead we keep the base tag in a
// temp, shift-OR it into each alloca address and xor with the retag mask.
// This generates one extra instruction per alloca use.
for (unsigned N = 0; N < Allocas.size(); ++N) {
auto *AI = Allocas[N];
IRBuilder<> IRB(AI->getNextNode());
// Replace uses of the alloca with tagged address.
Value *Tag = getAllocaTag(IRB, StackTag, AI, N);
Value *AILong = IRB.CreatePointerCast(AI, IntptrTy);
Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag);
std::string Name =
AI->hasName() ? AI->getName().str() : "alloca." + itostr(N);
Replacement->setName(Name + ".hwasan");
AI->replaceUsesWithIf(Replacement,
[AILong](Use &U) { return U.getUser() != AILong; });
for (auto *DDI : AllocaDbgMap.lookup(AI)) {
// Prepend "tag_offset, N" to the dwarf expression.
// Tag offset logically applies to the alloca pointer, and it makes sense
// to put it at the beginning of the expression.
SmallVector<uint64_t, 8> NewOps = {dwarf::DW_OP_LLVM_tag_offset,
retagMask(N)};
for (size_t LocNo = 0; LocNo < DDI->getNumVariableLocationOps(); ++LocNo)
if (DDI->getVariableLocationOp(LocNo) == AI)
DDI->setExpression(DIExpression::appendOpsToArg(DDI->getExpression(),
NewOps, LocNo));
}
size_t Size = getAllocaSizeInBytes(*AI);
tagAlloca(IRB, AI, Tag, Size);
for (auto RI : RetVec) {
IRB.SetInsertPoint(RI);
// Re-tag alloca memory with the special UAR tag.
Value *Tag = getUARTag(IRB, StackTag);
tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getObjectAlignment()));
}
}
return true;
}
bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
return (AI.getAllocatedType()->isSized() &&
// FIXME: instrument dynamic allocas, too
AI.isStaticAlloca() &&
// alloca() may be called with 0 size, ignore it.
getAllocaSizeInBytes(AI) > 0 &&
// We are only interested in allocas not promotable to registers.
// Promotable allocas are common under -O0.
!isAllocaPromotable(&AI) &&
// inalloca allocas are not treated as static, and we don't want
// dynamic alloca instrumentation for them as well.
!AI.isUsedWithInAlloca() &&
// swifterror allocas are register promoted by ISel
!AI.isSwiftError());
}
bool HWAddressSanitizer::sanitizeFunction(Function &F) {
if (&F == HwasanCtorFunction)
return false;
if (!F.hasFnAttribute(Attribute::SanitizeHWAddress))
return false;
LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n");
SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
SmallVector<AllocaInst *, 8> AllocasToInstrument;
SmallVector<Instruction *, 8> RetVec;
SmallVector<Instruction *, 8> LandingPadVec;
DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> AllocaDbgMap;
for (auto &BB : F) {
for (auto &Inst : BB) {
if (InstrumentStack)
if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
if (isInterestingAlloca(*AI))
AllocasToInstrument.push_back(AI);
continue;
}
if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) ||
isa<CleanupReturnInst>(Inst))
RetVec.push_back(&Inst);
if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst)) {
for (Value *V : DVI->location_ops()) {
if (auto *Alloca = dyn_cast_or_null<AllocaInst>(V))
if (!AllocaDbgMap.count(Alloca) ||
AllocaDbgMap[Alloca].back() != DVI)
AllocaDbgMap[Alloca].push_back(DVI);
}
}
if (InstrumentLandingPads && isa<LandingPadInst>(Inst))
LandingPadVec.push_back(&Inst);
getInterestingMemoryOperands(&Inst, OperandsToInstrument);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst))
IntrinToInstrument.push_back(MI);
}
}
initializeCallbacks(*F.getParent());
bool Changed = false;
if (!LandingPadVec.empty())
Changed |= instrumentLandingPads(LandingPadVec);
if (AllocasToInstrument.empty() && F.hasPersonalityFn() &&
F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) {
// __hwasan_personality_thunk is a no-op for functions without an
// instrumented stack, so we can drop it.
F.setPersonalityFn(nullptr);
Changed = true;
}
if (AllocasToInstrument.empty() && OperandsToInstrument.empty() &&
IntrinToInstrument.empty())
return Changed;
assert(!ShadowBase);
Instruction *InsertPt = &*F.getEntryBlock().begin();
IRBuilder<> EntryIRB(InsertPt);
emitPrologue(EntryIRB,
/*WithFrameRecord*/ ClRecordStackHistory &&
Mapping.WithFrameRecord && !AllocasToInstrument.empty());
if (!AllocasToInstrument.empty()) {
Value *StackTag =
ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB);
instrumentStack(AllocasToInstrument, AllocaDbgMap, RetVec, StackTag);
}
// Pad and align each of the allocas that we instrumented to stop small
// uninteresting allocas from hiding in instrumented alloca's padding and so
// that we have enough space to store real tags for short granules.
DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap;
for (AllocaInst *AI : AllocasToInstrument) {
uint64_t Size = getAllocaSizeInBytes(*AI);
uint64_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
AI->setAlignment(
Align(std::max(AI->getAlignment(), Mapping.getObjectAlignment())));
if (Size != AlignedSize) {
Type *AllocatedType = AI->getAllocatedType();
if (AI->isArrayAllocation()) {
uint64_t ArraySize =
cast<ConstantInt>(AI->getArraySize())->getZExtValue();
AllocatedType = ArrayType::get(AllocatedType, ArraySize);
}
Type *TypeWithPadding = StructType::get(
AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size));
auto *NewAI = new AllocaInst(
TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI);
NewAI->takeName(AI);
NewAI->setAlignment(AI->getAlign());
NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca());
NewAI->setSwiftError(AI->isSwiftError());
NewAI->copyMetadata(*AI);
auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI);
AI->replaceAllUsesWith(Bitcast);
AllocaToPaddedAllocaMap[AI] = NewAI;
}
}
if (!AllocaToPaddedAllocaMap.empty()) {
for (auto &BB : F) {
for (auto &Inst : BB) {
if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst)) {
SmallDenseSet<Value *> LocationOps(DVI->location_ops().begin(),
DVI->location_ops().end());
for (Value *V : LocationOps) {
if (auto *AI = dyn_cast_or_null<AllocaInst>(V)) {
if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI))
DVI->replaceVariableLocationOp(V, NewAI);
}
}
}
}
}
for (auto &P : AllocaToPaddedAllocaMap)
P.first->eraseFromParent();
}
// If we split the entry block, move any allocas that were originally in the
// entry block back into the entry block so that they aren't treated as
// dynamic allocas.
if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) {
InsertPt = &*F.getEntryBlock().begin();
for (auto II = EntryIRB.GetInsertBlock()->begin(),
IE = EntryIRB.GetInsertBlock()->end();
II != IE;) {
Instruction *I = &*II++;
if (auto *AI = dyn_cast<AllocaInst>(I))
if (isa<ConstantInt>(AI->getArraySize()))
I->moveBefore(InsertPt);
}
}
for (auto &Operand : OperandsToInstrument)
instrumentMemAccess(Operand);
if (ClInstrumentMemIntrinsics && !IntrinToInstrument.empty()) {
for (auto Inst : IntrinToInstrument)
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
ShadowBase = nullptr;
StackBaseTag = nullptr;
return true;
}
void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) {
assert(!UsePageAliases);
Constant *Initializer = GV->getInitializer();
uint64_t SizeInBytes =
M.getDataLayout().getTypeAllocSize(Initializer->getType());
uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment());
if (SizeInBytes != NewSize) {
// Pad the initializer out to the next multiple of 16 bytes and add the
// required short granule tag.
std::vector<uint8_t> Init(NewSize - SizeInBytes, 0);
Init.back() = Tag;
Constant *Padding = ConstantDataArray::get(*C, Init);
Initializer = ConstantStruct::getAnon({Initializer, Padding});
}
auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(),
GlobalValue::ExternalLinkage, Initializer,
GV->getName() + ".hwasan");
NewGV->copyAttributesFrom(GV);
NewGV->setLinkage(GlobalValue::PrivateLinkage);
NewGV->copyMetadata(GV, 0);
NewGV->setAlignment(
MaybeAlign(std::max(GV->getAlignment(), Mapping.getObjectAlignment())));
// It is invalid to ICF two globals that have different tags. In the case
// where the size of the global is a multiple of the tag granularity the
// contents of the globals may be the same but the tags (i.e. symbol values)
// may be different, and the symbols are not considered during ICF. In the
// case where the size is not a multiple of the granularity, the short granule
// tags would discriminate two globals with different tags, but there would
// otherwise be nothing stopping such a global from being incorrectly ICF'd
// with an uninstrumented (i.e. tag 0) global that happened to have the short
// granule tag in the last byte.
NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
// Descriptor format (assuming little-endian):
// bytes 0-3: relative address of global
// bytes 4-6: size of global (16MB ought to be enough for anyone, but in case
// it isn't, we create multiple descriptors)
// byte 7: tag
auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty);
const uint64_t MaxDescriptorSize = 0xfffff0;
for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes;
DescriptorPos += MaxDescriptorSize) {
auto *Descriptor =
new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage,
nullptr, GV->getName() + ".hwasan.descriptor");
auto *GVRelPtr = ConstantExpr::getTrunc(
ConstantExpr::getAdd(
ConstantExpr::getSub(
ConstantExpr::getPtrToInt(NewGV, Int64Ty),
ConstantExpr::getPtrToInt(Descriptor, Int64Ty)),
ConstantInt::get(Int64Ty, DescriptorPos)),
Int32Ty);
uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize);
auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24));
Descriptor->setComdat(NewGV->getComdat());
Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag}));
Descriptor->setSection("hwasan_globals");
Descriptor->setMetadata(LLVMContext::MD_associated,
MDNode::get(*C, ValueAsMetadata::get(NewGV)));
appendToCompilerUsed(M, Descriptor);
}
Constant *Aliasee = ConstantExpr::getIntToPtr(
ConstantExpr::getAdd(
ConstantExpr::getPtrToInt(NewGV, Int64Ty),
ConstantInt::get(Int64Ty, uint64_t(Tag) << PointerTagShift)),
GV->getType());
auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(),
GV->getLinkage(), "", Aliasee, &M);
Alias->setVisibility(GV->getVisibility());
Alias->takeName(GV);
GV->replaceAllUsesWith(Alias);
GV->eraseFromParent();
}
static DenseSet<GlobalVariable *> getExcludedGlobals(Module &M) {
NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
if (!Globals)
return DenseSet<GlobalVariable *>();
DenseSet<GlobalVariable *> Excluded(Globals->getNumOperands());
for (auto MDN : Globals->operands()) {
// Metadata node contains the global and the fields of "Entry".
assert(MDN->getNumOperands() == 5);
auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
// The optimizer may optimize away a global entirely.
if (!V)
continue;
auto *StrippedV = V->stripPointerCasts();
auto *GV = dyn_cast<GlobalVariable>(StrippedV);
if (!GV)
continue;
ConstantInt *IsExcluded = mdconst::extract<ConstantInt>(MDN->getOperand(4));
if (IsExcluded->isOne())
Excluded.insert(GV);
}
return Excluded;
}
void HWAddressSanitizer::instrumentGlobals() {
std::vector<GlobalVariable *> Globals;
auto ExcludedGlobals = getExcludedGlobals(M);
for (GlobalVariable &GV : M.globals()) {
if (ExcludedGlobals.count(&GV))
continue;
if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") ||
GV.isThreadLocal())
continue;
// Common symbols can't have aliases point to them, so they can't be tagged.
if (GV.hasCommonLinkage())
continue;
// Globals with custom sections may be used in __start_/__stop_ enumeration,
// which would be broken both by adding tags and potentially by the extra
// padding/alignment that we insert.
if (GV.hasSection())
continue;
Globals.push_back(&GV);
}
MD5 Hasher;
Hasher.update(M.getSourceFileName());
MD5::MD5Result Hash;
Hasher.final(Hash);
uint8_t Tag = Hash[0] & TagMaskByte;
for (GlobalVariable *GV : Globals) {
// Skip tag 0 in order to avoid collisions with untagged memory.
if (Tag == 0)
Tag = 1;
instrumentGlobal(GV, Tag++);
}
}
void HWAddressSanitizer::instrumentPersonalityFunctions() {
// We need to untag stack frames as we unwind past them. That is the job of
// the personality function wrapper, which either wraps an existing
// personality function or acts as a personality function on its own. Each
// function that has a personality function or that can be unwound past has
// its personality function changed to a thunk that calls the personality
// function wrapper in the runtime.
MapVector<Constant *, std::vector<Function *>> PersonalityFns;
for (Function &F : M) {
if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress))
continue;
if (F.hasPersonalityFn()) {
PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F);
} else if (!F.hasFnAttribute(Attribute::NoUnwind)) {
PersonalityFns[nullptr].push_back(&F);
}
}
if (PersonalityFns.empty())
return;
FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction(
"__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty,
Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy);
FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy);
FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy);
for (auto &P : PersonalityFns) {
std::string ThunkName = kHwasanPersonalityThunkName;
if (P.first)
ThunkName += ("." + P.first->getName()).str();
FunctionType *ThunkFnTy = FunctionType::get(
Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false);
bool IsLocal = P.first && (!isa<GlobalValue>(P.first) ||
cast<GlobalValue>(P.first)->hasLocalLinkage());
auto *ThunkFn = Function::Create(ThunkFnTy,
IsLocal ? GlobalValue::InternalLinkage
: GlobalValue::LinkOnceODRLinkage,
ThunkName, &M);
if (!IsLocal) {
ThunkFn->setVisibility(GlobalValue::HiddenVisibility);
ThunkFn->setComdat(M.getOrInsertComdat(ThunkName));
}
auto *BB = BasicBlock::Create(*C, "entry", ThunkFn);
IRBuilder<> IRB(BB);
CallInst *WrapperCall = IRB.CreateCall(
HwasanPersonalityWrapper,
{ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2),
ThunkFn->getArg(3), ThunkFn->getArg(4),
P.first ? IRB.CreateBitCast(P.first, Int8PtrTy)
: Constant::getNullValue(Int8PtrTy),
IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy),
IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)});
WrapperCall->setTailCall();
IRB.CreateRet(WrapperCall);
for (Function *F : P.second)
F->setPersonalityFn(ThunkFn);
}
}
void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple,
bool InstrumentWithCalls) {
Scale = kDefaultShadowScale;
if (TargetTriple.isOSFuchsia()) {
// Fuchsia is always PIE, which means that the beginning of the address
// space is always available.
InGlobal = false;
InTls = false;
Offset = 0;
WithFrameRecord = true;
} else if (ClMappingOffset.getNumOccurrences() > 0) {
InGlobal = false;
InTls = false;
Offset = ClMappingOffset;
WithFrameRecord = false;
} else if (ClEnableKhwasan || InstrumentWithCalls) {
InGlobal = false;
InTls = false;
Offset = 0;
WithFrameRecord = false;
} else if (ClWithIfunc) {
InGlobal = true;
InTls = false;
Offset = kDynamicShadowSentinel;
WithFrameRecord = false;
} else if (ClWithTls) {
InGlobal = false;
InTls = true;
Offset = kDynamicShadowSentinel;
WithFrameRecord = true;
} else {
InGlobal = false;
InTls = false;
Offset = kDynamicShadowSentinel;
WithFrameRecord = false;
}
}