1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 21:42:54 +02:00
llvm-mirror/test/CodeGen/X86/machine-combiner-int.ll
Matthias Braun 08762f9f1e VirtRegMap: Replace some identity copies with KILL instructions.
An identity COPY like this:
   %AL = COPY %AL, %EAX<imp-def>
has no semantic effect, but encodes liveness information: Further users
of %EAX only depend on this instruction even though it does not define
the full register.

Replace the COPY with a KILL instruction in those cases to maintain this
liveness information. (This reverts a small part of r238588 but this
time adds a comment explaining why a KILL instruction is useful).

llvm-svn: 274952
2016-07-09 00:19:07 +00:00

200 lines
5.7 KiB
LLVM

; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 | FileCheck %s
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -stop-after machine-combiner -o /dev/null 2>&1 | FileCheck %s --check-prefix=DEAD
; Verify that integer multiplies are reassociated. The first multiply in
; each test should be independent of the result of the preceding add (lea).
; TODO: This test does not actually test i16 machine instruction reassociation
; because the operands are being promoted to i32 types.
define i16 @reassociate_muls_i16(i16 %x0, i16 %x1, i16 %x2, i16 %x3) {
; CHECK-LABEL: reassociate_muls_i16:
; CHECK: # BB#0:
; CHECK-NEXT: # kill
; CHECK-NEXT: # kill
; CHECK-NEXT: leal (%rdi,%rsi), %eax
; CHECK-NEXT: imull %ecx, %edx
; CHECK-NEXT: imull %edx, %eax
; CHECK-NEXT: # kill
; CHECK-NEXT: retq
%t0 = add i16 %x0, %x1
%t1 = mul i16 %x2, %t0
%t2 = mul i16 %x3, %t1
ret i16 %t2
}
define i32 @reassociate_muls_i32(i32 %x0, i32 %x1, i32 %x2, i32 %x3) {
; CHECK-LABEL: reassociate_muls_i32:
; CHECK: # BB#0:
; CHECK-NEXT: # kill
; CHECK-NEXT: # kill
; CHECK-NEXT: leal (%rdi,%rsi), %eax
; CHECK-NEXT: imull %ecx, %edx
; CHECK-NEXT: imull %edx, %eax
; CHECK-NEXT: retq
; DEAD: ADD32rr
; DEAD-NEXT: IMUL32rr{{.*}}implicit-def dead %eflags
; DEAD-NEXT: IMUL32rr{{.*}}implicit-def dead %eflags
%t0 = add i32 %x0, %x1
%t1 = mul i32 %x2, %t0
%t2 = mul i32 %x3, %t1
ret i32 %t2
}
define i64 @reassociate_muls_i64(i64 %x0, i64 %x1, i64 %x2, i64 %x3) {
; CHECK-LABEL: reassociate_muls_i64:
; CHECK: # BB#0:
; CHECK-NEXT: leaq (%rdi,%rsi), %rax
; CHECK-NEXT: imulq %rcx, %rdx
; CHECK-NEXT: imulq %rdx, %rax
; CHECK-NEXT: retq
%t0 = add i64 %x0, %x1
%t1 = mul i64 %x2, %t0
%t2 = mul i64 %x3, %t1
ret i64 %t2
}
; Verify that integer 'ands' are reassociated. The first 'and' in
; each test should be independent of the result of the preceding sub.
define i8 @reassociate_ands_i8(i8 %x0, i8 %x1, i8 %x2, i8 %x3) {
; CHECK-LABEL: reassociate_ands_i8:
; CHECK: # BB#0:
; CHECK-NEXT: subb %sil, %dil
; CHECK-NEXT: andb %cl, %dl
; CHECK-NEXT: andb %dil, %dl
; CHECK-NEXT: movl %edx, %eax
; CHECK-NEXT: retq
%t0 = sub i8 %x0, %x1
%t1 = and i8 %x2, %t0
%t2 = and i8 %x3, %t1
ret i8 %t2
}
; TODO: No way to test i16? These appear to always get promoted to i32.
define i32 @reassociate_ands_i32(i32 %x0, i32 %x1, i32 %x2, i32 %x3) {
; CHECK-LABEL: reassociate_ands_i32:
; CHECK: # BB#0:
; CHECK-NEXT: subl %esi, %edi
; CHECK-NEXT: andl %ecx, %edx
; CHECK-NEXT: andl %edi, %edx
; CHECK-NEXT: movl %edx, %eax
; CHECK-NEXT: retq
%t0 = sub i32 %x0, %x1
%t1 = and i32 %x2, %t0
%t2 = and i32 %x3, %t1
ret i32 %t2
}
define i64 @reassociate_ands_i64(i64 %x0, i64 %x1, i64 %x2, i64 %x3) {
; CHECK-LABEL: reassociate_ands_i64:
; CHECK: # BB#0:
; CHECK-NEXT: subq %rsi, %rdi
; CHECK-NEXT: andq %rcx, %rdx
; CHECK-NEXT: andq %rdi, %rdx
; CHECK-NEXT: movq %rdx, %rax
; CHECK-NEXT: retq
%t0 = sub i64 %x0, %x1
%t1 = and i64 %x2, %t0
%t2 = and i64 %x3, %t1
ret i64 %t2
}
; Verify that integer 'ors' are reassociated. The first 'or' in
; each test should be independent of the result of the preceding sub.
define i8 @reassociate_ors_i8(i8 %x0, i8 %x1, i8 %x2, i8 %x3) {
; CHECK-LABEL: reassociate_ors_i8:
; CHECK: # BB#0:
; CHECK-NEXT: subb %sil, %dil
; CHECK-NEXT: orb %cl, %dl
; CHECK-NEXT: orb %dil, %dl
; CHECK-NEXT: movl %edx, %eax
; CHECK-NEXT: retq
%t0 = sub i8 %x0, %x1
%t1 = or i8 %x2, %t0
%t2 = or i8 %x3, %t1
ret i8 %t2
}
; TODO: No way to test i16? These appear to always get promoted to i32.
define i32 @reassociate_ors_i32(i32 %x0, i32 %x1, i32 %x2, i32 %x3) {
; CHECK-LABEL: reassociate_ors_i32:
; CHECK: # BB#0:
; CHECK-NEXT: subl %esi, %edi
; CHECK-NEXT: orl %ecx, %edx
; CHECK-NEXT: orl %edi, %edx
; CHECK-NEXT: movl %edx, %eax
; CHECK-NEXT: retq
%t0 = sub i32 %x0, %x1
%t1 = or i32 %x2, %t0
%t2 = or i32 %x3, %t1
ret i32 %t2
}
define i64 @reassociate_ors_i64(i64 %x0, i64 %x1, i64 %x2, i64 %x3) {
; CHECK-LABEL: reassociate_ors_i64:
; CHECK: # BB#0:
; CHECK-NEXT: subq %rsi, %rdi
; CHECK-NEXT: orq %rcx, %rdx
; CHECK-NEXT: orq %rdi, %rdx
; CHECK-NEXT: movq %rdx, %rax
; CHECK-NEXT: retq
%t0 = sub i64 %x0, %x1
%t1 = or i64 %x2, %t0
%t2 = or i64 %x3, %t1
ret i64 %t2
}
; Verify that integer 'xors' are reassociated. The first 'xor' in
; each test should be independent of the result of the preceding sub.
define i8 @reassociate_xors_i8(i8 %x0, i8 %x1, i8 %x2, i8 %x3) {
; CHECK-LABEL: reassociate_xors_i8:
; CHECK: # BB#0:
; CHECK-NEXT: subb %sil, %dil
; CHECK-NEXT: xorb %cl, %dl
; CHECK-NEXT: xorb %dil, %dl
; CHECK-NEXT: movl %edx, %eax
; CHECK-NEXT: retq
%t0 = sub i8 %x0, %x1
%t1 = xor i8 %x2, %t0
%t2 = xor i8 %x3, %t1
ret i8 %t2
}
; TODO: No way to test i16? These appear to always get promoted to i32.
define i32 @reassociate_xors_i32(i32 %x0, i32 %x1, i32 %x2, i32 %x3) {
; CHECK-LABEL: reassociate_xors_i32:
; CHECK: # BB#0:
; CHECK-NEXT: subl %esi, %edi
; CHECK-NEXT: xorl %ecx, %edx
; CHECK-NEXT: xorl %edi, %edx
; CHECK-NEXT: movl %edx, %eax
; CHECK-NEXT: retq
%t0 = sub i32 %x0, %x1
%t1 = xor i32 %x2, %t0
%t2 = xor i32 %x3, %t1
ret i32 %t2
}
define i64 @reassociate_xors_i64(i64 %x0, i64 %x1, i64 %x2, i64 %x3) {
; CHECK-LABEL: reassociate_xors_i64:
; CHECK: # BB#0:
; CHECK-NEXT: subq %rsi, %rdi
; CHECK-NEXT: xorq %rcx, %rdx
; CHECK-NEXT: xorq %rdi, %rdx
; CHECK-NEXT: movq %rdx, %rax
; CHECK-NEXT: retq
%t0 = sub i64 %x0, %x1
%t1 = xor i64 %x2, %t0
%t2 = xor i64 %x3, %t1
ret i64 %t2
}