mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
0c4071b186
Summary: Enabling MemorySSA in the old pass manager leads to MemorySSA being run twice due to the fact that LCSSA and LoopSimplify do not preserve MemorySSA. This is the first step to address that: target LCSSA. LCSSA does not make any changes that invalidate MemorySSA, so it preserves it by design. It must preserve AA as well, for this to hold. After this patch, MemorySSA is still run twice in the old pass manager. Step two follows: target LoopSimplify. Subscribers: mehdi_amini, jlebar, Prazek, llvm-commits, george.burgess.iv, chandlerc Tags: #llvm Differential Revision: https://reviews.llvm.org/D60832 llvm-svn: 359032
498 lines
19 KiB
C++
498 lines
19 KiB
C++
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass transforms loops by placing phi nodes at the end of the loops for
|
|
// all values that are live across the loop boundary. For example, it turns
|
|
// the left into the right code:
|
|
//
|
|
// for (...) for (...)
|
|
// if (c) if (c)
|
|
// X1 = ... X1 = ...
|
|
// else else
|
|
// X2 = ... X2 = ...
|
|
// X3 = phi(X1, X2) X3 = phi(X1, X2)
|
|
// ... = X3 + 4 X4 = phi(X3)
|
|
// ... = X4 + 4
|
|
//
|
|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
|
|
// be trivially eliminated by InstCombine. The major benefit of this
|
|
// transformation is that it makes many other loop optimizations, such as
|
|
// LoopUnswitching, simpler.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/LCSSA.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PredIteratorCache.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lcssa"
|
|
|
|
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
static bool VerifyLoopLCSSA = true;
|
|
#else
|
|
static bool VerifyLoopLCSSA = false;
|
|
#endif
|
|
static cl::opt<bool, true>
|
|
VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
|
|
cl::Hidden,
|
|
cl::desc("Verify loop lcssa form (time consuming)"));
|
|
|
|
/// Return true if the specified block is in the list.
|
|
static bool isExitBlock(BasicBlock *BB,
|
|
const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
|
|
return is_contained(ExitBlocks, BB);
|
|
}
|
|
|
|
/// For every instruction from the worklist, check to see if it has any uses
|
|
/// that are outside the current loop. If so, insert LCSSA PHI nodes and
|
|
/// rewrite the uses.
|
|
bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
|
|
DominatorTree &DT, LoopInfo &LI) {
|
|
SmallVector<Use *, 16> UsesToRewrite;
|
|
SmallSetVector<PHINode *, 16> PHIsToRemove;
|
|
PredIteratorCache PredCache;
|
|
bool Changed = false;
|
|
|
|
// Cache the Loop ExitBlocks across this loop. We expect to get a lot of
|
|
// instructions within the same loops, computing the exit blocks is
|
|
// expensive, and we're not mutating the loop structure.
|
|
SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
|
|
|
|
while (!Worklist.empty()) {
|
|
UsesToRewrite.clear();
|
|
|
|
Instruction *I = Worklist.pop_back_val();
|
|
assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
|
|
BasicBlock *InstBB = I->getParent();
|
|
Loop *L = LI.getLoopFor(InstBB);
|
|
assert(L && "Instruction belongs to a BB that's not part of a loop");
|
|
if (!LoopExitBlocks.count(L))
|
|
L->getExitBlocks(LoopExitBlocks[L]);
|
|
assert(LoopExitBlocks.count(L));
|
|
const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
|
|
|
|
if (ExitBlocks.empty())
|
|
continue;
|
|
|
|
for (Use &U : I->uses()) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
BasicBlock *UserBB = User->getParent();
|
|
if (auto *PN = dyn_cast<PHINode>(User))
|
|
UserBB = PN->getIncomingBlock(U);
|
|
|
|
if (InstBB != UserBB && !L->contains(UserBB))
|
|
UsesToRewrite.push_back(&U);
|
|
}
|
|
|
|
// If there are no uses outside the loop, exit with no change.
|
|
if (UsesToRewrite.empty())
|
|
continue;
|
|
|
|
++NumLCSSA; // We are applying the transformation
|
|
|
|
// Invoke instructions are special in that their result value is not
|
|
// available along their unwind edge. The code below tests to see whether
|
|
// DomBB dominates the value, so adjust DomBB to the normal destination
|
|
// block, which is effectively where the value is first usable.
|
|
BasicBlock *DomBB = InstBB;
|
|
if (auto *Inv = dyn_cast<InvokeInst>(I))
|
|
DomBB = Inv->getNormalDest();
|
|
|
|
DomTreeNode *DomNode = DT.getNode(DomBB);
|
|
|
|
SmallVector<PHINode *, 16> AddedPHIs;
|
|
SmallVector<PHINode *, 8> PostProcessPHIs;
|
|
|
|
SmallVector<PHINode *, 4> InsertedPHIs;
|
|
SSAUpdater SSAUpdate(&InsertedPHIs);
|
|
SSAUpdate.Initialize(I->getType(), I->getName());
|
|
|
|
// Insert the LCSSA phi's into all of the exit blocks dominated by the
|
|
// value, and add them to the Phi's map.
|
|
for (BasicBlock *ExitBB : ExitBlocks) {
|
|
if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
|
|
continue;
|
|
|
|
// If we already inserted something for this BB, don't reprocess it.
|
|
if (SSAUpdate.HasValueForBlock(ExitBB))
|
|
continue;
|
|
|
|
PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
|
|
I->getName() + ".lcssa", &ExitBB->front());
|
|
// Get the debug location from the original instruction.
|
|
PN->setDebugLoc(I->getDebugLoc());
|
|
// Add inputs from inside the loop for this PHI.
|
|
for (BasicBlock *Pred : PredCache.get(ExitBB)) {
|
|
PN->addIncoming(I, Pred);
|
|
|
|
// If the exit block has a predecessor not within the loop, arrange for
|
|
// the incoming value use corresponding to that predecessor to be
|
|
// rewritten in terms of a different LCSSA PHI.
|
|
if (!L->contains(Pred))
|
|
UsesToRewrite.push_back(
|
|
&PN->getOperandUse(PN->getOperandNumForIncomingValue(
|
|
PN->getNumIncomingValues() - 1)));
|
|
}
|
|
|
|
AddedPHIs.push_back(PN);
|
|
|
|
// Remember that this phi makes the value alive in this block.
|
|
SSAUpdate.AddAvailableValue(ExitBB, PN);
|
|
|
|
// LoopSimplify might fail to simplify some loops (e.g. when indirect
|
|
// branches are involved). In such situations, it might happen that an
|
|
// exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
|
|
// create PHIs in such an exit block, we are also inserting PHIs into L2's
|
|
// header. This could break LCSSA form for L2 because these inserted PHIs
|
|
// can also have uses outside of L2. Remember all PHIs in such situation
|
|
// as to revisit than later on. FIXME: Remove this if indirectbr support
|
|
// into LoopSimplify gets improved.
|
|
if (auto *OtherLoop = LI.getLoopFor(ExitBB))
|
|
if (!L->contains(OtherLoop))
|
|
PostProcessPHIs.push_back(PN);
|
|
}
|
|
|
|
// Rewrite all uses outside the loop in terms of the new PHIs we just
|
|
// inserted.
|
|
for (Use *UseToRewrite : UsesToRewrite) {
|
|
// If this use is in an exit block, rewrite to use the newly inserted PHI.
|
|
// This is required for correctness because SSAUpdate doesn't handle uses
|
|
// in the same block. It assumes the PHI we inserted is at the end of the
|
|
// block.
|
|
Instruction *User = cast<Instruction>(UseToRewrite->getUser());
|
|
BasicBlock *UserBB = User->getParent();
|
|
if (auto *PN = dyn_cast<PHINode>(User))
|
|
UserBB = PN->getIncomingBlock(*UseToRewrite);
|
|
|
|
if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
|
|
// Tell the VHs that the uses changed. This updates SCEV's caches.
|
|
if (UseToRewrite->get()->hasValueHandle())
|
|
ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
|
|
UseToRewrite->set(&UserBB->front());
|
|
continue;
|
|
}
|
|
|
|
// If we added a single PHI, it must dominate all uses and we can directly
|
|
// rename it.
|
|
if (AddedPHIs.size() == 1) {
|
|
// Tell the VHs that the uses changed. This updates SCEV's caches.
|
|
// We might call ValueIsRAUWd multiple times for the same value.
|
|
if (UseToRewrite->get()->hasValueHandle())
|
|
ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]);
|
|
UseToRewrite->set(AddedPHIs[0]);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, do full PHI insertion.
|
|
SSAUpdate.RewriteUse(*UseToRewrite);
|
|
}
|
|
|
|
SmallVector<DbgValueInst *, 4> DbgValues;
|
|
llvm::findDbgValues(DbgValues, I);
|
|
|
|
// Update pre-existing debug value uses that reside outside the loop.
|
|
auto &Ctx = I->getContext();
|
|
for (auto DVI : DbgValues) {
|
|
BasicBlock *UserBB = DVI->getParent();
|
|
if (InstBB == UserBB || L->contains(UserBB))
|
|
continue;
|
|
// We currently only handle debug values residing in blocks that were
|
|
// traversed while rewriting the uses. If we inserted just a single PHI,
|
|
// we will handle all relevant debug values.
|
|
Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
|
|
: SSAUpdate.FindValueForBlock(UserBB);
|
|
if (V)
|
|
DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
|
|
}
|
|
|
|
// SSAUpdater might have inserted phi-nodes inside other loops. We'll need
|
|
// to post-process them to keep LCSSA form.
|
|
for (PHINode *InsertedPN : InsertedPHIs) {
|
|
if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
|
|
if (!L->contains(OtherLoop))
|
|
PostProcessPHIs.push_back(InsertedPN);
|
|
}
|
|
|
|
// Post process PHI instructions that were inserted into another disjoint
|
|
// loop and update their exits properly.
|
|
for (auto *PostProcessPN : PostProcessPHIs)
|
|
if (!PostProcessPN->use_empty())
|
|
Worklist.push_back(PostProcessPN);
|
|
|
|
// Keep track of PHI nodes that we want to remove because they did not have
|
|
// any uses rewritten. If the new PHI is used, store it so that we can
|
|
// try to propagate dbg.value intrinsics to it.
|
|
SmallVector<PHINode *, 2> NeedDbgValues;
|
|
for (PHINode *PN : AddedPHIs)
|
|
if (PN->use_empty())
|
|
PHIsToRemove.insert(PN);
|
|
else
|
|
NeedDbgValues.push_back(PN);
|
|
insertDebugValuesForPHIs(InstBB, NeedDbgValues);
|
|
Changed = true;
|
|
}
|
|
// Remove PHI nodes that did not have any uses rewritten. We need to redo the
|
|
// use_empty() check here, because even if the PHI node wasn't used when added
|
|
// to PHIsToRemove, later added PHI nodes can be using it. This cleanup is
|
|
// not guaranteed to handle trees/cycles of PHI nodes that only are used by
|
|
// each other. Such situations has only been noticed when the input IR
|
|
// contains unreachable code, and leaving some extra redundant PHI nodes in
|
|
// such situations is considered a minor problem.
|
|
for (PHINode *PN : PHIsToRemove)
|
|
if (PN->use_empty())
|
|
PN->eraseFromParent();
|
|
return Changed;
|
|
}
|
|
|
|
// Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
|
|
static void computeBlocksDominatingExits(
|
|
Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
|
|
SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
|
|
SmallVector<BasicBlock *, 8> BBWorklist;
|
|
|
|
// We start from the exit blocks, as every block trivially dominates itself
|
|
// (not strictly).
|
|
for (BasicBlock *BB : ExitBlocks)
|
|
BBWorklist.push_back(BB);
|
|
|
|
while (!BBWorklist.empty()) {
|
|
BasicBlock *BB = BBWorklist.pop_back_val();
|
|
|
|
// Check if this is a loop header. If this is the case, we're done.
|
|
if (L.getHeader() == BB)
|
|
continue;
|
|
|
|
// Otherwise, add its immediate predecessor in the dominator tree to the
|
|
// worklist, unless we visited it already.
|
|
BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
|
|
|
|
// Exit blocks can have an immediate dominator not beloinging to the
|
|
// loop. For an exit block to be immediately dominated by another block
|
|
// outside the loop, it implies not all paths from that dominator, to the
|
|
// exit block, go through the loop.
|
|
// Example:
|
|
//
|
|
// |---- A
|
|
// | |
|
|
// | B<--
|
|
// | | |
|
|
// |---> C --
|
|
// |
|
|
// D
|
|
//
|
|
// C is the exit block of the loop and it's immediately dominated by A,
|
|
// which doesn't belong to the loop.
|
|
if (!L.contains(IDomBB))
|
|
continue;
|
|
|
|
if (BlocksDominatingExits.insert(IDomBB))
|
|
BBWorklist.push_back(IDomBB);
|
|
}
|
|
}
|
|
|
|
bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE) {
|
|
bool Changed = false;
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
// Verify all sub-loops are in LCSSA form already.
|
|
for (Loop *SubLoop: L)
|
|
assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
|
|
#endif
|
|
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L.getExitBlocks(ExitBlocks);
|
|
if (ExitBlocks.empty())
|
|
return false;
|
|
|
|
SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
|
|
|
|
// We want to avoid use-scanning leveraging dominance informations.
|
|
// If a block doesn't dominate any of the loop exits, the none of the values
|
|
// defined in the loop can be used outside.
|
|
// We compute the set of blocks fullfilling the conditions in advance
|
|
// walking the dominator tree upwards until we hit a loop header.
|
|
computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
|
|
|
|
SmallVector<Instruction *, 8> Worklist;
|
|
|
|
// Look at all the instructions in the loop, checking to see if they have uses
|
|
// outside the loop. If so, put them into the worklist to rewrite those uses.
|
|
for (BasicBlock *BB : BlocksDominatingExits) {
|
|
// Skip blocks that are part of any sub-loops, they must be in LCSSA
|
|
// already.
|
|
if (LI->getLoopFor(BB) != &L)
|
|
continue;
|
|
for (Instruction &I : *BB) {
|
|
// Reject two common cases fast: instructions with no uses (like stores)
|
|
// and instructions with one use that is in the same block as this.
|
|
if (I.use_empty() ||
|
|
(I.hasOneUse() && I.user_back()->getParent() == BB &&
|
|
!isa<PHINode>(I.user_back())))
|
|
continue;
|
|
|
|
// Tokens cannot be used in PHI nodes, so we skip over them.
|
|
// We can run into tokens which are live out of a loop with catchswitch
|
|
// instructions in Windows EH if the catchswitch has one catchpad which
|
|
// is inside the loop and another which is not.
|
|
if (I.getType()->isTokenTy())
|
|
continue;
|
|
|
|
Worklist.push_back(&I);
|
|
}
|
|
}
|
|
Changed = formLCSSAForInstructions(Worklist, DT, *LI);
|
|
|
|
// If we modified the code, remove any caches about the loop from SCEV to
|
|
// avoid dangling entries.
|
|
// FIXME: This is a big hammer, can we clear the cache more selectively?
|
|
if (SE && Changed)
|
|
SE->forgetLoop(&L);
|
|
|
|
assert(L.isLCSSAForm(DT));
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Process a loop nest depth first.
|
|
bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE) {
|
|
bool Changed = false;
|
|
|
|
// Recurse depth-first through inner loops.
|
|
for (Loop *SubLoop : L.getSubLoops())
|
|
Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
|
|
|
|
Changed |= formLCSSA(L, DT, LI, SE);
|
|
return Changed;
|
|
}
|
|
|
|
/// Process all loops in the function, inner-most out.
|
|
static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
|
|
ScalarEvolution *SE) {
|
|
bool Changed = false;
|
|
for (auto &L : *LI)
|
|
Changed |= formLCSSARecursively(*L, DT, LI, SE);
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
struct LCSSAWrapperPass : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
LCSSAWrapperPass() : FunctionPass(ID) {
|
|
initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// Cached analysis information for the current function.
|
|
DominatorTree *DT;
|
|
LoopInfo *LI;
|
|
ScalarEvolution *SE;
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
void verifyAnalysis() const override {
|
|
// This check is very expensive. On the loop intensive compiles it may cause
|
|
// up to 10x slowdown. Currently it's disabled by default. LPPassManager
|
|
// always does limited form of the LCSSA verification. Similar reasoning
|
|
// was used for the LoopInfo verifier.
|
|
if (VerifyLoopLCSSA) {
|
|
assert(all_of(*LI,
|
|
[&](Loop *L) {
|
|
return L->isRecursivelyLCSSAForm(*DT, *LI);
|
|
}) &&
|
|
"LCSSA form is broken!");
|
|
}
|
|
};
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG. It maintains both of these,
|
|
/// as well as the CFG. It also requires dominator information.
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<SCEVAAWrapperPass>();
|
|
AU.addPreserved<BranchProbabilityInfoWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
|
|
// This is needed to perform LCSSA verification inside LPPassManager
|
|
AU.addRequired<LCSSAVerificationPass>();
|
|
AU.addPreserved<LCSSAVerificationPass>();
|
|
}
|
|
};
|
|
}
|
|
|
|
char LCSSAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
|
|
INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
|
|
false, false)
|
|
|
|
Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
|
|
char &llvm::LCSSAID = LCSSAWrapperPass::ID;
|
|
|
|
/// Transform \p F into loop-closed SSA form.
|
|
bool LCSSAWrapperPass::runOnFunction(Function &F) {
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
|
|
SE = SEWP ? &SEWP->getSE() : nullptr;
|
|
|
|
return formLCSSAOnAllLoops(LI, *DT, SE);
|
|
}
|
|
|
|
PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
|
|
if (!formLCSSAOnAllLoops(&LI, DT, SE))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<BasicAA>();
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<SCEVAA>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
// BPI maps terminators to probabilities, since we don't modify the CFG, no
|
|
// updates are needed to preserve it.
|
|
PA.preserve<BranchProbabilityAnalysis>();
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|