1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Support/SmallPtrSet.cpp
Duncan Sands de6d3111d0 Rather than giving SmallPtrSetImpl a member field SmallArray which is magically
replaced by a bigger array in SmallPtrSet (by overridding it), instead just use a
pointer to the start of the storage, and have SmallPtrSet pass in the value to use.
This has the disadvantage that SmallPtrSet becomes bigger by one pointer.  It has
the advantage that it no longer uses tricky C++ rules, and is clearly correct while
I'm not sure the previous version was.  This was inspired by g++-4.6 pointing out
that SmallPtrSetImpl was writing off the end of SmallArray, which it was.  Since
SmallArray is replaced with a bigger array in SmallPtrSet, the write was still to
valid memory.  But it was writing off the end of the declared array type - sounds
kind of dubious to me, like it sounded dubious to g++-4.6.  Maybe g++-4.6 is wrong
and this construct is perfectly valid and correctly compiled by all compilers, but
I think it is better to avoid the whole can of worms by avoiding this construct.

llvm-svn: 107285
2010-06-30 15:02:37 +00:00

227 lines
7.3 KiB
C++

//===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallPtrSet class. See SmallPtrSet.h for an
// overview of the algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/MathExtras.h"
#include <cstdlib>
using namespace llvm;
void SmallPtrSetImpl::shrink_and_clear() {
assert(!isSmall() && "Can't shrink a small set!");
free(CurArray);
// Reduce the number of buckets.
CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
NumElements = NumTombstones = 0;
// Install the new array. Clear all the buckets to empty.
CurArray = (const void**)malloc(sizeof(void*) * (CurArraySize+1));
assert(CurArray && "Failed to allocate memory?");
memset(CurArray, -1, CurArraySize*sizeof(void*));
// The end pointer, always valid, is set to a valid element to help the
// iterator.
CurArray[CurArraySize] = 0;
}
bool SmallPtrSetImpl::insert_imp(const void * Ptr) {
if (isSmall()) {
// Check to see if it is already in the set.
for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
APtr != E; ++APtr)
if (*APtr == Ptr)
return false;
// Nope, there isn't. If we stay small, just 'pushback' now.
if (NumElements < CurArraySize-1) {
SmallArray[NumElements++] = Ptr;
return true;
}
// Otherwise, hit the big set case, which will call grow.
}
// If more than 3/4 of the array is full, grow.
if (NumElements*4 >= CurArraySize*3 ||
CurArraySize-(NumElements+NumTombstones) < CurArraySize/8)
Grow();
// Okay, we know we have space. Find a hash bucket.
const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
if (*Bucket == Ptr) return false; // Already inserted, good.
// Otherwise, insert it!
if (*Bucket == getTombstoneMarker())
--NumTombstones;
*Bucket = Ptr;
++NumElements; // Track density.
return true;
}
bool SmallPtrSetImpl::erase_imp(const void * Ptr) {
if (isSmall()) {
// Check to see if it is in the set.
for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
APtr != E; ++APtr)
if (*APtr == Ptr) {
// If it is in the set, replace this element.
*APtr = E[-1];
E[-1] = getEmptyMarker();
--NumElements;
return true;
}
return false;
}
// Okay, we know we have space. Find a hash bucket.
void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
if (*Bucket != Ptr) return false; // Not in the set?
// Set this as a tombstone.
*Bucket = getTombstoneMarker();
--NumElements;
++NumTombstones;
return true;
}
const void * const *SmallPtrSetImpl::FindBucketFor(const void *Ptr) const {
unsigned Bucket = Hash(Ptr);
unsigned ArraySize = CurArraySize;
unsigned ProbeAmt = 1;
const void *const *Array = CurArray;
const void *const *Tombstone = 0;
while (1) {
// Found Ptr's bucket?
if (Array[Bucket] == Ptr)
return Array+Bucket;
// If we found an empty bucket, the pointer doesn't exist in the set.
// Return a tombstone if we've seen one so far, or the empty bucket if
// not.
if (Array[Bucket] == getEmptyMarker())
return Tombstone ? Tombstone : Array+Bucket;
// If this is a tombstone, remember it. If Ptr ends up not in the set, we
// prefer to return it than something that would require more probing.
if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
Tombstone = Array+Bucket; // Remember the first tombstone found.
// It's a hash collision or a tombstone. Reprobe.
Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
}
}
/// Grow - Allocate a larger backing store for the buckets and move it over.
///
void SmallPtrSetImpl::Grow() {
// Allocate at twice as many buckets, but at least 128.
unsigned OldSize = CurArraySize;
unsigned NewSize = OldSize < 64 ? 128 : OldSize*2;
const void **OldBuckets = CurArray;
bool WasSmall = isSmall();
// Install the new array. Clear all the buckets to empty.
CurArray = (const void**)malloc(sizeof(void*) * (NewSize+1));
assert(CurArray && "Failed to allocate memory?");
CurArraySize = NewSize;
memset(CurArray, -1, NewSize*sizeof(void*));
// The end pointer, always valid, is set to a valid element to help the
// iterator.
CurArray[NewSize] = 0;
// Copy over all the elements.
if (WasSmall) {
// Small sets store their elements in order.
for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
BucketPtr != E; ++BucketPtr) {
const void *Elt = *BucketPtr;
*const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
}
} else {
// Copy over all valid entries.
for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
BucketPtr != E; ++BucketPtr) {
// Copy over the element if it is valid.
const void *Elt = *BucketPtr;
if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
*const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
}
free(OldBuckets);
NumTombstones = 0;
}
}
SmallPtrSetImpl::SmallPtrSetImpl(const void **SmallStorage,
const SmallPtrSetImpl& that) {
SmallArray = SmallStorage;
// If we're becoming small, prepare to insert into our stack space
if (that.isSmall()) {
CurArray = SmallArray;
// Otherwise, allocate new heap space (unless we were the same size)
} else {
CurArray = (const void**)malloc(sizeof(void*) * (that.CurArraySize+1));
assert(CurArray && "Failed to allocate memory?");
}
// Copy over the new array size
CurArraySize = that.CurArraySize;
// Copy over the contents from the other set
memcpy(CurArray, that.CurArray, sizeof(void*)*(CurArraySize+1));
NumElements = that.NumElements;
NumTombstones = that.NumTombstones;
}
/// CopyFrom - implement operator= from a smallptrset that has the same pointer
/// type, but may have a different small size.
void SmallPtrSetImpl::CopyFrom(const SmallPtrSetImpl &RHS) {
if (isSmall() && RHS.isSmall())
assert(CurArraySize == RHS.CurArraySize &&
"Cannot assign sets with different small sizes");
// If we're becoming small, prepare to insert into our stack space
if (RHS.isSmall()) {
if (!isSmall())
free(CurArray);
CurArray = SmallArray;
// Otherwise, allocate new heap space (unless we were the same size)
} else if (CurArraySize != RHS.CurArraySize) {
if (isSmall())
CurArray = (const void**)malloc(sizeof(void*) * (RHS.CurArraySize+1));
else
CurArray = (const void**)realloc(CurArray, sizeof(void*)*(RHS.CurArraySize+1));
assert(CurArray && "Failed to allocate memory?");
}
// Copy over the new array size
CurArraySize = RHS.CurArraySize;
// Copy over the contents from the other set
memcpy(CurArray, RHS.CurArray, sizeof(void*)*(CurArraySize+1));
NumElements = RHS.NumElements;
NumTombstones = RHS.NumTombstones;
}
SmallPtrSetImpl::~SmallPtrSetImpl() {
if (!isSmall())
free(CurArray);
}