1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/Target/VE/VEFrameLowering.cpp
Tomas Matheson 3153790303 [NFC][CodeGen] Tidy up TargetRegisterInfo stack realignment functions
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.

This patch attempts to clarify the situation by separating them and introducing
new names:

 - shouldRealignStack - true if there is any reason the stack should be
   realigned

 - canRealignStack - true if we are still able to realign the stack (e.g. we
   can still reserve/have reserved a frame pointer)

 - hasStackRealignment = shouldRealignStack && canRealignStack (not target
   customisable)

Targets can now override shouldRealignStack to indicate that stack realignment
is required.

This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).

Differential Revision: https://reviews.llvm.org/D98716

Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
2021-03-30 17:31:39 +01:00

498 lines
20 KiB
C++

//===-- VEFrameLowering.cpp - VE Frame Information ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the VE implementation of TargetFrameLowering class.
//
// On VE, stack frames are structured as follows:
//
// The stack grows downward.
//
// All of the individual frame areas on the frame below are optional, i.e. it's
// possible to create a function so that the particular area isn't present
// in the frame.
//
// At function entry, the "frame" looks as follows:
//
// | | Higher address
// |----------------------------------------------|
// | Parameter area for this function |
// |----------------------------------------------|
// | Register save area (RSA) for this function |
// |----------------------------------------------|
// | Return address for this function |
// |----------------------------------------------|
// | Frame pointer for this function |
// |----------------------------------------------| <- sp
// | | Lower address
//
// VE doesn't use on demand stack allocation, so user code generated by LLVM
// needs to call VEOS to allocate stack frame. VE's ABI want to reduce the
// number of VEOS calls, so ABI requires to allocate not only RSA (in general
// CSR, callee saved register) area but also call frame at the prologue of
// caller function.
//
// After the prologue has run, the frame has the following general structure.
// Note that technically the last frame area (VLAs) doesn't get created until
// in the main function body, after the prologue is run. However, it's depicted
// here for completeness.
//
// | | Higher address
// |----------------------------------------------|
// | Parameter area for this function |
// |----------------------------------------------|
// | Register save area (RSA) for this function |
// |----------------------------------------------|
// | Return address for this function |
// |----------------------------------------------|
// | Frame pointer for this function |
// |----------------------------------------------| <- fp(=old sp)
// |.empty.space.to.make.part.below.aligned.in....|
// |.case.it.needs.more.than.the.standard.16-byte.| (size of this area is
// |.alignment....................................| unknown at compile time)
// |----------------------------------------------|
// | Local variables of fixed size including spill|
// | slots |
// |----------------------------------------------| <- bp(not defined by ABI,
// |.variable-sized.local.variables.(VLAs)........| LLVM chooses SX17)
// |..............................................| (size of this area is
// |..............................................| unknown at compile time)
// |----------------------------------------------| <- stack top (returned by
// | Parameter area for callee | alloca)
// |----------------------------------------------|
// | Register save area (RSA) for callee |
// |----------------------------------------------|
// | Return address for callee |
// |----------------------------------------------|
// | Frame pointer for callee |
// |----------------------------------------------| <- sp
// | | Lower address
//
// To access the data in a frame, at-compile time, a constant offset must be
// computable from one of the pointers (fp, bp, sp) to access it. The size
// of the areas with a dotted background cannot be computed at compile-time
// if they are present, making it required to have all three of fp, bp and
// sp to be set up to be able to access all contents in the frame areas,
// assuming all of the frame areas are non-empty.
//
// For most functions, some of the frame areas are empty. For those functions,
// it may not be necessary to set up fp or bp:
// * A base pointer is definitely needed when there are both VLAs and local
// variables with more-than-default alignment requirements.
// * A frame pointer is definitely needed when there are local variables with
// more-than-default alignment requirements.
//
// In addition, VE ABI defines RSA frame, return address, and frame pointer
// as follows:
//
// |----------------------------------------------| <- sp+176
// | %s18...%s33 |
// |----------------------------------------------| <- sp+48
// | Linkage area register (%s17) |
// |----------------------------------------------| <- sp+40
// | Procedure linkage table register (%plt=%s16) |
// |----------------------------------------------| <- sp+32
// | Global offset table register (%got=%s15) |
// |----------------------------------------------| <- sp+24
// | Thread pointer register (%tp=%s14) |
// |----------------------------------------------| <- sp+16
// | Return address |
// |----------------------------------------------| <- sp+8
// | Frame pointer |
// |----------------------------------------------| <- sp+0
//
// NOTE: This description is based on VE ABI and description in
// AArch64FrameLowering.cpp. Thanks a lot.
//===----------------------------------------------------------------------===//
#include "VEFrameLowering.h"
#include "VEInstrInfo.h"
#include "VEMachineFunctionInfo.h"
#include "VESubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
VEFrameLowering::VEFrameLowering(const VESubtarget &ST)
: TargetFrameLowering(TargetFrameLowering::StackGrowsDown, Align(16), 0,
Align(16)),
STI(ST) {}
void VEFrameLowering::emitPrologueInsns(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
uint64_t NumBytes,
bool RequireFPUpdate) const {
const VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
DebugLoc DL;
const VEInstrInfo &TII = *STI.getInstrInfo();
// Insert following codes here as prologue
//
// st %fp, 0(, %sp) iff !isLeafProc
// st %lr, 8(, %sp) iff !isLeafProc
// st %got, 24(, %sp) iff hasGOT
// st %plt, 32(, %sp) iff hasGOT
// st %s17, 40(, %sp) iff hasBP
if (!FuncInfo->isLeafProc()) {
BuildMI(MBB, MBBI, DL, TII.get(VE::STrii))
.addReg(VE::SX11)
.addImm(0)
.addImm(0)
.addReg(VE::SX9);
BuildMI(MBB, MBBI, DL, TII.get(VE::STrii))
.addReg(VE::SX11)
.addImm(0)
.addImm(8)
.addReg(VE::SX10);
}
if (hasGOT(MF)) {
BuildMI(MBB, MBBI, DL, TII.get(VE::STrii))
.addReg(VE::SX11)
.addImm(0)
.addImm(24)
.addReg(VE::SX15);
BuildMI(MBB, MBBI, DL, TII.get(VE::STrii))
.addReg(VE::SX11)
.addImm(0)
.addImm(32)
.addReg(VE::SX16);
}
if (hasBP(MF))
BuildMI(MBB, MBBI, DL, TII.get(VE::STrii))
.addReg(VE::SX11)
.addImm(0)
.addImm(40)
.addReg(VE::SX17);
}
void VEFrameLowering::emitEpilogueInsns(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
uint64_t NumBytes,
bool RequireFPUpdate) const {
const VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
DebugLoc DL;
const VEInstrInfo &TII = *STI.getInstrInfo();
// Insert following codes here as epilogue
//
// ld %s17, 40(, %sp) iff hasBP
// ld %plt, 32(, %sp) iff hasGOT
// ld %got, 24(, %sp) iff hasGOT
// ld %lr, 8(, %sp) iff !isLeafProc
// ld %fp, 0(, %sp) iff !isLeafProc
if (hasBP(MF))
BuildMI(MBB, MBBI, DL, TII.get(VE::LDrii), VE::SX17)
.addReg(VE::SX11)
.addImm(0)
.addImm(40);
if (hasGOT(MF)) {
BuildMI(MBB, MBBI, DL, TII.get(VE::LDrii), VE::SX16)
.addReg(VE::SX11)
.addImm(0)
.addImm(32);
BuildMI(MBB, MBBI, DL, TII.get(VE::LDrii), VE::SX15)
.addReg(VE::SX11)
.addImm(0)
.addImm(24);
}
if (!FuncInfo->isLeafProc()) {
BuildMI(MBB, MBBI, DL, TII.get(VE::LDrii), VE::SX10)
.addReg(VE::SX11)
.addImm(0)
.addImm(8);
BuildMI(MBB, MBBI, DL, TII.get(VE::LDrii), VE::SX9)
.addReg(VE::SX11)
.addImm(0)
.addImm(0);
}
}
void VEFrameLowering::emitSPAdjustment(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
int64_t NumBytes,
MaybeAlign MaybeAlign) const {
DebugLoc DL;
const VEInstrInfo &TII = *STI.getInstrInfo();
if (NumBytes == 0) {
// Nothing to do here.
} else if (isInt<7>(NumBytes)) {
// adds.l %s11, NumBytes@lo, %s11
BuildMI(MBB, MBBI, DL, TII.get(VE::ADDSLri), VE::SX11)
.addReg(VE::SX11)
.addImm(NumBytes);
} else if (isInt<32>(NumBytes)) {
// lea %s11, NumBytes@lo(, %s11)
BuildMI(MBB, MBBI, DL, TII.get(VE::LEArii), VE::SX11)
.addReg(VE::SX11)
.addImm(0)
.addImm(Lo_32(NumBytes));
} else {
// Emit following codes. This clobbers SX13 which we always know is
// available here.
// lea %s13, NumBytes@lo
// and %s13, %s13, (32)0
// lea.sl %sp, NumBytes@hi(%s13, %sp)
BuildMI(MBB, MBBI, DL, TII.get(VE::LEAzii), VE::SX13)
.addImm(0)
.addImm(0)
.addImm(Lo_32(NumBytes));
BuildMI(MBB, MBBI, DL, TII.get(VE::ANDrm), VE::SX13)
.addReg(VE::SX13)
.addImm(M0(32));
BuildMI(MBB, MBBI, DL, TII.get(VE::LEASLrri), VE::SX11)
.addReg(VE::SX11)
.addReg(VE::SX13)
.addImm(Hi_32(NumBytes));
}
if (MaybeAlign) {
// and %sp, %sp, Align-1
BuildMI(MBB, MBBI, DL, TII.get(VE::ANDrm), VE::SX11)
.addReg(VE::SX11)
.addImm(M1(64 - Log2_64(MaybeAlign.valueOrOne().value())));
}
}
void VEFrameLowering::emitSPExtend(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const {
DebugLoc DL;
const VEInstrInfo &TII = *STI.getInstrInfo();
// Emit following codes. It is not possible to insert multiple
// BasicBlocks in PEI pass, so we emit two pseudo instructions here.
//
// EXTEND_STACK // pseudo instrcution
// EXTEND_STACK_GUARD // pseudo instrcution
//
// EXTEND_STACK pseudo will be converted by ExpandPostRA pass into
// following instructions with multiple basic blocks later.
//
// thisBB:
// brge.l.t %sp, %sl, sinkBB
// syscallBB:
// ld %s61, 0x18(, %tp) // load param area
// or %s62, 0, %s0 // spill the value of %s0
// lea %s63, 0x13b // syscall # of grow
// shm.l %s63, 0x0(%s61) // store syscall # at addr:0
// shm.l %sl, 0x8(%s61) // store old limit at addr:8
// shm.l %sp, 0x10(%s61) // store new limit at addr:16
// monc // call monitor
// or %s0, 0, %s62 // restore the value of %s0
// sinkBB:
//
// EXTEND_STACK_GUARD pseudo will be simply eliminated by ExpandPostRA
// pass. This pseudo is required to be at the next of EXTEND_STACK
// pseudo in order to protect iteration loop in ExpandPostRA.
BuildMI(MBB, MBBI, DL, TII.get(VE::EXTEND_STACK));
BuildMI(MBB, MBBI, DL, TII.get(VE::EXTEND_STACK_GUARD));
}
void VEFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
MachineFrameInfo &MFI = MF.getFrameInfo();
const VEInstrInfo &TII = *STI.getInstrInfo();
const VERegisterInfo &RegInfo = *STI.getRegisterInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
bool NeedsStackRealignment = RegInfo.shouldRealignStack(MF);
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
if (NeedsStackRealignment && !RegInfo.canRealignStack(MF))
report_fatal_error("Function \"" + Twine(MF.getName()) +
"\" required "
"stack re-alignment, but LLVM couldn't handle it "
"(probably because it has a dynamic alloca).");
// Get the number of bytes to allocate from the FrameInfo.
// This number of bytes is already aligned to ABI stack alignment.
uint64_t NumBytes = MFI.getStackSize();
// Adjust stack size if this function is not a leaf function since the
// VE ABI requires a reserved area at the top of stack as described in
// VEFrameLowering.cpp.
if (!FuncInfo->isLeafProc()) {
// NOTE: The number is aligned to ABI stack alignment after adjustment.
NumBytes = STI.getAdjustedFrameSize(NumBytes);
}
// Finally, ensure that the size is sufficiently aligned for the
// data on the stack.
NumBytes = alignTo(NumBytes, MFI.getMaxAlign());
// Update stack size with corrected value.
MFI.setStackSize(NumBytes);
// Emit Prologue instructions to save multiple registers.
emitPrologueInsns(MF, MBB, MBBI, NumBytes, true);
// Emit instructions to save SP in FP as follows if this is not a leaf
// function:
// or %fp, 0, %sp
if (!FuncInfo->isLeafProc())
BuildMI(MBB, MBBI, DL, TII.get(VE::ORri), VE::SX9)
.addReg(VE::SX11)
.addImm(0);
// Emit stack adjust instructions
MaybeAlign RuntimeAlign =
NeedsStackRealignment ? MaybeAlign(MFI.getMaxAlign()) : None;
assert((RuntimeAlign == None || !FuncInfo->isLeafProc()) &&
"SP has to be saved in order to align variable sized stack object!");
emitSPAdjustment(MF, MBB, MBBI, -(int64_t)NumBytes, RuntimeAlign);
if (hasBP(MF)) {
// Copy SP to BP.
BuildMI(MBB, MBBI, DL, TII.get(VE::ORri), VE::SX17)
.addReg(VE::SX11)
.addImm(0);
}
// Emit stack extend instructions
if (NumBytes != 0)
emitSPExtend(MF, MBB, MBBI);
}
MachineBasicBlock::iterator VEFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (!hasReservedCallFrame(MF)) {
MachineInstr &MI = *I;
int64_t Size = MI.getOperand(0).getImm();
if (MI.getOpcode() == VE::ADJCALLSTACKDOWN)
Size = -Size;
if (Size)
emitSPAdjustment(MF, MBB, I, Size);
}
return MBB.erase(I);
}
void VEFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
DebugLoc DL;
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
MachineFrameInfo &MFI = MF.getFrameInfo();
const VEInstrInfo &TII = *STI.getInstrInfo();
uint64_t NumBytes = MFI.getStackSize();
// Emit instructions to retrieve original SP.
if (!FuncInfo->isLeafProc()) {
// If SP is saved in FP, retrieve it as follows:
// or %sp, 0, %fp iff !isLeafProc
BuildMI(MBB, MBBI, DL, TII.get(VE::ORri), VE::SX11)
.addReg(VE::SX9)
.addImm(0);
} else {
// Emit stack adjust instructions.
emitSPAdjustment(MF, MBB, MBBI, NumBytes, None);
}
// Emit Epilogue instructions to restore multiple registers.
emitEpilogueInsns(MF, MBB, MBBI, NumBytes, true);
}
// hasFP - Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function has variable sized allocas
// or if frame pointer elimination is disabled.
bool VEFrameLowering::hasFP(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool VEFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
return MFI.hasVarSizedObjects() && TRI->hasStackRealignment(MF);
}
bool VEFrameLowering::hasGOT(const MachineFunction &MF) const {
const VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
// If a global base register is assigned (!= 0), GOT is used.
return FuncInfo->getGlobalBaseReg() != 0;
}
StackOffset VEFrameLowering::getFrameIndexReference(const MachineFunction &MF,
int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const VERegisterInfo *RegInfo = STI.getRegisterInfo();
bool isFixed = MFI.isFixedObjectIndex(FI);
int64_t FrameOffset = MF.getFrameInfo().getObjectOffset(FI);
if (!hasFP(MF)) {
// If FP is not used, frame indexies are based on a %sp regiter.
FrameReg = VE::SX11; // %sp
return StackOffset::getFixed(FrameOffset +
MF.getFrameInfo().getStackSize());
}
if (RegInfo->hasStackRealignment(MF) && !isFixed) {
// If data on stack require realignemnt, frame indexies are based on a %sp
// or %s17 (bp) register. If there is a variable sized object, bp is used.
if (hasBP(MF))
FrameReg = VE::SX17; // %bp
else
FrameReg = VE::SX11; // %sp
return StackOffset::getFixed(FrameOffset +
MF.getFrameInfo().getStackSize());
}
// Use %fp by default.
FrameReg = RegInfo->getFrameRegister(MF);
return StackOffset::getFixed(FrameOffset);
}
bool VEFrameLowering::isLeafProc(MachineFunction &MF) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
return !MFI.hasCalls() // No calls
&& !MRI.isPhysRegUsed(VE::SX18) // Registers within limits
// (s18 is first CSR)
&& !MRI.isPhysRegUsed(VE::SX11) // %sp un-used
&& !hasFP(MF); // Don't need %fp
}
void VEFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Functions having BP need to emit prologue and epilogue to allocate local
// buffer on the stack even if the function is a leaf function.
if (isLeafProc(MF) && !hasBP(MF)) {
VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
FuncInfo->setLeafProc(true);
}
}