1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 12:41:49 +01:00
Lang Hames 9a3ce89b6d [ExecutionEngine][MCJIT][Orc] Replace RuntimeDyld::SymbolInfo with JITSymbol.
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).

For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.

For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.

llvm-svn: 277386
2016-08-01 20:49:11 +00:00

227 lines
8.2 KiB
C++

//===--- RuntimeDyldCOFFI386.h --- COFF/X86_64 specific code ---*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// COFF x86 support for MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFFI386_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFFI386_H
#include "llvm/Object/COFF.h"
#include "llvm/Support/COFF.h"
#include "../RuntimeDyldCOFF.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldCOFFI386 : public RuntimeDyldCOFF {
public:
RuntimeDyldCOFFI386(RuntimeDyld::MemoryManager &MM,
JITSymbolResolver &Resolver)
: RuntimeDyldCOFF(MM, Resolver) {}
unsigned getMaxStubSize() override {
return 8; // 2-byte jmp instruction + 32-bit relative address + 2 byte pad
}
unsigned getStubAlignment() override { return 1; }
Expected<relocation_iterator>
processRelocationRef(unsigned SectionID,
relocation_iterator RelI,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) override {
auto Symbol = RelI->getSymbol();
if (Symbol == Obj.symbol_end())
report_fatal_error("Unknown symbol in relocation");
Expected<StringRef> TargetNameOrErr = Symbol->getName();
if (!TargetNameOrErr)
return TargetNameOrErr.takeError();
StringRef TargetName = *TargetNameOrErr;
auto SectionOrErr = Symbol->getSection();
if (!SectionOrErr)
return SectionOrErr.takeError();
auto Section = *SectionOrErr;
uint64_t RelType = RelI->getType();
uint64_t Offset = RelI->getOffset();
// Determine the Addend used to adjust the relocation value.
uint64_t Addend = 0;
SectionEntry &AddendSection = Sections[SectionID];
uintptr_t ObjTarget = AddendSection.getObjAddress() + Offset;
uint8_t *Displacement = (uint8_t *)ObjTarget;
switch (RelType) {
case COFF::IMAGE_REL_I386_DIR32:
case COFF::IMAGE_REL_I386_DIR32NB:
case COFF::IMAGE_REL_I386_SECREL:
case COFF::IMAGE_REL_I386_REL32: {
Addend = readBytesUnaligned(Displacement, 4);
break;
}
default:
break;
}
#if !defined(NDEBUG)
SmallString<32> RelTypeName;
RelI->getTypeName(RelTypeName);
#endif
DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
<< " RelType: " << RelTypeName << " TargetName: " << TargetName
<< " Addend " << Addend << "\n");
unsigned TargetSectionID = -1;
if (Section == Obj.section_end()) {
RelocationEntry RE(SectionID, Offset, RelType, 0, -1, 0, 0, 0, false, 0);
addRelocationForSymbol(RE, TargetName);
} else {
if (auto TargetSectionIDOrErr =
findOrEmitSection(Obj, *Section, Section->isText(), ObjSectionToID))
TargetSectionID = *TargetSectionIDOrErr;
else
return TargetSectionIDOrErr.takeError();
switch (RelType) {
case COFF::IMAGE_REL_I386_ABSOLUTE:
// This relocation is ignored.
break;
case COFF::IMAGE_REL_I386_DIR32:
case COFF::IMAGE_REL_I386_DIR32NB:
case COFF::IMAGE_REL_I386_REL32: {
RelocationEntry RE =
RelocationEntry(SectionID, Offset, RelType, Addend, TargetSectionID,
getSymbolOffset(*Symbol), 0, 0, false, 0);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_I386_SECTION: {
RelocationEntry RE =
RelocationEntry(TargetSectionID, Offset, RelType, 0);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_I386_SECREL: {
RelocationEntry RE = RelocationEntry(SectionID, Offset, RelType,
getSymbolOffset(*Symbol) + Addend);
addRelocationForSection(RE, TargetSectionID);
break;
}
default:
llvm_unreachable("unsupported relocation type");
}
}
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
const auto Section = Sections[RE.SectionID];
uint8_t *Target = Section.getAddressWithOffset(RE.Offset);
switch (RE.RelType) {
case COFF::IMAGE_REL_I386_ABSOLUTE:
// This relocation is ignored.
break;
case COFF::IMAGE_REL_I386_DIR32: {
// The target's 32-bit VA.
uint64_t Result =
RE.Sections.SectionA == static_cast<uint32_t>(-1)
? Value
: Sections[RE.Sections.SectionA].getLoadAddressWithOffset(
RE.Addend);
assert(static_cast<int32_t>(Result) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int32_t>(Result) >= INT32_MIN &&
"relocation underflow");
DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_I386_DIR32"
<< " TargetSection: " << RE.Sections.SectionA
<< " Value: " << format("0x%08" PRIx32, Result) << '\n');
writeBytesUnaligned(Result, Target, 4);
break;
}
case COFF::IMAGE_REL_I386_DIR32NB: {
// The target's 32-bit RVA.
// NOTE: use Section[0].getLoadAddress() as an approximation of ImageBase
uint64_t Result =
Sections[RE.Sections.SectionA].getLoadAddressWithOffset(RE.Addend) -
Sections[0].getLoadAddress();
assert(static_cast<int32_t>(Result) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int32_t>(Result) >= INT32_MIN &&
"relocation underflow");
DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_I386_DIR32NB"
<< " TargetSection: " << RE.Sections.SectionA
<< " Value: " << format("0x%08" PRIx32, Result) << '\n');
writeBytesUnaligned(Result, Target, 4);
break;
}
case COFF::IMAGE_REL_I386_REL32: {
// 32-bit relative displacement to the target.
uint64_t Result = RE.Sections.SectionA == static_cast<uint32_t>(-1)
? Value
: Sections[RE.Sections.SectionA].getLoadAddress();
Result = Result - Section.getLoadAddress() + RE.Addend - 4 - RE.Offset;
assert(static_cast<int32_t>(Result) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int32_t>(Result) >= INT32_MIN &&
"relocation underflow");
DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_I386_REL32"
<< " TargetSection: " << RE.Sections.SectionA
<< " Value: " << format("0x%08" PRIx32, Result) << '\n');
writeBytesUnaligned(Result, Target, 4);
break;
}
case COFF::IMAGE_REL_I386_SECTION:
// 16-bit section index of the section that contains the target.
assert(static_cast<int32_t>(RE.SectionID) <= INT16_MAX &&
"relocation overflow");
assert(static_cast<int32_t>(RE.SectionID) >= INT16_MIN &&
"relocation underflow");
DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_I386_SECTION Value: " << RE.SectionID
<< '\n');
writeBytesUnaligned(RE.SectionID, Target, 2);
break;
case COFF::IMAGE_REL_I386_SECREL:
// 32-bit offset of the target from the beginning of its section.
assert(static_cast<int32_t>(RE.Addend) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int32_t>(RE.Addend) >= INT32_MIN &&
"relocation underflow");
DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_I386_SECREL Value: " << RE.Addend
<< '\n');
writeBytesUnaligned(RE.Addend, Target, 2);
break;
default:
llvm_unreachable("unsupported relocation type");
}
}
void registerEHFrames() override {}
void deregisterEHFrames() override {}
};
}
#endif