1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 20:43:44 +02:00
llvm-mirror/lib/Target/AMDGPU/SIInsertSkips.cpp
Matt Arsenault fdf7e5830b AMDGPU: Refactor exp instructions
Structure the definitions a bit more like the other classes.

The main change here is to split EXP with the done bit set
to a separate opcode, so we can set mayLoad = 1 so that it won't
be reordered before the other exp stores, since this has the special
constraint that if the done bit is set then this should be the last
exp in she shader.

Previously all exp instructions were inferred to have unmodeled
side effects.

llvm-svn: 288695
2016-12-05 20:23:10 +00:00

330 lines
9.6 KiB
C++

//===-- SIInsertSkips.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass inserts branches on the 0 exec mask over divergent branches
/// branches when it's expected that jumping over the untaken control flow will
/// be cheaper than having every workitem no-op through it.
//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/MC/MCAsmInfo.h"
using namespace llvm;
#define DEBUG_TYPE "si-insert-skips"
namespace {
static cl::opt<unsigned> SkipThresholdFlag(
"amdgpu-skip-threshold",
cl::desc("Number of instructions before jumping over divergent control flow"),
cl::init(12), cl::Hidden);
class SIInsertSkips : public MachineFunctionPass {
private:
const SIRegisterInfo *TRI;
const SIInstrInfo *TII;
unsigned SkipThreshold;
bool shouldSkip(const MachineBasicBlock &From,
const MachineBasicBlock &To) const;
bool skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB);
void kill(MachineInstr &MI);
MachineBasicBlock *insertSkipBlock(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
bool skipMaskBranch(MachineInstr &MI, MachineBasicBlock &MBB);
public:
static char ID;
SIInsertSkips() :
MachineFunctionPass(ID), TRI(nullptr), TII(nullptr), SkipThreshold(0) { }
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI insert s_cbranch_execz instructions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace
char SIInsertSkips::ID = 0;
INITIALIZE_PASS(SIInsertSkips, DEBUG_TYPE,
"SI insert s_cbranch_execz instructions", false, false)
char &llvm::SIInsertSkipsPassID = SIInsertSkips::ID;
static bool opcodeEmitsNoInsts(unsigned Opc) {
switch (Opc) {
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::BUNDLE:
case TargetOpcode::CFI_INSTRUCTION:
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
case TargetOpcode::DBG_VALUE:
return true;
default:
return false;
}
}
bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From,
const MachineBasicBlock &To) const {
if (From.succ_empty())
return false;
unsigned NumInstr = 0;
const MachineFunction *MF = From.getParent();
for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
MBBI != End && MBBI != ToI; ++MBBI) {
const MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end();
NumInstr < SkipThreshold && I != E; ++I) {
if (opcodeEmitsNoInsts(I->getOpcode()))
continue;
// FIXME: Since this is required for correctness, this should be inserted
// during SILowerControlFlow.
// When a uniform loop is inside non-uniform control flow, the branch
// leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
// when EXEC = 0. We should skip the loop lest it becomes infinite.
if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
return true;
if (I->isInlineAsm()) {
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
const char *AsmStr = I->getOperand(0).getSymbolName();
// inlineasm length estimate is number of bytes assuming the longest
// instruction.
uint64_t MaxAsmSize = TII->getInlineAsmLength(AsmStr, *MAI);
NumInstr += MaxAsmSize / MAI->getMaxInstLength();
} else {
++NumInstr;
}
if (NumInstr >= SkipThreshold)
return true;
}
}
return false;
}
bool SIInsertSkips::skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB) {
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction *MF = MBB.getParent();
if (MF->getFunction()->getCallingConv() != CallingConv::AMDGPU_PS ||
!shouldSkip(MBB, MBB.getParent()->back()))
return false;
MachineBasicBlock *SkipBB = insertSkipBlock(MBB, MI.getIterator());
const DebugLoc &DL = MI.getDebugLoc();
// If the exec mask is non-zero, skip the next two instructions
BuildMI(&MBB, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addMBB(&NextBB);
MachineBasicBlock::iterator Insert = SkipBB->begin();
// Exec mask is zero: Export to NULL target...
BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::EXP_DONE))
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addImm(1) // vm
.addImm(0) // compr
.addImm(0); // en
// ... and terminate wavefront.
BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM));
return true;
}
void SIInsertSkips::kill(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
const MachineOperand &Op = MI.getOperand(0);
#ifndef NDEBUG
CallingConv::ID CallConv = MBB.getParent()->getFunction()->getCallingConv();
// Kill is only allowed in pixel / geometry shaders.
assert(CallConv == CallingConv::AMDGPU_PS ||
CallConv == CallingConv::AMDGPU_GS);
#endif
// Clear this thread from the exec mask if the operand is negative.
if (Op.isImm()) {
// Constant operand: Set exec mask to 0 or do nothing
if (Op.getImm() & 0x80000000) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addImm(0);
}
} else {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32))
.addImm(0)
.addOperand(Op);
}
}
MachineBasicBlock *SIInsertSkips::insertSkipBlock(
MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
MachineFunction *MF = MBB.getParent();
MachineBasicBlock *SkipBB = MF->CreateMachineBasicBlock();
MachineFunction::iterator MBBI(MBB);
++MBBI;
MF->insert(MBBI, SkipBB);
MBB.addSuccessor(SkipBB);
return SkipBB;
}
// Returns true if a branch over the block was inserted.
bool SIInsertSkips::skipMaskBranch(MachineInstr &MI,
MachineBasicBlock &SrcMBB) {
MachineBasicBlock *DestBB = MI.getOperand(0).getMBB();
if (!shouldSkip(**SrcMBB.succ_begin(), *DestBB))
return false;
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator InsPt = std::next(MI.getIterator());
BuildMI(SrcMBB, InsPt, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
.addMBB(DestBB);
return true;
}
bool SIInsertSkips::runOnMachineFunction(MachineFunction &MF) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
SkipThreshold = SkipThresholdFlag;
bool HaveKill = false;
bool MadeChange = false;
// Track depth of exec mask, divergent branches.
SmallVector<MachineBasicBlock *, 16> ExecBranchStack;
MachineFunction::iterator NextBB;
MachineBasicBlock *EmptyMBBAtEnd = nullptr;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; BI = NextBB) {
NextBB = std::next(BI);
MachineBasicBlock &MBB = *BI;
if (!ExecBranchStack.empty() && ExecBranchStack.back() == &MBB) {
// Reached convergence point for last divergent branch.
ExecBranchStack.pop_back();
}
if (HaveKill && ExecBranchStack.empty()) {
HaveKill = false;
// TODO: Insert skip if exec is 0?
}
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
switch (MI.getOpcode()) {
case AMDGPU::SI_MASK_BRANCH: {
ExecBranchStack.push_back(MI.getOperand(0).getMBB());
MadeChange |= skipMaskBranch(MI, MBB);
break;
}
case AMDGPU::S_BRANCH: {
// Optimize out branches to the next block.
// FIXME: Shouldn't this be handled by BranchFolding?
if (MBB.isLayoutSuccessor(MI.getOperand(0).getMBB()))
MI.eraseFromParent();
break;
}
case AMDGPU::SI_KILL_TERMINATOR: {
MadeChange = true;
kill(MI);
if (ExecBranchStack.empty()) {
if (skipIfDead(MI, *NextBB)) {
NextBB = std::next(BI);
BE = MF.end();
Next = MBB.end();
}
} else {
HaveKill = true;
}
MI.eraseFromParent();
break;
}
case AMDGPU::SI_RETURN: {
// FIXME: Should move somewhere else
assert(!MF.getInfo<SIMachineFunctionInfo>()->returnsVoid());
// Graphics shaders returning non-void shouldn't contain S_ENDPGM,
// because external bytecode will be appended at the end.
if (BI != --MF.end() || I != MBB.getFirstTerminator()) {
// SI_RETURN is not the last instruction. Add an empty block at
// the end and jump there.
if (!EmptyMBBAtEnd) {
EmptyMBBAtEnd = MF.CreateMachineBasicBlock();
MF.insert(MF.end(), EmptyMBBAtEnd);
}
MBB.addSuccessor(EmptyMBBAtEnd);
BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH))
.addMBB(EmptyMBBAtEnd);
I->eraseFromParent();
}
}
default:
break;
}
}
}
return MadeChange;
}