mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
ae05eb086d
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket. == Background == Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads. By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to. This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market. == The problem == The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group". == The changes in this patch == To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO). When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead. The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used. When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once. Differential Revision: https://reviews.llvm.org/D71775
562 lines
20 KiB
C++
562 lines
20 KiB
C++
//===-LTOBackend.cpp - LLVM Link Time Optimizer Backend -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the "backend" phase of LTO, i.e. it performs
|
|
// optimization and code generation on a loaded module. It is generally used
|
|
// internally by the LTO class but can also be used independently, for example
|
|
// to implement a standalone ThinLTO backend.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/LTO/LTOBackend.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/IR/LLVMRemarkStreamer.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Object/ModuleSymbolTable.h"
|
|
#include "llvm/Passes/PassBuilder.h"
|
|
#include "llvm/Passes/StandardInstrumentations.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/SmallVectorMemoryBuffer.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/ThreadPool.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
|
|
#include "llvm/Transforms/Utils/SplitModule.h"
|
|
|
|
using namespace llvm;
|
|
using namespace lto;
|
|
|
|
LLVM_ATTRIBUTE_NORETURN static void reportOpenError(StringRef Path, Twine Msg) {
|
|
errs() << "failed to open " << Path << ": " << Msg << '\n';
|
|
errs().flush();
|
|
exit(1);
|
|
}
|
|
|
|
Error Config::addSaveTemps(std::string OutputFileName,
|
|
bool UseInputModulePath) {
|
|
ShouldDiscardValueNames = false;
|
|
|
|
std::error_code EC;
|
|
ResolutionFile = std::make_unique<raw_fd_ostream>(
|
|
OutputFileName + "resolution.txt", EC, sys::fs::OpenFlags::OF_Text);
|
|
if (EC)
|
|
return errorCodeToError(EC);
|
|
|
|
auto setHook = [&](std::string PathSuffix, ModuleHookFn &Hook) {
|
|
// Keep track of the hook provided by the linker, which also needs to run.
|
|
ModuleHookFn LinkerHook = Hook;
|
|
Hook = [=](unsigned Task, const Module &M) {
|
|
// If the linker's hook returned false, we need to pass that result
|
|
// through.
|
|
if (LinkerHook && !LinkerHook(Task, M))
|
|
return false;
|
|
|
|
std::string PathPrefix;
|
|
// If this is the combined module (not a ThinLTO backend compile) or the
|
|
// user hasn't requested using the input module's path, emit to a file
|
|
// named from the provided OutputFileName with the Task ID appended.
|
|
if (M.getModuleIdentifier() == "ld-temp.o" || !UseInputModulePath) {
|
|
PathPrefix = OutputFileName;
|
|
if (Task != (unsigned)-1)
|
|
PathPrefix += utostr(Task) + ".";
|
|
} else
|
|
PathPrefix = M.getModuleIdentifier() + ".";
|
|
std::string Path = PathPrefix + PathSuffix + ".bc";
|
|
std::error_code EC;
|
|
raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::OF_None);
|
|
// Because -save-temps is a debugging feature, we report the error
|
|
// directly and exit.
|
|
if (EC)
|
|
reportOpenError(Path, EC.message());
|
|
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false);
|
|
return true;
|
|
};
|
|
};
|
|
|
|
setHook("0.preopt", PreOptModuleHook);
|
|
setHook("1.promote", PostPromoteModuleHook);
|
|
setHook("2.internalize", PostInternalizeModuleHook);
|
|
setHook("3.import", PostImportModuleHook);
|
|
setHook("4.opt", PostOptModuleHook);
|
|
setHook("5.precodegen", PreCodeGenModuleHook);
|
|
|
|
CombinedIndexHook =
|
|
[=](const ModuleSummaryIndex &Index,
|
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
|
std::string Path = OutputFileName + "index.bc";
|
|
std::error_code EC;
|
|
raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::OF_None);
|
|
// Because -save-temps is a debugging feature, we report the error
|
|
// directly and exit.
|
|
if (EC)
|
|
reportOpenError(Path, EC.message());
|
|
WriteIndexToFile(Index, OS);
|
|
|
|
Path = OutputFileName + "index.dot";
|
|
raw_fd_ostream OSDot(Path, EC, sys::fs::OpenFlags::OF_None);
|
|
if (EC)
|
|
reportOpenError(Path, EC.message());
|
|
Index.exportToDot(OSDot, GUIDPreservedSymbols);
|
|
return true;
|
|
};
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
std::unique_ptr<TargetMachine>
|
|
createTargetMachine(const Config &Conf, const Target *TheTarget, Module &M) {
|
|
StringRef TheTriple = M.getTargetTriple();
|
|
SubtargetFeatures Features;
|
|
Features.getDefaultSubtargetFeatures(Triple(TheTriple));
|
|
for (const std::string &A : Conf.MAttrs)
|
|
Features.AddFeature(A);
|
|
|
|
Reloc::Model RelocModel;
|
|
if (Conf.RelocModel)
|
|
RelocModel = *Conf.RelocModel;
|
|
else
|
|
RelocModel =
|
|
M.getPICLevel() == PICLevel::NotPIC ? Reloc::Static : Reloc::PIC_;
|
|
|
|
Optional<CodeModel::Model> CodeModel;
|
|
if (Conf.CodeModel)
|
|
CodeModel = *Conf.CodeModel;
|
|
else
|
|
CodeModel = M.getCodeModel();
|
|
|
|
return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
|
|
TheTriple, Conf.CPU, Features.getString(), Conf.Options, RelocModel,
|
|
CodeModel, Conf.CGOptLevel));
|
|
}
|
|
|
|
static void runNewPMPasses(const Config &Conf, Module &Mod, TargetMachine *TM,
|
|
unsigned OptLevel, bool IsThinLTO,
|
|
ModuleSummaryIndex *ExportSummary,
|
|
const ModuleSummaryIndex *ImportSummary) {
|
|
Optional<PGOOptions> PGOOpt;
|
|
if (!Conf.SampleProfile.empty())
|
|
PGOOpt = PGOOptions(Conf.SampleProfile, "", Conf.ProfileRemapping,
|
|
PGOOptions::SampleUse, PGOOptions::NoCSAction, true);
|
|
else if (Conf.RunCSIRInstr) {
|
|
PGOOpt = PGOOptions("", Conf.CSIRProfile, Conf.ProfileRemapping,
|
|
PGOOptions::IRUse, PGOOptions::CSIRInstr);
|
|
} else if (!Conf.CSIRProfile.empty()) {
|
|
PGOOpt = PGOOptions(Conf.CSIRProfile, "", Conf.ProfileRemapping,
|
|
PGOOptions::IRUse, PGOOptions::CSIRUse);
|
|
}
|
|
|
|
PassInstrumentationCallbacks PIC;
|
|
StandardInstrumentations SI;
|
|
SI.registerCallbacks(PIC);
|
|
PassBuilder PB(TM, Conf.PTO, PGOOpt, &PIC);
|
|
AAManager AA;
|
|
|
|
// Parse a custom AA pipeline if asked to.
|
|
if (auto Err = PB.parseAAPipeline(AA, "default"))
|
|
report_fatal_error("Error parsing default AA pipeline");
|
|
|
|
LoopAnalysisManager LAM(Conf.DebugPassManager);
|
|
FunctionAnalysisManager FAM(Conf.DebugPassManager);
|
|
CGSCCAnalysisManager CGAM(Conf.DebugPassManager);
|
|
ModuleAnalysisManager MAM(Conf.DebugPassManager);
|
|
|
|
// Register the AA manager first so that our version is the one used.
|
|
FAM.registerPass([&] { return std::move(AA); });
|
|
|
|
// Register all the basic analyses with the managers.
|
|
PB.registerModuleAnalyses(MAM);
|
|
PB.registerCGSCCAnalyses(CGAM);
|
|
PB.registerFunctionAnalyses(FAM);
|
|
PB.registerLoopAnalyses(LAM);
|
|
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
|
|
|
|
ModulePassManager MPM(Conf.DebugPassManager);
|
|
// FIXME (davide): verify the input.
|
|
|
|
PassBuilder::OptimizationLevel OL;
|
|
|
|
switch (OptLevel) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level");
|
|
case 0:
|
|
OL = PassBuilder::OptimizationLevel::O0;
|
|
break;
|
|
case 1:
|
|
OL = PassBuilder::OptimizationLevel::O1;
|
|
break;
|
|
case 2:
|
|
OL = PassBuilder::OptimizationLevel::O2;
|
|
break;
|
|
case 3:
|
|
OL = PassBuilder::OptimizationLevel::O3;
|
|
break;
|
|
}
|
|
|
|
if (IsThinLTO)
|
|
MPM = PB.buildThinLTODefaultPipeline(OL, Conf.DebugPassManager,
|
|
ImportSummary);
|
|
else
|
|
MPM = PB.buildLTODefaultPipeline(OL, Conf.DebugPassManager, ExportSummary);
|
|
MPM.run(Mod, MAM);
|
|
|
|
// FIXME (davide): verify the output.
|
|
}
|
|
|
|
static void runNewPMCustomPasses(Module &Mod, TargetMachine *TM,
|
|
std::string PipelineDesc,
|
|
std::string AAPipelineDesc,
|
|
bool DisableVerify) {
|
|
PassBuilder PB(TM);
|
|
AAManager AA;
|
|
|
|
// Parse a custom AA pipeline if asked to.
|
|
if (!AAPipelineDesc.empty())
|
|
if (auto Err = PB.parseAAPipeline(AA, AAPipelineDesc))
|
|
report_fatal_error("unable to parse AA pipeline description '" +
|
|
AAPipelineDesc + "': " + toString(std::move(Err)));
|
|
|
|
LoopAnalysisManager LAM;
|
|
FunctionAnalysisManager FAM;
|
|
CGSCCAnalysisManager CGAM;
|
|
ModuleAnalysisManager MAM;
|
|
|
|
// Register the AA manager first so that our version is the one used.
|
|
FAM.registerPass([&] { return std::move(AA); });
|
|
|
|
// Register all the basic analyses with the managers.
|
|
PB.registerModuleAnalyses(MAM);
|
|
PB.registerCGSCCAnalyses(CGAM);
|
|
PB.registerFunctionAnalyses(FAM);
|
|
PB.registerLoopAnalyses(LAM);
|
|
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
|
|
|
|
ModulePassManager MPM;
|
|
|
|
// Always verify the input.
|
|
MPM.addPass(VerifierPass());
|
|
|
|
// Now, add all the passes we've been requested to.
|
|
if (auto Err = PB.parsePassPipeline(MPM, PipelineDesc))
|
|
report_fatal_error("unable to parse pass pipeline description '" +
|
|
PipelineDesc + "': " + toString(std::move(Err)));
|
|
|
|
if (!DisableVerify)
|
|
MPM.addPass(VerifierPass());
|
|
MPM.run(Mod, MAM);
|
|
}
|
|
|
|
static void runOldPMPasses(const Config &Conf, Module &Mod, TargetMachine *TM,
|
|
bool IsThinLTO, ModuleSummaryIndex *ExportSummary,
|
|
const ModuleSummaryIndex *ImportSummary) {
|
|
legacy::PassManager passes;
|
|
passes.add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis()));
|
|
|
|
PassManagerBuilder PMB;
|
|
PMB.LibraryInfo = new TargetLibraryInfoImpl(Triple(TM->getTargetTriple()));
|
|
PMB.Inliner = createFunctionInliningPass();
|
|
PMB.ExportSummary = ExportSummary;
|
|
PMB.ImportSummary = ImportSummary;
|
|
// Unconditionally verify input since it is not verified before this
|
|
// point and has unknown origin.
|
|
PMB.VerifyInput = true;
|
|
PMB.VerifyOutput = !Conf.DisableVerify;
|
|
PMB.LoopVectorize = true;
|
|
PMB.SLPVectorize = true;
|
|
PMB.OptLevel = Conf.OptLevel;
|
|
PMB.PGOSampleUse = Conf.SampleProfile;
|
|
PMB.EnablePGOCSInstrGen = Conf.RunCSIRInstr;
|
|
if (!Conf.RunCSIRInstr && !Conf.CSIRProfile.empty()) {
|
|
PMB.EnablePGOCSInstrUse = true;
|
|
PMB.PGOInstrUse = Conf.CSIRProfile;
|
|
}
|
|
if (IsThinLTO)
|
|
PMB.populateThinLTOPassManager(passes);
|
|
else
|
|
PMB.populateLTOPassManager(passes);
|
|
passes.run(Mod);
|
|
}
|
|
|
|
bool opt(const Config &Conf, TargetMachine *TM, unsigned Task, Module &Mod,
|
|
bool IsThinLTO, ModuleSummaryIndex *ExportSummary,
|
|
const ModuleSummaryIndex *ImportSummary) {
|
|
// FIXME: Plumb the combined index into the new pass manager.
|
|
if (!Conf.OptPipeline.empty())
|
|
runNewPMCustomPasses(Mod, TM, Conf.OptPipeline, Conf.AAPipeline,
|
|
Conf.DisableVerify);
|
|
else if (Conf.UseNewPM)
|
|
runNewPMPasses(Conf, Mod, TM, Conf.OptLevel, IsThinLTO, ExportSummary,
|
|
ImportSummary);
|
|
else
|
|
runOldPMPasses(Conf, Mod, TM, IsThinLTO, ExportSummary, ImportSummary);
|
|
return !Conf.PostOptModuleHook || Conf.PostOptModuleHook(Task, Mod);
|
|
}
|
|
|
|
static cl::opt<bool> EmbedBitcode(
|
|
"lto-embed-bitcode", cl::init(false),
|
|
cl::desc("Embed LLVM bitcode in object files produced by LTO"));
|
|
|
|
static void EmitBitcodeSection(Module &M, const Config &Conf) {
|
|
if (!EmbedBitcode)
|
|
return;
|
|
SmallVector<char, 0> Buffer;
|
|
raw_svector_ostream OS(Buffer);
|
|
WriteBitcodeToFile(M, OS);
|
|
|
|
std::unique_ptr<MemoryBuffer> Buf(
|
|
new SmallVectorMemoryBuffer(std::move(Buffer)));
|
|
llvm::EmbedBitcodeInModule(M, Buf->getMemBufferRef(), /*EmbedBitcode*/ true,
|
|
/*EmbedMarker*/ false, /*CmdArgs*/ nullptr);
|
|
}
|
|
|
|
void codegen(const Config &Conf, TargetMachine *TM, AddStreamFn AddStream,
|
|
unsigned Task, Module &Mod) {
|
|
if (Conf.PreCodeGenModuleHook && !Conf.PreCodeGenModuleHook(Task, Mod))
|
|
return;
|
|
|
|
EmitBitcodeSection(Mod, Conf);
|
|
|
|
std::unique_ptr<ToolOutputFile> DwoOut;
|
|
SmallString<1024> DwoFile(Conf.SplitDwarfOutput);
|
|
if (!Conf.DwoDir.empty()) {
|
|
std::error_code EC;
|
|
if (auto EC = llvm::sys::fs::create_directories(Conf.DwoDir))
|
|
report_fatal_error("Failed to create directory " + Conf.DwoDir + ": " +
|
|
EC.message());
|
|
|
|
DwoFile = Conf.DwoDir;
|
|
sys::path::append(DwoFile, std::to_string(Task) + ".dwo");
|
|
TM->Options.MCOptions.SplitDwarfFile = std::string(DwoFile);
|
|
} else
|
|
TM->Options.MCOptions.SplitDwarfFile = Conf.SplitDwarfFile;
|
|
|
|
if (!DwoFile.empty()) {
|
|
std::error_code EC;
|
|
DwoOut = std::make_unique<ToolOutputFile>(DwoFile, EC, sys::fs::OF_None);
|
|
if (EC)
|
|
report_fatal_error("Failed to open " + DwoFile + ": " + EC.message());
|
|
}
|
|
|
|
auto Stream = AddStream(Task);
|
|
legacy::PassManager CodeGenPasses;
|
|
if (TM->addPassesToEmitFile(CodeGenPasses, *Stream->OS,
|
|
DwoOut ? &DwoOut->os() : nullptr,
|
|
Conf.CGFileType))
|
|
report_fatal_error("Failed to setup codegen");
|
|
CodeGenPasses.run(Mod);
|
|
|
|
if (DwoOut)
|
|
DwoOut->keep();
|
|
}
|
|
|
|
void splitCodeGen(const Config &C, TargetMachine *TM, AddStreamFn AddStream,
|
|
unsigned ParallelCodeGenParallelismLevel,
|
|
std::unique_ptr<Module> Mod) {
|
|
ThreadPool CodegenThreadPool(
|
|
heavyweight_hardware_concurrency(ParallelCodeGenParallelismLevel));
|
|
unsigned ThreadCount = 0;
|
|
const Target *T = &TM->getTarget();
|
|
|
|
SplitModule(
|
|
std::move(Mod), ParallelCodeGenParallelismLevel,
|
|
[&](std::unique_ptr<Module> MPart) {
|
|
// We want to clone the module in a new context to multi-thread the
|
|
// codegen. We do it by serializing partition modules to bitcode
|
|
// (while still on the main thread, in order to avoid data races) and
|
|
// spinning up new threads which deserialize the partitions into
|
|
// separate contexts.
|
|
// FIXME: Provide a more direct way to do this in LLVM.
|
|
SmallString<0> BC;
|
|
raw_svector_ostream BCOS(BC);
|
|
WriteBitcodeToFile(*MPart, BCOS);
|
|
|
|
// Enqueue the task
|
|
CodegenThreadPool.async(
|
|
[&](const SmallString<0> &BC, unsigned ThreadId) {
|
|
LTOLLVMContext Ctx(C);
|
|
Expected<std::unique_ptr<Module>> MOrErr = parseBitcodeFile(
|
|
MemoryBufferRef(StringRef(BC.data(), BC.size()), "ld-temp.o"),
|
|
Ctx);
|
|
if (!MOrErr)
|
|
report_fatal_error("Failed to read bitcode");
|
|
std::unique_ptr<Module> MPartInCtx = std::move(MOrErr.get());
|
|
|
|
std::unique_ptr<TargetMachine> TM =
|
|
createTargetMachine(C, T, *MPartInCtx);
|
|
|
|
codegen(C, TM.get(), AddStream, ThreadId, *MPartInCtx);
|
|
},
|
|
// Pass BC using std::move to ensure that it get moved rather than
|
|
// copied into the thread's context.
|
|
std::move(BC), ThreadCount++);
|
|
},
|
|
false);
|
|
|
|
// Because the inner lambda (which runs in a worker thread) captures our local
|
|
// variables, we need to wait for the worker threads to terminate before we
|
|
// can leave the function scope.
|
|
CodegenThreadPool.wait();
|
|
}
|
|
|
|
Expected<const Target *> initAndLookupTarget(const Config &C, Module &Mod) {
|
|
if (!C.OverrideTriple.empty())
|
|
Mod.setTargetTriple(C.OverrideTriple);
|
|
else if (Mod.getTargetTriple().empty())
|
|
Mod.setTargetTriple(C.DefaultTriple);
|
|
|
|
std::string Msg;
|
|
const Target *T = TargetRegistry::lookupTarget(Mod.getTargetTriple(), Msg);
|
|
if (!T)
|
|
return make_error<StringError>(Msg, inconvertibleErrorCode());
|
|
return T;
|
|
}
|
|
}
|
|
|
|
Error lto::finalizeOptimizationRemarks(
|
|
std::unique_ptr<ToolOutputFile> DiagOutputFile) {
|
|
// Make sure we flush the diagnostic remarks file in case the linker doesn't
|
|
// call the global destructors before exiting.
|
|
if (!DiagOutputFile)
|
|
return Error::success();
|
|
DiagOutputFile->keep();
|
|
DiagOutputFile->os().flush();
|
|
return Error::success();
|
|
}
|
|
|
|
Error lto::backend(const Config &C, AddStreamFn AddStream,
|
|
unsigned ParallelCodeGenParallelismLevel,
|
|
std::unique_ptr<Module> Mod,
|
|
ModuleSummaryIndex &CombinedIndex) {
|
|
Expected<const Target *> TOrErr = initAndLookupTarget(C, *Mod);
|
|
if (!TOrErr)
|
|
return TOrErr.takeError();
|
|
|
|
std::unique_ptr<TargetMachine> TM = createTargetMachine(C, *TOrErr, *Mod);
|
|
|
|
if (!C.CodeGenOnly) {
|
|
if (!opt(C, TM.get(), 0, *Mod, /*IsThinLTO=*/false,
|
|
/*ExportSummary=*/&CombinedIndex, /*ImportSummary=*/nullptr))
|
|
return Error::success();
|
|
}
|
|
|
|
if (ParallelCodeGenParallelismLevel == 1) {
|
|
codegen(C, TM.get(), AddStream, 0, *Mod);
|
|
} else {
|
|
splitCodeGen(C, TM.get(), AddStream, ParallelCodeGenParallelismLevel,
|
|
std::move(Mod));
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
static void dropDeadSymbols(Module &Mod, const GVSummaryMapTy &DefinedGlobals,
|
|
const ModuleSummaryIndex &Index) {
|
|
std::vector<GlobalValue*> DeadGVs;
|
|
for (auto &GV : Mod.global_values())
|
|
if (GlobalValueSummary *GVS = DefinedGlobals.lookup(GV.getGUID()))
|
|
if (!Index.isGlobalValueLive(GVS)) {
|
|
DeadGVs.push_back(&GV);
|
|
convertToDeclaration(GV);
|
|
}
|
|
|
|
// Now that all dead bodies have been dropped, delete the actual objects
|
|
// themselves when possible.
|
|
for (GlobalValue *GV : DeadGVs) {
|
|
GV->removeDeadConstantUsers();
|
|
// Might reference something defined in native object (i.e. dropped a
|
|
// non-prevailing IR def, but we need to keep the declaration).
|
|
if (GV->use_empty())
|
|
GV->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
Error lto::thinBackend(const Config &Conf, unsigned Task, AddStreamFn AddStream,
|
|
Module &Mod, const ModuleSummaryIndex &CombinedIndex,
|
|
const FunctionImporter::ImportMapTy &ImportList,
|
|
const GVSummaryMapTy &DefinedGlobals,
|
|
MapVector<StringRef, BitcodeModule> &ModuleMap) {
|
|
Expected<const Target *> TOrErr = initAndLookupTarget(Conf, Mod);
|
|
if (!TOrErr)
|
|
return TOrErr.takeError();
|
|
|
|
std::unique_ptr<TargetMachine> TM = createTargetMachine(Conf, *TOrErr, Mod);
|
|
|
|
// Setup optimization remarks.
|
|
auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
|
|
Mod.getContext(), Conf.RemarksFilename, Conf.RemarksPasses,
|
|
Conf.RemarksFormat, Conf.RemarksWithHotness, Task);
|
|
if (!DiagFileOrErr)
|
|
return DiagFileOrErr.takeError();
|
|
auto DiagnosticOutputFile = std::move(*DiagFileOrErr);
|
|
|
|
if (Conf.CodeGenOnly) {
|
|
codegen(Conf, TM.get(), AddStream, Task, Mod);
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
}
|
|
|
|
if (Conf.PreOptModuleHook && !Conf.PreOptModuleHook(Task, Mod))
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
|
|
renameModuleForThinLTO(Mod, CombinedIndex);
|
|
|
|
dropDeadSymbols(Mod, DefinedGlobals, CombinedIndex);
|
|
|
|
thinLTOResolvePrevailingInModule(Mod, DefinedGlobals);
|
|
|
|
if (Conf.PostPromoteModuleHook && !Conf.PostPromoteModuleHook(Task, Mod))
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
|
|
if (!DefinedGlobals.empty())
|
|
thinLTOInternalizeModule(Mod, DefinedGlobals);
|
|
|
|
if (Conf.PostInternalizeModuleHook &&
|
|
!Conf.PostInternalizeModuleHook(Task, Mod))
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
|
|
auto ModuleLoader = [&](StringRef Identifier) {
|
|
assert(Mod.getContext().isODRUniquingDebugTypes() &&
|
|
"ODR Type uniquing should be enabled on the context");
|
|
auto I = ModuleMap.find(Identifier);
|
|
assert(I != ModuleMap.end());
|
|
return I->second.getLazyModule(Mod.getContext(),
|
|
/*ShouldLazyLoadMetadata=*/true,
|
|
/*IsImporting*/ true);
|
|
};
|
|
|
|
FunctionImporter Importer(CombinedIndex, ModuleLoader);
|
|
if (Error Err = Importer.importFunctions(Mod, ImportList).takeError())
|
|
return Err;
|
|
|
|
if (Conf.PostImportModuleHook && !Conf.PostImportModuleHook(Task, Mod))
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
|
|
if (!opt(Conf, TM.get(), Task, Mod, /*IsThinLTO=*/true,
|
|
/*ExportSummary=*/nullptr, /*ImportSummary=*/&CombinedIndex))
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
|
|
codegen(Conf, TM.get(), AddStream, Task, Mod);
|
|
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
|
|
}
|