mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
dd2d6bb1ca
LowerTypeTests pass adds functions with a non-canonical jump table to cfiFunctionDecls instead of cfiFunctionDefs. As the jump table is in the regular LTO object, these functions will also need to be exported. This change fixes the non-canonical jump table case and adds a test similar to the existing one for canonical jump tables. Reviewed By: pcc Differential Revision: https://reviews.llvm.org/D103120
1611 lines
63 KiB
C++
1611 lines
63 KiB
C++
//===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements functions and classes used to support LTO.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/StackSafetyAnalysis.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/AutoUpgrade.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMRemarkStreamer.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/LTO/LTOBackend.h"
|
|
#include "llvm/LTO/SummaryBasedOptimizations.h"
|
|
#include "llvm/Linker/IRMover.h"
|
|
#include "llvm/Object/IRObjectFile.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/ThreadPool.h"
|
|
#include "llvm/Support/Threading.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/VCSRevision.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
|
|
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
|
|
#include "llvm/Transforms/Utils/SplitModule.h"
|
|
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
using namespace lto;
|
|
using namespace object;
|
|
|
|
#define DEBUG_TYPE "lto"
|
|
|
|
static cl::opt<bool>
|
|
DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
|
|
cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
|
|
|
|
/// Enable global value internalization in LTO.
|
|
cl::opt<bool> EnableLTOInternalization(
|
|
"enable-lto-internalization", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable global value internalization in LTO"));
|
|
|
|
// Computes a unique hash for the Module considering the current list of
|
|
// export/import and other global analysis results.
|
|
// The hash is produced in \p Key.
|
|
void llvm::computeLTOCacheKey(
|
|
SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
|
|
StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
|
|
const FunctionImporter::ExportSetTy &ExportList,
|
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
|
const GVSummaryMapTy &DefinedGlobals,
|
|
const std::set<GlobalValue::GUID> &CfiFunctionDefs,
|
|
const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
|
|
// Compute the unique hash for this entry.
|
|
// This is based on the current compiler version, the module itself, the
|
|
// export list, the hash for every single module in the import list, the
|
|
// list of ResolvedODR for the module, and the list of preserved symbols.
|
|
SHA1 Hasher;
|
|
|
|
// Start with the compiler revision
|
|
Hasher.update(LLVM_VERSION_STRING);
|
|
#ifdef LLVM_REVISION
|
|
Hasher.update(LLVM_REVISION);
|
|
#endif
|
|
|
|
// Include the parts of the LTO configuration that affect code generation.
|
|
auto AddString = [&](StringRef Str) {
|
|
Hasher.update(Str);
|
|
Hasher.update(ArrayRef<uint8_t>{0});
|
|
};
|
|
auto AddUnsigned = [&](unsigned I) {
|
|
uint8_t Data[4];
|
|
support::endian::write32le(Data, I);
|
|
Hasher.update(ArrayRef<uint8_t>{Data, 4});
|
|
};
|
|
auto AddUint64 = [&](uint64_t I) {
|
|
uint8_t Data[8];
|
|
support::endian::write64le(Data, I);
|
|
Hasher.update(ArrayRef<uint8_t>{Data, 8});
|
|
};
|
|
AddString(Conf.CPU);
|
|
// FIXME: Hash more of Options. For now all clients initialize Options from
|
|
// command-line flags (which is unsupported in production), but may set
|
|
// RelaxELFRelocations. The clang driver can also pass FunctionSections,
|
|
// DataSections and DebuggerTuning via command line flags.
|
|
AddUnsigned(Conf.Options.RelaxELFRelocations);
|
|
AddUnsigned(Conf.Options.FunctionSections);
|
|
AddUnsigned(Conf.Options.DataSections);
|
|
AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
|
|
for (auto &A : Conf.MAttrs)
|
|
AddString(A);
|
|
if (Conf.RelocModel)
|
|
AddUnsigned(*Conf.RelocModel);
|
|
else
|
|
AddUnsigned(-1);
|
|
if (Conf.CodeModel)
|
|
AddUnsigned(*Conf.CodeModel);
|
|
else
|
|
AddUnsigned(-1);
|
|
AddUnsigned(Conf.CGOptLevel);
|
|
AddUnsigned(Conf.CGFileType);
|
|
AddUnsigned(Conf.OptLevel);
|
|
AddUnsigned(Conf.UseNewPM);
|
|
AddUnsigned(Conf.Freestanding);
|
|
AddString(Conf.OptPipeline);
|
|
AddString(Conf.AAPipeline);
|
|
AddString(Conf.OverrideTriple);
|
|
AddString(Conf.DefaultTriple);
|
|
AddString(Conf.DwoDir);
|
|
|
|
// Include the hash for the current module
|
|
auto ModHash = Index.getModuleHash(ModuleID);
|
|
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
|
|
|
|
std::vector<uint64_t> ExportsGUID;
|
|
ExportsGUID.reserve(ExportList.size());
|
|
for (const auto &VI : ExportList) {
|
|
auto GUID = VI.getGUID();
|
|
ExportsGUID.push_back(GUID);
|
|
}
|
|
|
|
// Sort the export list elements GUIDs.
|
|
llvm::sort(ExportsGUID);
|
|
for (uint64_t GUID : ExportsGUID) {
|
|
// The export list can impact the internalization, be conservative here
|
|
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID)));
|
|
}
|
|
|
|
// Include the hash for every module we import functions from. The set of
|
|
// imported symbols for each module may affect code generation and is
|
|
// sensitive to link order, so include that as well.
|
|
using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator;
|
|
std::vector<ImportMapIteratorTy> ImportModulesVector;
|
|
ImportModulesVector.reserve(ImportList.size());
|
|
|
|
for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end();
|
|
++It) {
|
|
ImportModulesVector.push_back(It);
|
|
}
|
|
llvm::sort(ImportModulesVector,
|
|
[](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs)
|
|
-> bool { return Lhs->getKey() < Rhs->getKey(); });
|
|
for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) {
|
|
auto ModHash = Index.getModuleHash(EntryIt->first());
|
|
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
|
|
|
|
AddUint64(EntryIt->second.size());
|
|
for (auto &Fn : EntryIt->second)
|
|
AddUint64(Fn);
|
|
}
|
|
|
|
// Include the hash for the resolved ODR.
|
|
for (auto &Entry : ResolvedODR) {
|
|
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
|
|
sizeof(GlobalValue::GUID)));
|
|
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
|
|
sizeof(GlobalValue::LinkageTypes)));
|
|
}
|
|
|
|
// Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
|
|
// defined in this module.
|
|
std::set<GlobalValue::GUID> UsedCfiDefs;
|
|
std::set<GlobalValue::GUID> UsedCfiDecls;
|
|
|
|
// Typeids used in this module.
|
|
std::set<GlobalValue::GUID> UsedTypeIds;
|
|
|
|
auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
|
|
if (CfiFunctionDefs.count(ValueGUID))
|
|
UsedCfiDefs.insert(ValueGUID);
|
|
if (CfiFunctionDecls.count(ValueGUID))
|
|
UsedCfiDecls.insert(ValueGUID);
|
|
};
|
|
|
|
auto AddUsedThings = [&](GlobalValueSummary *GS) {
|
|
if (!GS) return;
|
|
AddUnsigned(GS->getVisibility());
|
|
AddUnsigned(GS->isLive());
|
|
AddUnsigned(GS->canAutoHide());
|
|
for (const ValueInfo &VI : GS->refs()) {
|
|
AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation()));
|
|
AddUsedCfiGlobal(VI.getGUID());
|
|
}
|
|
if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
|
|
AddUnsigned(GVS->maybeReadOnly());
|
|
AddUnsigned(GVS->maybeWriteOnly());
|
|
}
|
|
if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
|
|
for (auto &TT : FS->type_tests())
|
|
UsedTypeIds.insert(TT);
|
|
for (auto &TT : FS->type_test_assume_vcalls())
|
|
UsedTypeIds.insert(TT.GUID);
|
|
for (auto &TT : FS->type_checked_load_vcalls())
|
|
UsedTypeIds.insert(TT.GUID);
|
|
for (auto &TT : FS->type_test_assume_const_vcalls())
|
|
UsedTypeIds.insert(TT.VFunc.GUID);
|
|
for (auto &TT : FS->type_checked_load_const_vcalls())
|
|
UsedTypeIds.insert(TT.VFunc.GUID);
|
|
for (auto &ET : FS->calls()) {
|
|
AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation()));
|
|
AddUsedCfiGlobal(ET.first.getGUID());
|
|
}
|
|
}
|
|
};
|
|
|
|
// Include the hash for the linkage type to reflect internalization and weak
|
|
// resolution, and collect any used type identifier resolutions.
|
|
for (auto &GS : DefinedGlobals) {
|
|
GlobalValue::LinkageTypes Linkage = GS.second->linkage();
|
|
Hasher.update(
|
|
ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
|
|
AddUsedCfiGlobal(GS.first);
|
|
AddUsedThings(GS.second);
|
|
}
|
|
|
|
// Imported functions may introduce new uses of type identifier resolutions,
|
|
// so we need to collect their used resolutions as well.
|
|
for (auto &ImpM : ImportList)
|
|
for (auto &ImpF : ImpM.second) {
|
|
GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
|
|
AddUsedThings(S);
|
|
// If this is an alias, we also care about any types/etc. that the aliasee
|
|
// may reference.
|
|
if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
|
|
AddUsedThings(AS->getBaseObject());
|
|
}
|
|
|
|
auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
|
|
AddString(TId);
|
|
|
|
AddUnsigned(S.TTRes.TheKind);
|
|
AddUnsigned(S.TTRes.SizeM1BitWidth);
|
|
|
|
AddUint64(S.TTRes.AlignLog2);
|
|
AddUint64(S.TTRes.SizeM1);
|
|
AddUint64(S.TTRes.BitMask);
|
|
AddUint64(S.TTRes.InlineBits);
|
|
|
|
AddUint64(S.WPDRes.size());
|
|
for (auto &WPD : S.WPDRes) {
|
|
AddUnsigned(WPD.first);
|
|
AddUnsigned(WPD.second.TheKind);
|
|
AddString(WPD.second.SingleImplName);
|
|
|
|
AddUint64(WPD.second.ResByArg.size());
|
|
for (auto &ByArg : WPD.second.ResByArg) {
|
|
AddUint64(ByArg.first.size());
|
|
for (uint64_t Arg : ByArg.first)
|
|
AddUint64(Arg);
|
|
AddUnsigned(ByArg.second.TheKind);
|
|
AddUint64(ByArg.second.Info);
|
|
AddUnsigned(ByArg.second.Byte);
|
|
AddUnsigned(ByArg.second.Bit);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Include the hash for all type identifiers used by this module.
|
|
for (GlobalValue::GUID TId : UsedTypeIds) {
|
|
auto TidIter = Index.typeIds().equal_range(TId);
|
|
for (auto It = TidIter.first; It != TidIter.second; ++It)
|
|
AddTypeIdSummary(It->second.first, It->second.second);
|
|
}
|
|
|
|
AddUnsigned(UsedCfiDefs.size());
|
|
for (auto &V : UsedCfiDefs)
|
|
AddUint64(V);
|
|
|
|
AddUnsigned(UsedCfiDecls.size());
|
|
for (auto &V : UsedCfiDecls)
|
|
AddUint64(V);
|
|
|
|
if (!Conf.SampleProfile.empty()) {
|
|
auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
|
|
if (FileOrErr) {
|
|
Hasher.update(FileOrErr.get()->getBuffer());
|
|
|
|
if (!Conf.ProfileRemapping.empty()) {
|
|
FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
|
|
if (FileOrErr)
|
|
Hasher.update(FileOrErr.get()->getBuffer());
|
|
}
|
|
}
|
|
}
|
|
|
|
Key = toHex(Hasher.result());
|
|
}
|
|
|
|
static void thinLTOResolvePrevailingGUID(
|
|
const Config &C, ValueInfo VI,
|
|
DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
|
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
|
isPrevailing,
|
|
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
|
|
recordNewLinkage,
|
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
|
GlobalValue::VisibilityTypes Visibility =
|
|
C.VisibilityScheme == Config::ELF ? VI.getELFVisibility()
|
|
: GlobalValue::DefaultVisibility;
|
|
for (auto &S : VI.getSummaryList()) {
|
|
GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
|
|
// Ignore local and appending linkage values since the linker
|
|
// doesn't resolve them.
|
|
if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
|
|
GlobalValue::isAppendingLinkage(S->linkage()))
|
|
continue;
|
|
// We need to emit only one of these. The prevailing module will keep it,
|
|
// but turned into a weak, while the others will drop it when possible.
|
|
// This is both a compile-time optimization and a correctness
|
|
// transformation. This is necessary for correctness when we have exported
|
|
// a reference - we need to convert the linkonce to weak to
|
|
// ensure a copy is kept to satisfy the exported reference.
|
|
// FIXME: We may want to split the compile time and correctness
|
|
// aspects into separate routines.
|
|
if (isPrevailing(VI.getGUID(), S.get())) {
|
|
if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
|
|
S->setLinkage(GlobalValue::getWeakLinkage(
|
|
GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
|
|
// The kept copy is eligible for auto-hiding (hidden visibility) if all
|
|
// copies were (i.e. they were all linkonce_odr global unnamed addr).
|
|
// If any copy is not (e.g. it was originally weak_odr), then the symbol
|
|
// must remain externally available (e.g. a weak_odr from an explicitly
|
|
// instantiated template). Additionally, if it is in the
|
|
// GUIDPreservedSymbols set, that means that it is visibile outside
|
|
// the summary (e.g. in a native object or a bitcode file without
|
|
// summary), and in that case we cannot hide it as it isn't possible to
|
|
// check all copies.
|
|
S->setCanAutoHide(VI.canAutoHide() &&
|
|
!GUIDPreservedSymbols.count(VI.getGUID()));
|
|
}
|
|
if (C.VisibilityScheme == Config::FromPrevailing)
|
|
Visibility = S->getVisibility();
|
|
}
|
|
// Alias and aliasee can't be turned into available_externally.
|
|
else if (!isa<AliasSummary>(S.get()) &&
|
|
!GlobalInvolvedWithAlias.count(S.get()))
|
|
S->setLinkage(GlobalValue::AvailableExternallyLinkage);
|
|
|
|
// For ELF, set visibility to the computed visibility from summaries. We
|
|
// don't track visibility from declarations so this may be more relaxed than
|
|
// the most constraining one.
|
|
if (C.VisibilityScheme == Config::ELF)
|
|
S->setVisibility(Visibility);
|
|
|
|
if (S->linkage() != OriginalLinkage)
|
|
recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
|
|
}
|
|
|
|
if (C.VisibilityScheme == Config::FromPrevailing) {
|
|
for (auto &S : VI.getSummaryList()) {
|
|
GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
|
|
if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
|
|
GlobalValue::isAppendingLinkage(S->linkage()))
|
|
continue;
|
|
S->setVisibility(Visibility);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolve linkage for prevailing symbols in the \p Index.
|
|
//
|
|
// We'd like to drop these functions if they are no longer referenced in the
|
|
// current module. However there is a chance that another module is still
|
|
// referencing them because of the import. We make sure we always emit at least
|
|
// one copy.
|
|
void llvm::thinLTOResolvePrevailingInIndex(
|
|
const Config &C, ModuleSummaryIndex &Index,
|
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
|
isPrevailing,
|
|
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
|
|
recordNewLinkage,
|
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
|
// We won't optimize the globals that are referenced by an alias for now
|
|
// Ideally we should turn the alias into a global and duplicate the definition
|
|
// when needed.
|
|
DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
|
|
for (auto &I : Index)
|
|
for (auto &S : I.second.SummaryList)
|
|
if (auto AS = dyn_cast<AliasSummary>(S.get()))
|
|
GlobalInvolvedWithAlias.insert(&AS->getAliasee());
|
|
|
|
for (auto &I : Index)
|
|
thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I),
|
|
GlobalInvolvedWithAlias, isPrevailing,
|
|
recordNewLinkage, GUIDPreservedSymbols);
|
|
}
|
|
|
|
static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
|
|
if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
|
|
return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
|
|
(VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
|
|
VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
|
|
return false;
|
|
}
|
|
|
|
static void thinLTOInternalizeAndPromoteGUID(
|
|
ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported,
|
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
|
isPrevailing) {
|
|
for (auto &S : VI.getSummaryList()) {
|
|
if (isExported(S->modulePath(), VI)) {
|
|
if (GlobalValue::isLocalLinkage(S->linkage()))
|
|
S->setLinkage(GlobalValue::ExternalLinkage);
|
|
} else if (EnableLTOInternalization &&
|
|
// Ignore local and appending linkage values since the linker
|
|
// doesn't resolve them.
|
|
!GlobalValue::isLocalLinkage(S->linkage()) &&
|
|
(!GlobalValue::isInterposableLinkage(S->linkage()) ||
|
|
isPrevailing(VI.getGUID(), S.get())) &&
|
|
S->linkage() != GlobalValue::AppendingLinkage &&
|
|
// We can't internalize available_externally globals because this
|
|
// can break function pointer equality.
|
|
S->linkage() != GlobalValue::AvailableExternallyLinkage &&
|
|
// Functions and read-only variables with linkonce_odr and
|
|
// weak_odr linkage can be internalized. We can't internalize
|
|
// linkonce_odr and weak_odr variables which are both modified
|
|
// and read somewhere in the program because reads and writes
|
|
// will become inconsistent.
|
|
!isWeakObjectWithRWAccess(S.get()))
|
|
S->setLinkage(GlobalValue::InternalLinkage);
|
|
}
|
|
}
|
|
|
|
// Update the linkages in the given \p Index to mark exported values
|
|
// as external and non-exported values as internal.
|
|
void llvm::thinLTOInternalizeAndPromoteInIndex(
|
|
ModuleSummaryIndex &Index,
|
|
function_ref<bool(StringRef, ValueInfo)> isExported,
|
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
|
isPrevailing) {
|
|
for (auto &I : Index)
|
|
thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported,
|
|
isPrevailing);
|
|
}
|
|
|
|
// Requires a destructor for std::vector<InputModule>.
|
|
InputFile::~InputFile() = default;
|
|
|
|
Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
|
|
std::unique_ptr<InputFile> File(new InputFile);
|
|
|
|
Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
|
|
if (!FOrErr)
|
|
return FOrErr.takeError();
|
|
|
|
File->TargetTriple = FOrErr->TheReader.getTargetTriple();
|
|
File->SourceFileName = FOrErr->TheReader.getSourceFileName();
|
|
File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
|
|
File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
|
|
File->ComdatTable = FOrErr->TheReader.getComdatTable();
|
|
|
|
for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
|
|
size_t Begin = File->Symbols.size();
|
|
for (const irsymtab::Reader::SymbolRef &Sym :
|
|
FOrErr->TheReader.module_symbols(I))
|
|
// Skip symbols that are irrelevant to LTO. Note that this condition needs
|
|
// to match the one in Skip() in LTO::addRegularLTO().
|
|
if (Sym.isGlobal() && !Sym.isFormatSpecific())
|
|
File->Symbols.push_back(Sym);
|
|
File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
|
|
}
|
|
|
|
File->Mods = FOrErr->Mods;
|
|
File->Strtab = std::move(FOrErr->Strtab);
|
|
return std::move(File);
|
|
}
|
|
|
|
StringRef InputFile::getName() const {
|
|
return Mods[0].getModuleIdentifier();
|
|
}
|
|
|
|
BitcodeModule &InputFile::getSingleBitcodeModule() {
|
|
assert(Mods.size() == 1 && "Expect only one bitcode module");
|
|
return Mods[0];
|
|
}
|
|
|
|
LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
|
|
const Config &Conf)
|
|
: ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
|
|
Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
|
|
Mover(std::make_unique<IRMover>(*CombinedModule)) {}
|
|
|
|
LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
|
|
: Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
|
|
if (!Backend)
|
|
this->Backend =
|
|
createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
|
|
}
|
|
|
|
LTO::LTO(Config Conf, ThinBackend Backend,
|
|
unsigned ParallelCodeGenParallelismLevel)
|
|
: Conf(std::move(Conf)),
|
|
RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
|
|
ThinLTO(std::move(Backend)) {}
|
|
|
|
// Requires a destructor for MapVector<BitcodeModule>.
|
|
LTO::~LTO() = default;
|
|
|
|
// Add the symbols in the given module to the GlobalResolutions map, and resolve
|
|
// their partitions.
|
|
void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
|
|
ArrayRef<SymbolResolution> Res,
|
|
unsigned Partition, bool InSummary) {
|
|
auto *ResI = Res.begin();
|
|
auto *ResE = Res.end();
|
|
(void)ResE;
|
|
for (const InputFile::Symbol &Sym : Syms) {
|
|
assert(ResI != ResE);
|
|
SymbolResolution Res = *ResI++;
|
|
|
|
StringRef Name = Sym.getName();
|
|
Triple TT(RegularLTO.CombinedModule->getTargetTriple());
|
|
// Strip the __imp_ prefix from COFF dllimport symbols (similar to the
|
|
// way they are handled by lld), otherwise we can end up with two
|
|
// global resolutions (one with and one for a copy of the symbol without).
|
|
if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
|
|
Name = Name.substr(strlen("__imp_"));
|
|
auto &GlobalRes = GlobalResolutions[Name];
|
|
GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
|
|
if (Res.Prevailing) {
|
|
assert(!GlobalRes.Prevailing &&
|
|
"Multiple prevailing defs are not allowed");
|
|
GlobalRes.Prevailing = true;
|
|
GlobalRes.IRName = std::string(Sym.getIRName());
|
|
} else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
|
|
// Sometimes it can be two copies of symbol in a module and prevailing
|
|
// symbol can have no IR name. That might happen if symbol is defined in
|
|
// module level inline asm block. In case we have multiple modules with
|
|
// the same symbol we want to use IR name of the prevailing symbol.
|
|
// Otherwise, if we haven't seen a prevailing symbol, set the name so that
|
|
// we can later use it to check if there is any prevailing copy in IR.
|
|
GlobalRes.IRName = std::string(Sym.getIRName());
|
|
}
|
|
|
|
// Set the partition to external if we know it is re-defined by the linker
|
|
// with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
|
|
// regular object, is referenced from llvm.compiler.used/llvm.used, or was
|
|
// already recorded as being referenced from a different partition.
|
|
if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
|
|
(GlobalRes.Partition != GlobalResolution::Unknown &&
|
|
GlobalRes.Partition != Partition)) {
|
|
GlobalRes.Partition = GlobalResolution::External;
|
|
} else
|
|
// First recorded reference, save the current partition.
|
|
GlobalRes.Partition = Partition;
|
|
|
|
// Flag as visible outside of summary if visible from a regular object or
|
|
// from a module that does not have a summary.
|
|
GlobalRes.VisibleOutsideSummary |=
|
|
(Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
|
|
|
|
GlobalRes.ExportDynamic |= Res.ExportDynamic;
|
|
}
|
|
}
|
|
|
|
static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
|
|
ArrayRef<SymbolResolution> Res) {
|
|
StringRef Path = Input->getName();
|
|
OS << Path << '\n';
|
|
auto ResI = Res.begin();
|
|
for (const InputFile::Symbol &Sym : Input->symbols()) {
|
|
assert(ResI != Res.end());
|
|
SymbolResolution Res = *ResI++;
|
|
|
|
OS << "-r=" << Path << ',' << Sym.getName() << ',';
|
|
if (Res.Prevailing)
|
|
OS << 'p';
|
|
if (Res.FinalDefinitionInLinkageUnit)
|
|
OS << 'l';
|
|
if (Res.VisibleToRegularObj)
|
|
OS << 'x';
|
|
if (Res.LinkerRedefined)
|
|
OS << 'r';
|
|
OS << '\n';
|
|
}
|
|
OS.flush();
|
|
assert(ResI == Res.end());
|
|
}
|
|
|
|
Error LTO::add(std::unique_ptr<InputFile> Input,
|
|
ArrayRef<SymbolResolution> Res) {
|
|
assert(!CalledGetMaxTasks);
|
|
|
|
if (Conf.ResolutionFile)
|
|
writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
|
|
|
|
if (RegularLTO.CombinedModule->getTargetTriple().empty()) {
|
|
RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
|
|
if (Triple(Input->getTargetTriple()).isOSBinFormatELF())
|
|
Conf.VisibilityScheme = Config::ELF;
|
|
}
|
|
|
|
const SymbolResolution *ResI = Res.begin();
|
|
for (unsigned I = 0; I != Input->Mods.size(); ++I)
|
|
if (Error Err = addModule(*Input, I, ResI, Res.end()))
|
|
return Err;
|
|
|
|
assert(ResI == Res.end());
|
|
return Error::success();
|
|
}
|
|
|
|
Error LTO::addModule(InputFile &Input, unsigned ModI,
|
|
const SymbolResolution *&ResI,
|
|
const SymbolResolution *ResE) {
|
|
Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
|
|
if (!LTOInfo)
|
|
return LTOInfo.takeError();
|
|
|
|
if (EnableSplitLTOUnit.hasValue()) {
|
|
// If only some modules were split, flag this in the index so that
|
|
// we can skip or error on optimizations that need consistently split
|
|
// modules (whole program devirt and lower type tests).
|
|
if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
|
|
ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
|
|
} else
|
|
EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
|
|
|
|
BitcodeModule BM = Input.Mods[ModI];
|
|
auto ModSyms = Input.module_symbols(ModI);
|
|
addModuleToGlobalRes(ModSyms, {ResI, ResE},
|
|
LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
|
|
LTOInfo->HasSummary);
|
|
|
|
if (LTOInfo->IsThinLTO)
|
|
return addThinLTO(BM, ModSyms, ResI, ResE);
|
|
|
|
RegularLTO.EmptyCombinedModule = false;
|
|
Expected<RegularLTOState::AddedModule> ModOrErr =
|
|
addRegularLTO(BM, ModSyms, ResI, ResE);
|
|
if (!ModOrErr)
|
|
return ModOrErr.takeError();
|
|
|
|
if (!LTOInfo->HasSummary)
|
|
return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
|
|
|
|
// Regular LTO module summaries are added to a dummy module that represents
|
|
// the combined regular LTO module.
|
|
if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
|
|
return Err;
|
|
RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
|
|
return Error::success();
|
|
}
|
|
|
|
// Checks whether the given global value is in a non-prevailing comdat
|
|
// (comdat containing values the linker indicated were not prevailing,
|
|
// which we then dropped to available_externally), and if so, removes
|
|
// it from the comdat. This is called for all global values to ensure the
|
|
// comdat is empty rather than leaving an incomplete comdat. It is needed for
|
|
// regular LTO modules, in case we are in a mixed-LTO mode (both regular
|
|
// and thin LTO modules) compilation. Since the regular LTO module will be
|
|
// linked first in the final native link, we want to make sure the linker
|
|
// doesn't select any of these incomplete comdats that would be left
|
|
// in the regular LTO module without this cleanup.
|
|
static void
|
|
handleNonPrevailingComdat(GlobalValue &GV,
|
|
std::set<const Comdat *> &NonPrevailingComdats) {
|
|
Comdat *C = GV.getComdat();
|
|
if (!C)
|
|
return;
|
|
|
|
if (!NonPrevailingComdats.count(C))
|
|
return;
|
|
|
|
// Additionally need to drop externally visible global values from the comdat
|
|
// to available_externally, so that there aren't multiply defined linker
|
|
// errors.
|
|
if (!GV.hasLocalLinkage())
|
|
GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
|
|
|
|
if (auto GO = dyn_cast<GlobalObject>(&GV))
|
|
GO->setComdat(nullptr);
|
|
}
|
|
|
|
// Add a regular LTO object to the link.
|
|
// The resulting module needs to be linked into the combined LTO module with
|
|
// linkRegularLTO.
|
|
Expected<LTO::RegularLTOState::AddedModule>
|
|
LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
|
|
const SymbolResolution *&ResI,
|
|
const SymbolResolution *ResE) {
|
|
RegularLTOState::AddedModule Mod;
|
|
Expected<std::unique_ptr<Module>> MOrErr =
|
|
BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
|
|
/*IsImporting*/ false);
|
|
if (!MOrErr)
|
|
return MOrErr.takeError();
|
|
Module &M = **MOrErr;
|
|
Mod.M = std::move(*MOrErr);
|
|
|
|
if (Error Err = M.materializeMetadata())
|
|
return std::move(Err);
|
|
UpgradeDebugInfo(M);
|
|
|
|
ModuleSymbolTable SymTab;
|
|
SymTab.addModule(&M);
|
|
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasAppendingLinkage())
|
|
Mod.Keep.push_back(&GV);
|
|
|
|
DenseSet<GlobalObject *> AliasedGlobals;
|
|
for (auto &GA : M.aliases())
|
|
if (GlobalObject *GO = GA.getBaseObject())
|
|
AliasedGlobals.insert(GO);
|
|
|
|
// In this function we need IR GlobalValues matching the symbols in Syms
|
|
// (which is not backed by a module), so we need to enumerate them in the same
|
|
// order. The symbol enumeration order of a ModuleSymbolTable intentionally
|
|
// matches the order of an irsymtab, but when we read the irsymtab in
|
|
// InputFile::create we omit some symbols that are irrelevant to LTO. The
|
|
// Skip() function skips the same symbols from the module as InputFile does
|
|
// from the symbol table.
|
|
auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
|
|
auto Skip = [&]() {
|
|
while (MsymI != MsymE) {
|
|
auto Flags = SymTab.getSymbolFlags(*MsymI);
|
|
if ((Flags & object::BasicSymbolRef::SF_Global) &&
|
|
!(Flags & object::BasicSymbolRef::SF_FormatSpecific))
|
|
return;
|
|
++MsymI;
|
|
}
|
|
};
|
|
Skip();
|
|
|
|
std::set<const Comdat *> NonPrevailingComdats;
|
|
SmallSet<StringRef, 2> NonPrevailingAsmSymbols;
|
|
for (const InputFile::Symbol &Sym : Syms) {
|
|
assert(ResI != ResE);
|
|
SymbolResolution Res = *ResI++;
|
|
|
|
assert(MsymI != MsymE);
|
|
ModuleSymbolTable::Symbol Msym = *MsymI++;
|
|
Skip();
|
|
|
|
if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
|
|
if (Res.Prevailing) {
|
|
if (Sym.isUndefined())
|
|
continue;
|
|
Mod.Keep.push_back(GV);
|
|
// For symbols re-defined with linker -wrap and -defsym options,
|
|
// set the linkage to weak to inhibit IPO. The linkage will be
|
|
// restored by the linker.
|
|
if (Res.LinkerRedefined)
|
|
GV->setLinkage(GlobalValue::WeakAnyLinkage);
|
|
|
|
GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
|
|
if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
|
|
GV->setLinkage(GlobalValue::getWeakLinkage(
|
|
GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
|
|
} else if (isa<GlobalObject>(GV) &&
|
|
(GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
|
|
GV->hasAvailableExternallyLinkage()) &&
|
|
!AliasedGlobals.count(cast<GlobalObject>(GV))) {
|
|
// Any of the above three types of linkage indicates that the
|
|
// chosen prevailing symbol will have the same semantics as this copy of
|
|
// the symbol, so we may be able to link it with available_externally
|
|
// linkage. We will decide later whether to do that when we link this
|
|
// module (in linkRegularLTO), based on whether it is undefined.
|
|
Mod.Keep.push_back(GV);
|
|
GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
|
|
if (GV->hasComdat())
|
|
NonPrevailingComdats.insert(GV->getComdat());
|
|
cast<GlobalObject>(GV)->setComdat(nullptr);
|
|
}
|
|
|
|
// Set the 'local' flag based on the linker resolution for this symbol.
|
|
if (Res.FinalDefinitionInLinkageUnit) {
|
|
GV->setDSOLocal(true);
|
|
if (GV->hasDLLImportStorageClass())
|
|
GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
|
|
DefaultStorageClass);
|
|
}
|
|
} else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) {
|
|
// Collect non-prevailing symbols.
|
|
if (!Res.Prevailing)
|
|
NonPrevailingAsmSymbols.insert(AS->first);
|
|
} else {
|
|
llvm_unreachable("unknown symbol type");
|
|
}
|
|
|
|
// Common resolution: collect the maximum size/alignment over all commons.
|
|
// We also record if we see an instance of a common as prevailing, so that
|
|
// if none is prevailing we can ignore it later.
|
|
if (Sym.isCommon()) {
|
|
// FIXME: We should figure out what to do about commons defined by asm.
|
|
// For now they aren't reported correctly by ModuleSymbolTable.
|
|
auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())];
|
|
CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
|
|
MaybeAlign SymAlign(Sym.getCommonAlignment());
|
|
if (SymAlign)
|
|
CommonRes.Align = max(*SymAlign, CommonRes.Align);
|
|
CommonRes.Prevailing |= Res.Prevailing;
|
|
}
|
|
}
|
|
|
|
if (!M.getComdatSymbolTable().empty())
|
|
for (GlobalValue &GV : M.global_values())
|
|
handleNonPrevailingComdat(GV, NonPrevailingComdats);
|
|
|
|
// Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
|
|
// block.
|
|
if (!M.getModuleInlineAsm().empty()) {
|
|
std::string NewIA = ".lto_discard";
|
|
if (!NonPrevailingAsmSymbols.empty()) {
|
|
// Don't dicard a symbol if there is a live .symver for it.
|
|
ModuleSymbolTable::CollectAsmSymvers(
|
|
M, [&](StringRef Name, StringRef Alias) {
|
|
if (!NonPrevailingAsmSymbols.count(Alias))
|
|
NonPrevailingAsmSymbols.erase(Name);
|
|
});
|
|
NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", ");
|
|
}
|
|
NewIA += "\n";
|
|
M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm());
|
|
}
|
|
|
|
assert(MsymI == MsymE);
|
|
return std::move(Mod);
|
|
}
|
|
|
|
Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
|
|
bool LivenessFromIndex) {
|
|
std::vector<GlobalValue *> Keep;
|
|
for (GlobalValue *GV : Mod.Keep) {
|
|
if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) {
|
|
if (Function *F = dyn_cast<Function>(GV)) {
|
|
OptimizationRemarkEmitter ORE(F, nullptr);
|
|
ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F)
|
|
<< ore::NV("Function", F)
|
|
<< " not added to the combined module ");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!GV->hasAvailableExternallyLinkage()) {
|
|
Keep.push_back(GV);
|
|
continue;
|
|
}
|
|
|
|
// Only link available_externally definitions if we don't already have a
|
|
// definition.
|
|
GlobalValue *CombinedGV =
|
|
RegularLTO.CombinedModule->getNamedValue(GV->getName());
|
|
if (CombinedGV && !CombinedGV->isDeclaration())
|
|
continue;
|
|
|
|
Keep.push_back(GV);
|
|
}
|
|
|
|
return RegularLTO.Mover->move(std::move(Mod.M), Keep,
|
|
[](GlobalValue &, IRMover::ValueAdder) {},
|
|
/* IsPerformingImport */ false);
|
|
}
|
|
|
|
// Add a ThinLTO module to the link.
|
|
Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
|
|
const SymbolResolution *&ResI,
|
|
const SymbolResolution *ResE) {
|
|
if (Error Err =
|
|
BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
|
|
ThinLTO.ModuleMap.size()))
|
|
return Err;
|
|
|
|
for (const InputFile::Symbol &Sym : Syms) {
|
|
assert(ResI != ResE);
|
|
SymbolResolution Res = *ResI++;
|
|
|
|
if (!Sym.getIRName().empty()) {
|
|
auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
|
|
Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
|
|
if (Res.Prevailing) {
|
|
ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
|
|
|
|
// For linker redefined symbols (via --wrap or --defsym) we want to
|
|
// switch the linkage to `weak` to prevent IPOs from happening.
|
|
// Find the summary in the module for this very GV and record the new
|
|
// linkage so that we can switch it when we import the GV.
|
|
if (Res.LinkerRedefined)
|
|
if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
|
|
GUID, BM.getModuleIdentifier()))
|
|
S->setLinkage(GlobalValue::WeakAnyLinkage);
|
|
}
|
|
|
|
// If the linker resolved the symbol to a local definition then mark it
|
|
// as local in the summary for the module we are adding.
|
|
if (Res.FinalDefinitionInLinkageUnit) {
|
|
if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
|
|
GUID, BM.getModuleIdentifier())) {
|
|
S->setDSOLocal(true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
|
|
return make_error<StringError>(
|
|
"Expected at most one ThinLTO module per bitcode file",
|
|
inconvertibleErrorCode());
|
|
|
|
if (!Conf.ThinLTOModulesToCompile.empty()) {
|
|
if (!ThinLTO.ModulesToCompile)
|
|
ThinLTO.ModulesToCompile = ModuleMapType();
|
|
// This is a fuzzy name matching where only modules with name containing the
|
|
// specified switch values are going to be compiled.
|
|
for (const std::string &Name : Conf.ThinLTOModulesToCompile) {
|
|
if (BM.getModuleIdentifier().contains(Name)) {
|
|
ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM});
|
|
llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier()
|
|
<< " to compile\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
unsigned LTO::getMaxTasks() const {
|
|
CalledGetMaxTasks = true;
|
|
auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size()
|
|
: ThinLTO.ModuleMap.size();
|
|
return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount;
|
|
}
|
|
|
|
// If only some of the modules were split, we cannot correctly handle
|
|
// code that contains type tests or type checked loads.
|
|
Error LTO::checkPartiallySplit() {
|
|
if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
|
|
return Error::success();
|
|
|
|
Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
|
|
Intrinsic::getName(Intrinsic::type_test));
|
|
Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
|
|
Intrinsic::getName(Intrinsic::type_checked_load));
|
|
|
|
// First check if there are type tests / type checked loads in the
|
|
// merged regular LTO module IR.
|
|
if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
|
|
(TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
|
|
return make_error<StringError>(
|
|
"inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
|
|
inconvertibleErrorCode());
|
|
|
|
// Otherwise check if there are any recorded in the combined summary from the
|
|
// ThinLTO modules.
|
|
for (auto &P : ThinLTO.CombinedIndex) {
|
|
for (auto &S : P.second.SummaryList) {
|
|
auto *FS = dyn_cast<FunctionSummary>(S.get());
|
|
if (!FS)
|
|
continue;
|
|
if (!FS->type_test_assume_vcalls().empty() ||
|
|
!FS->type_checked_load_vcalls().empty() ||
|
|
!FS->type_test_assume_const_vcalls().empty() ||
|
|
!FS->type_checked_load_const_vcalls().empty() ||
|
|
!FS->type_tests().empty())
|
|
return make_error<StringError>(
|
|
"inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
|
|
inconvertibleErrorCode());
|
|
}
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
|
|
// Compute "dead" symbols, we don't want to import/export these!
|
|
DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
|
|
DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
|
|
for (auto &Res : GlobalResolutions) {
|
|
// Normally resolution have IR name of symbol. We can do nothing here
|
|
// otherwise. See comments in GlobalResolution struct for more details.
|
|
if (Res.second.IRName.empty())
|
|
continue;
|
|
|
|
GlobalValue::GUID GUID = GlobalValue::getGUID(
|
|
GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
|
|
|
|
if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
|
|
GUIDPreservedSymbols.insert(GUID);
|
|
|
|
if (Res.second.ExportDynamic)
|
|
DynamicExportSymbols.insert(GUID);
|
|
|
|
GUIDPrevailingResolutions[GUID] =
|
|
Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
|
|
}
|
|
|
|
auto isPrevailing = [&](GlobalValue::GUID G) {
|
|
auto It = GUIDPrevailingResolutions.find(G);
|
|
if (It == GUIDPrevailingResolutions.end())
|
|
return PrevailingType::Unknown;
|
|
return It->second;
|
|
};
|
|
computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
|
|
isPrevailing, Conf.OptLevel > 0);
|
|
|
|
// Setup output file to emit statistics.
|
|
auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
|
|
if (!StatsFileOrErr)
|
|
return StatsFileOrErr.takeError();
|
|
std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
|
|
|
|
Error Result = runRegularLTO(AddStream);
|
|
if (!Result)
|
|
Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
|
|
|
|
if (StatsFile)
|
|
PrintStatisticsJSON(StatsFile->os());
|
|
|
|
return Result;
|
|
}
|
|
|
|
Error LTO::runRegularLTO(AddStreamFn AddStream) {
|
|
// Setup optimization remarks.
|
|
auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
|
|
RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename,
|
|
Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness,
|
|
Conf.RemarksHotnessThreshold);
|
|
if (!DiagFileOrErr)
|
|
return DiagFileOrErr.takeError();
|
|
|
|
// Finalize linking of regular LTO modules containing summaries now that
|
|
// we have computed liveness information.
|
|
for (auto &M : RegularLTO.ModsWithSummaries)
|
|
if (Error Err = linkRegularLTO(std::move(M),
|
|
/*LivenessFromIndex=*/true))
|
|
return Err;
|
|
|
|
// Ensure we don't have inconsistently split LTO units with type tests.
|
|
// FIXME: this checks both LTO and ThinLTO. It happens to work as we take
|
|
// this path both cases but eventually this should be split into two and
|
|
// do the ThinLTO checks in `runThinLTO`.
|
|
if (Error Err = checkPartiallySplit())
|
|
return Err;
|
|
|
|
// Make sure commons have the right size/alignment: we kept the largest from
|
|
// all the prevailing when adding the inputs, and we apply it here.
|
|
const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
|
|
for (auto &I : RegularLTO.Commons) {
|
|
if (!I.second.Prevailing)
|
|
// Don't do anything if no instance of this common was prevailing.
|
|
continue;
|
|
GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
|
|
if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
|
|
// Don't create a new global if the type is already correct, just make
|
|
// sure the alignment is correct.
|
|
OldGV->setAlignment(I.second.Align);
|
|
continue;
|
|
}
|
|
ArrayType *Ty =
|
|
ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
|
|
auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
|
|
GlobalValue::CommonLinkage,
|
|
ConstantAggregateZero::get(Ty), "");
|
|
GV->setAlignment(I.second.Align);
|
|
if (OldGV) {
|
|
OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
|
|
GV->takeName(OldGV);
|
|
OldGV->eraseFromParent();
|
|
} else {
|
|
GV->setName(I.first);
|
|
}
|
|
}
|
|
|
|
// If allowed, upgrade public vcall visibility metadata to linkage unit
|
|
// visibility before whole program devirtualization in the optimizer.
|
|
updateVCallVisibilityInModule(*RegularLTO.CombinedModule,
|
|
Conf.HasWholeProgramVisibility,
|
|
DynamicExportSymbols);
|
|
|
|
if (Conf.PreOptModuleHook &&
|
|
!Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
|
|
return Error::success();
|
|
|
|
if (!Conf.CodeGenOnly) {
|
|
for (const auto &R : GlobalResolutions) {
|
|
if (!R.second.isPrevailingIRSymbol())
|
|
continue;
|
|
if (R.second.Partition != 0 &&
|
|
R.second.Partition != GlobalResolution::External)
|
|
continue;
|
|
|
|
GlobalValue *GV =
|
|
RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
|
|
// Ignore symbols defined in other partitions.
|
|
// Also skip declarations, which are not allowed to have internal linkage.
|
|
if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
|
|
continue;
|
|
GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
|
|
: GlobalValue::UnnamedAddr::None);
|
|
if (EnableLTOInternalization && R.second.Partition == 0)
|
|
GV->setLinkage(GlobalValue::InternalLinkage);
|
|
}
|
|
|
|
RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1);
|
|
|
|
if (Conf.PostInternalizeModuleHook &&
|
|
!Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
|
|
return Error::success();
|
|
}
|
|
|
|
if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) {
|
|
if (Error Err =
|
|
backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
|
|
*RegularLTO.CombinedModule, ThinLTO.CombinedIndex))
|
|
return Err;
|
|
}
|
|
|
|
return finalizeOptimizationRemarks(std::move(*DiagFileOrErr));
|
|
}
|
|
|
|
static const char *libcallRoutineNames[] = {
|
|
#define HANDLE_LIBCALL(code, name) name,
|
|
#include "llvm/IR/RuntimeLibcalls.def"
|
|
#undef HANDLE_LIBCALL
|
|
};
|
|
|
|
ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() {
|
|
return makeArrayRef(libcallRoutineNames);
|
|
}
|
|
|
|
/// This class defines the interface to the ThinLTO backend.
|
|
class lto::ThinBackendProc {
|
|
protected:
|
|
const Config &Conf;
|
|
ModuleSummaryIndex &CombinedIndex;
|
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
|
|
|
|
public:
|
|
ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
|
|
: Conf(Conf), CombinedIndex(CombinedIndex),
|
|
ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
|
|
|
|
virtual ~ThinBackendProc() {}
|
|
virtual Error start(
|
|
unsigned Task, BitcodeModule BM,
|
|
const FunctionImporter::ImportMapTy &ImportList,
|
|
const FunctionImporter::ExportSetTy &ExportList,
|
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
|
MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
|
|
virtual Error wait() = 0;
|
|
virtual unsigned getThreadCount() = 0;
|
|
};
|
|
|
|
namespace {
|
|
class InProcessThinBackend : public ThinBackendProc {
|
|
ThreadPool BackendThreadPool;
|
|
AddStreamFn AddStream;
|
|
NativeObjectCache Cache;
|
|
std::set<GlobalValue::GUID> CfiFunctionDefs;
|
|
std::set<GlobalValue::GUID> CfiFunctionDecls;
|
|
|
|
Optional<Error> Err;
|
|
std::mutex ErrMu;
|
|
|
|
public:
|
|
InProcessThinBackend(
|
|
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
|
ThreadPoolStrategy ThinLTOParallelism,
|
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
|
AddStreamFn AddStream, NativeObjectCache Cache)
|
|
: ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
|
|
BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)),
|
|
Cache(std::move(Cache)) {
|
|
for (auto &Name : CombinedIndex.cfiFunctionDefs())
|
|
CfiFunctionDefs.insert(
|
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
|
|
for (auto &Name : CombinedIndex.cfiFunctionDecls())
|
|
CfiFunctionDecls.insert(
|
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
|
|
}
|
|
|
|
Error runThinLTOBackendThread(
|
|
AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
|
|
BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
|
|
const FunctionImporter::ImportMapTy &ImportList,
|
|
const FunctionImporter::ExportSetTy &ExportList,
|
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
|
const GVSummaryMapTy &DefinedGlobals,
|
|
MapVector<StringRef, BitcodeModule> &ModuleMap) {
|
|
auto RunThinBackend = [&](AddStreamFn AddStream) {
|
|
LTOLLVMContext BackendContext(Conf);
|
|
Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
|
|
if (!MOrErr)
|
|
return MOrErr.takeError();
|
|
|
|
return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
|
|
ImportList, DefinedGlobals, &ModuleMap);
|
|
};
|
|
|
|
auto ModuleID = BM.getModuleIdentifier();
|
|
|
|
if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
|
|
all_of(CombinedIndex.getModuleHash(ModuleID),
|
|
[](uint32_t V) { return V == 0; }))
|
|
// Cache disabled or no entry for this module in the combined index or
|
|
// no module hash.
|
|
return RunThinBackend(AddStream);
|
|
|
|
SmallString<40> Key;
|
|
// The module may be cached, this helps handling it.
|
|
computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
|
|
ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
|
|
CfiFunctionDecls);
|
|
if (AddStreamFn CacheAddStream = Cache(Task, Key))
|
|
return RunThinBackend(CacheAddStream);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error start(
|
|
unsigned Task, BitcodeModule BM,
|
|
const FunctionImporter::ImportMapTy &ImportList,
|
|
const FunctionImporter::ExportSetTy &ExportList,
|
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
|
MapVector<StringRef, BitcodeModule> &ModuleMap) override {
|
|
StringRef ModulePath = BM.getModuleIdentifier();
|
|
assert(ModuleToDefinedGVSummaries.count(ModulePath));
|
|
const GVSummaryMapTy &DefinedGlobals =
|
|
ModuleToDefinedGVSummaries.find(ModulePath)->second;
|
|
BackendThreadPool.async(
|
|
[=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
|
|
const FunctionImporter::ImportMapTy &ImportList,
|
|
const FunctionImporter::ExportSetTy &ExportList,
|
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
|
|
&ResolvedODR,
|
|
const GVSummaryMapTy &DefinedGlobals,
|
|
MapVector<StringRef, BitcodeModule> &ModuleMap) {
|
|
if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
|
|
timeTraceProfilerInitialize(Conf.TimeTraceGranularity,
|
|
"thin backend");
|
|
Error E = runThinLTOBackendThread(
|
|
AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
|
|
ResolvedODR, DefinedGlobals, ModuleMap);
|
|
if (E) {
|
|
std::unique_lock<std::mutex> L(ErrMu);
|
|
if (Err)
|
|
Err = joinErrors(std::move(*Err), std::move(E));
|
|
else
|
|
Err = std::move(E);
|
|
}
|
|
if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
|
|
timeTraceProfilerFinishThread();
|
|
},
|
|
BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
|
|
std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
|
|
return Error::success();
|
|
}
|
|
|
|
Error wait() override {
|
|
BackendThreadPool.wait();
|
|
if (Err)
|
|
return std::move(*Err);
|
|
else
|
|
return Error::success();
|
|
}
|
|
|
|
unsigned getThreadCount() override {
|
|
return BackendThreadPool.getThreadCount();
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) {
|
|
return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
|
AddStreamFn AddStream, NativeObjectCache Cache) {
|
|
return std::make_unique<InProcessThinBackend>(
|
|
Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream,
|
|
Cache);
|
|
};
|
|
}
|
|
|
|
// Given the original \p Path to an output file, replace any path
|
|
// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
|
|
// resulting directory if it does not yet exist.
|
|
std::string lto::getThinLTOOutputFile(const std::string &Path,
|
|
const std::string &OldPrefix,
|
|
const std::string &NewPrefix) {
|
|
if (OldPrefix.empty() && NewPrefix.empty())
|
|
return Path;
|
|
SmallString<128> NewPath(Path);
|
|
llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
|
|
StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
|
|
if (!ParentPath.empty()) {
|
|
// Make sure the new directory exists, creating it if necessary.
|
|
if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
|
|
llvm::errs() << "warning: could not create directory '" << ParentPath
|
|
<< "': " << EC.message() << '\n';
|
|
}
|
|
return std::string(NewPath.str());
|
|
}
|
|
|
|
namespace {
|
|
class WriteIndexesThinBackend : public ThinBackendProc {
|
|
std::string OldPrefix, NewPrefix;
|
|
bool ShouldEmitImportsFiles;
|
|
raw_fd_ostream *LinkedObjectsFile;
|
|
lto::IndexWriteCallback OnWrite;
|
|
|
|
public:
|
|
WriteIndexesThinBackend(
|
|
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
|
std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
|
|
raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
|
|
: ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
|
|
OldPrefix(OldPrefix), NewPrefix(NewPrefix),
|
|
ShouldEmitImportsFiles(ShouldEmitImportsFiles),
|
|
LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
|
|
|
|
Error start(
|
|
unsigned Task, BitcodeModule BM,
|
|
const FunctionImporter::ImportMapTy &ImportList,
|
|
const FunctionImporter::ExportSetTy &ExportList,
|
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
|
MapVector<StringRef, BitcodeModule> &ModuleMap) override {
|
|
StringRef ModulePath = BM.getModuleIdentifier();
|
|
std::string NewModulePath =
|
|
getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix);
|
|
|
|
if (LinkedObjectsFile)
|
|
*LinkedObjectsFile << NewModulePath << '\n';
|
|
|
|
std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
|
|
gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
|
|
ImportList, ModuleToSummariesForIndex);
|
|
|
|
std::error_code EC;
|
|
raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
|
|
sys::fs::OpenFlags::OF_None);
|
|
if (EC)
|
|
return errorCodeToError(EC);
|
|
WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
|
|
|
|
if (ShouldEmitImportsFiles) {
|
|
EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
|
|
ModuleToSummariesForIndex);
|
|
if (EC)
|
|
return errorCodeToError(EC);
|
|
}
|
|
|
|
if (OnWrite)
|
|
OnWrite(std::string(ModulePath));
|
|
return Error::success();
|
|
}
|
|
|
|
Error wait() override { return Error::success(); }
|
|
|
|
// WriteIndexesThinBackend should always return 1 to prevent module
|
|
// re-ordering and avoid non-determinism in the final link.
|
|
unsigned getThreadCount() override { return 1; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ThinBackend lto::createWriteIndexesThinBackend(
|
|
std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
|
|
raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
|
|
return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
|
AddStreamFn AddStream, NativeObjectCache Cache) {
|
|
return std::make_unique<WriteIndexesThinBackend>(
|
|
Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
|
|
ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
|
|
};
|
|
}
|
|
|
|
Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
|
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
|
if (ThinLTO.ModuleMap.empty())
|
|
return Error::success();
|
|
|
|
if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) {
|
|
llvm::errs() << "warning: [ThinLTO] No module compiled\n";
|
|
return Error::success();
|
|
}
|
|
|
|
if (Conf.CombinedIndexHook &&
|
|
!Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols))
|
|
return Error::success();
|
|
|
|
// Collect for each module the list of function it defines (GUID ->
|
|
// Summary).
|
|
StringMap<GVSummaryMapTy>
|
|
ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
|
|
ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
|
|
ModuleToDefinedGVSummaries);
|
|
// Create entries for any modules that didn't have any GV summaries
|
|
// (either they didn't have any GVs to start with, or we suppressed
|
|
// generation of the summaries because they e.g. had inline assembly
|
|
// uses that couldn't be promoted/renamed on export). This is so
|
|
// InProcessThinBackend::start can still launch a backend thread, which
|
|
// is passed the map of summaries for the module, without any special
|
|
// handling for this case.
|
|
for (auto &Mod : ThinLTO.ModuleMap)
|
|
if (!ModuleToDefinedGVSummaries.count(Mod.first))
|
|
ModuleToDefinedGVSummaries.try_emplace(Mod.first);
|
|
|
|
// Synthesize entry counts for functions in the CombinedIndex.
|
|
computeSyntheticCounts(ThinLTO.CombinedIndex);
|
|
|
|
StringMap<FunctionImporter::ImportMapTy> ImportLists(
|
|
ThinLTO.ModuleMap.size());
|
|
StringMap<FunctionImporter::ExportSetTy> ExportLists(
|
|
ThinLTO.ModuleMap.size());
|
|
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
|
|
|
|
if (DumpThinCGSCCs)
|
|
ThinLTO.CombinedIndex.dumpSCCs(outs());
|
|
|
|
std::set<GlobalValue::GUID> ExportedGUIDs;
|
|
|
|
// If allowed, upgrade public vcall visibility to linkage unit visibility in
|
|
// the summaries before whole program devirtualization below.
|
|
updateVCallVisibilityInIndex(ThinLTO.CombinedIndex,
|
|
Conf.HasWholeProgramVisibility,
|
|
DynamicExportSymbols);
|
|
|
|
// Perform index-based WPD. This will return immediately if there are
|
|
// no index entries in the typeIdMetadata map (e.g. if we are instead
|
|
// performing IR-based WPD in hybrid regular/thin LTO mode).
|
|
std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
|
|
runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
|
|
LocalWPDTargetsMap);
|
|
|
|
if (Conf.OptLevel > 0)
|
|
ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
|
|
ImportLists, ExportLists);
|
|
|
|
// Figure out which symbols need to be internalized. This also needs to happen
|
|
// at -O0 because summary-based DCE is implemented using internalization, and
|
|
// we must apply DCE consistently with the full LTO module in order to avoid
|
|
// undefined references during the final link.
|
|
for (auto &Res : GlobalResolutions) {
|
|
// If the symbol does not have external references or it is not prevailing,
|
|
// then not need to mark it as exported from a ThinLTO partition.
|
|
if (Res.second.Partition != GlobalResolution::External ||
|
|
!Res.second.isPrevailingIRSymbol())
|
|
continue;
|
|
auto GUID = GlobalValue::getGUID(
|
|
GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
|
|
// Mark exported unless index-based analysis determined it to be dead.
|
|
if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
|
|
ExportedGUIDs.insert(GUID);
|
|
}
|
|
|
|
// Any functions referenced by the jump table in the regular LTO object must
|
|
// be exported.
|
|
for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
|
|
ExportedGUIDs.insert(
|
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
|
|
for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls())
|
|
ExportedGUIDs.insert(
|
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl)));
|
|
|
|
auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
|
|
const auto &ExportList = ExportLists.find(ModuleIdentifier);
|
|
return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
|
|
ExportedGUIDs.count(VI.getGUID());
|
|
};
|
|
|
|
// Update local devirtualized targets that were exported by cross-module
|
|
// importing or by other devirtualizations marked in the ExportedGUIDs set.
|
|
updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
|
|
LocalWPDTargetsMap);
|
|
|
|
auto isPrevailing = [&](GlobalValue::GUID GUID,
|
|
const GlobalValueSummary *S) {
|
|
return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
|
|
};
|
|
thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
|
|
isPrevailing);
|
|
|
|
auto recordNewLinkage = [&](StringRef ModuleIdentifier,
|
|
GlobalValue::GUID GUID,
|
|
GlobalValue::LinkageTypes NewLinkage) {
|
|
ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
|
|
};
|
|
thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing,
|
|
recordNewLinkage, GUIDPreservedSymbols);
|
|
|
|
generateParamAccessSummary(ThinLTO.CombinedIndex);
|
|
|
|
std::unique_ptr<ThinBackendProc> BackendProc =
|
|
ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
|
|
AddStream, Cache);
|
|
|
|
auto &ModuleMap =
|
|
ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap;
|
|
|
|
auto ProcessOneModule = [&](int I) -> Error {
|
|
auto &Mod = *(ModuleMap.begin() + I);
|
|
// Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
|
|
// combined module and parallel code generation partitions.
|
|
return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I,
|
|
Mod.second, ImportLists[Mod.first],
|
|
ExportLists[Mod.first], ResolvedODR[Mod.first],
|
|
ThinLTO.ModuleMap);
|
|
};
|
|
|
|
if (BackendProc->getThreadCount() == 1) {
|
|
// Process the modules in the order they were provided on the command-line.
|
|
// It is important for this codepath to be used for WriteIndexesThinBackend,
|
|
// to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
|
|
// order as the inputs, which otherwise would affect the final link order.
|
|
for (int I = 0, E = ModuleMap.size(); I != E; ++I)
|
|
if (Error E = ProcessOneModule(I))
|
|
return E;
|
|
} else {
|
|
// When executing in parallel, process largest bitsize modules first to
|
|
// improve parallelism, and avoid starving the thread pool near the end.
|
|
// This saves about 15 sec on a 36-core machine while link `clang.exe` (out
|
|
// of 100 sec).
|
|
std::vector<BitcodeModule *> ModulesVec;
|
|
ModulesVec.reserve(ModuleMap.size());
|
|
for (auto &Mod : ModuleMap)
|
|
ModulesVec.push_back(&Mod.second);
|
|
for (int I : generateModulesOrdering(ModulesVec))
|
|
if (Error E = ProcessOneModule(I))
|
|
return E;
|
|
}
|
|
return BackendProc->wait();
|
|
}
|
|
|
|
Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks(
|
|
LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
|
|
StringRef RemarksFormat, bool RemarksWithHotness,
|
|
Optional<uint64_t> RemarksHotnessThreshold, int Count) {
|
|
std::string Filename = std::string(RemarksFilename);
|
|
// For ThinLTO, file.opt.<format> becomes
|
|
// file.opt.<format>.thin.<num>.<format>.
|
|
if (!Filename.empty() && Count != -1)
|
|
Filename =
|
|
(Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat)
|
|
.str();
|
|
|
|
auto ResultOrErr = llvm::setupLLVMOptimizationRemarks(
|
|
Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness,
|
|
RemarksHotnessThreshold);
|
|
if (Error E = ResultOrErr.takeError())
|
|
return std::move(E);
|
|
|
|
if (*ResultOrErr)
|
|
(*ResultOrErr)->keep();
|
|
|
|
return ResultOrErr;
|
|
}
|
|
|
|
Expected<std::unique_ptr<ToolOutputFile>>
|
|
lto::setupStatsFile(StringRef StatsFilename) {
|
|
// Setup output file to emit statistics.
|
|
if (StatsFilename.empty())
|
|
return nullptr;
|
|
|
|
llvm::EnableStatistics(false);
|
|
std::error_code EC;
|
|
auto StatsFile =
|
|
std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
|
|
if (EC)
|
|
return errorCodeToError(EC);
|
|
|
|
StatsFile->keep();
|
|
return std::move(StatsFile);
|
|
}
|
|
|
|
// Compute the ordering we will process the inputs: the rough heuristic here
|
|
// is to sort them per size so that the largest module get schedule as soon as
|
|
// possible. This is purely a compile-time optimization.
|
|
std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) {
|
|
std::vector<int> ModulesOrdering;
|
|
ModulesOrdering.resize(R.size());
|
|
std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
|
|
llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) {
|
|
auto LSize = R[LeftIndex]->getBuffer().size();
|
|
auto RSize = R[RightIndex]->getBuffer().size();
|
|
return LSize > RSize;
|
|
});
|
|
return ModulesOrdering;
|
|
}
|