1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Fuzzer/FuzzerUtil.cpp
Marcos Pividori 79b26fd29b [libFuzzer] Properly use unsigned for workers, jobs and NumberOfCpuCores.
std:🧵:hardware_concurrency() returns an unsigned, so I modify
NumberOfCpuCores() to return unsigned too.
The number of cpus is used to define the number of workers, so I decided
to update the worker and jobs flags to be declared as unsigned too.

Differential Revision: https://reviews.llvm.org/D27685

llvm-svn: 289559
2016-12-13 17:45:53 +00:00

219 lines
5.9 KiB
C++

//===- FuzzerUtil.cpp - Misc utils ----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Misc utils.
//===----------------------------------------------------------------------===//
#include "FuzzerUtil.h"
#include "FuzzerIO.h"
#include "FuzzerInternal.h"
#include <cassert>
#include <chrono>
#include <cstring>
#include <errno.h>
#include <signal.h>
#include <sstream>
#include <stdio.h>
#include <sys/types.h>
#include <thread>
namespace fuzzer {
void PrintHexArray(const uint8_t *Data, size_t Size,
const char *PrintAfter) {
for (size_t i = 0; i < Size; i++)
Printf("0x%x,", (unsigned)Data[i]);
Printf("%s", PrintAfter);
}
void Print(const Unit &v, const char *PrintAfter) {
PrintHexArray(v.data(), v.size(), PrintAfter);
}
void PrintASCIIByte(uint8_t Byte) {
if (Byte == '\\')
Printf("\\\\");
else if (Byte == '"')
Printf("\\\"");
else if (Byte >= 32 && Byte < 127)
Printf("%c", Byte);
else
Printf("\\x%02x", Byte);
}
void PrintASCII(const uint8_t *Data, size_t Size, const char *PrintAfter) {
for (size_t i = 0; i < Size; i++)
PrintASCIIByte(Data[i]);
Printf("%s", PrintAfter);
}
void PrintASCII(const Unit &U, const char *PrintAfter) {
PrintASCII(U.data(), U.size(), PrintAfter);
}
bool ToASCII(uint8_t *Data, size_t Size) {
bool Changed = false;
for (size_t i = 0; i < Size; i++) {
uint8_t &X = Data[i];
auto NewX = X;
NewX &= 127;
if (!isspace(NewX) && !isprint(NewX))
NewX = ' ';
Changed |= NewX != X;
X = NewX;
}
return Changed;
}
bool IsASCII(const Unit &U) { return IsASCII(U.data(), U.size()); }
bool IsASCII(const uint8_t *Data, size_t Size) {
for (size_t i = 0; i < Size; i++)
if (!(isprint(Data[i]) || isspace(Data[i]))) return false;
return true;
}
bool ParseOneDictionaryEntry(const std::string &Str, Unit *U) {
U->clear();
if (Str.empty()) return false;
size_t L = 0, R = Str.size() - 1; // We are parsing the range [L,R].
// Skip spaces from both sides.
while (L < R && isspace(Str[L])) L++;
while (R > L && isspace(Str[R])) R--;
if (R - L < 2) return false;
// Check the closing "
if (Str[R] != '"') return false;
R--;
// Find the opening "
while (L < R && Str[L] != '"') L++;
if (L >= R) return false;
assert(Str[L] == '\"');
L++;
assert(L <= R);
for (size_t Pos = L; Pos <= R; Pos++) {
uint8_t V = (uint8_t)Str[Pos];
if (!isprint(V) && !isspace(V)) return false;
if (V =='\\') {
// Handle '\\'
if (Pos + 1 <= R && (Str[Pos + 1] == '\\' || Str[Pos + 1] == '"')) {
U->push_back(Str[Pos + 1]);
Pos++;
continue;
}
// Handle '\xAB'
if (Pos + 3 <= R && Str[Pos + 1] == 'x'
&& isxdigit(Str[Pos + 2]) && isxdigit(Str[Pos + 3])) {
char Hex[] = "0xAA";
Hex[2] = Str[Pos + 2];
Hex[3] = Str[Pos + 3];
U->push_back(strtol(Hex, nullptr, 16));
Pos += 3;
continue;
}
return false; // Invalid escape.
} else {
// Any other character.
U->push_back(V);
}
}
return true;
}
bool ParseDictionaryFile(const std::string &Text, std::vector<Unit> *Units) {
if (Text.empty()) {
Printf("ParseDictionaryFile: file does not exist or is empty\n");
return false;
}
std::istringstream ISS(Text);
Units->clear();
Unit U;
int LineNo = 0;
std::string S;
while (std::getline(ISS, S, '\n')) {
LineNo++;
size_t Pos = 0;
while (Pos < S.size() && isspace(S[Pos])) Pos++; // Skip spaces.
if (Pos == S.size()) continue; // Empty line.
if (S[Pos] == '#') continue; // Comment line.
if (ParseOneDictionaryEntry(S, &U)) {
Units->push_back(U);
} else {
Printf("ParseDictionaryFile: error in line %d\n\t\t%s\n", LineNo,
S.c_str());
return false;
}
}
return true;
}
std::string Base64(const Unit &U) {
static const char Table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
std::string Res;
size_t i;
for (i = 0; i + 2 < U.size(); i += 3) {
uint32_t x = (U[i] << 16) + (U[i + 1] << 8) + U[i + 2];
Res += Table[(x >> 18) & 63];
Res += Table[(x >> 12) & 63];
Res += Table[(x >> 6) & 63];
Res += Table[x & 63];
}
if (i + 1 == U.size()) {
uint32_t x = (U[i] << 16);
Res += Table[(x >> 18) & 63];
Res += Table[(x >> 12) & 63];
Res += "==";
} else if (i + 2 == U.size()) {
uint32_t x = (U[i] << 16) + (U[i + 1] << 8);
Res += Table[(x >> 18) & 63];
Res += Table[(x >> 12) & 63];
Res += Table[(x >> 6) & 63];
Res += "=";
}
return Res;
}
std::string DescribePC(const char *SymbolizedFMT, uintptr_t PC) {
if (!EF->__sanitizer_symbolize_pc) return "<can not symbolize>";
char PcDescr[1024];
EF->__sanitizer_symbolize_pc(reinterpret_cast<void*>(PC),
SymbolizedFMT, PcDescr, sizeof(PcDescr));
PcDescr[sizeof(PcDescr) - 1] = 0; // Just in case.
return PcDescr;
}
void PrintPC(const char *SymbolizedFMT, const char *FallbackFMT, uintptr_t PC) {
if (EF->__sanitizer_symbolize_pc)
Printf("%s", DescribePC(SymbolizedFMT, PC).c_str());
else
Printf(FallbackFMT, PC);
}
unsigned NumberOfCpuCores() {
unsigned N = std::thread::hardware_concurrency();
if (!N) {
Printf("WARNING: std::thread::hardware_concurrency not well defined for "
"your platform. Assuming CPU count of 1.\n");
N = 1;
}
return N;
}
bool ExecuteCommandAndReadOutput(const std::string &Command, std::string *Out) {
FILE *Pipe = OpenProcessPipe(Command.c_str(), "r");
if (!Pipe) return false;
char Buff[1024];
size_t N;
while ((N = fread(Buff, 1, sizeof(Buff), Pipe)) > 0)
Out->append(Buff, N);
return true;
}
} // namespace fuzzer