mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
c92524272b
Identified with llvm-header-guard.
599 lines
21 KiB
C++
599 lines
21 KiB
C++
//===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
|
|
//
|
|
// Software pipelining (SWP) is an instruction scheduling technique for loops
|
|
// that overlap loop iterations and exploits ILP via a compiler transformation.
|
|
//
|
|
// Swing Modulo Scheduling is an implementation of software pipelining
|
|
// that generates schedules that are near optimal in terms of initiation
|
|
// interval, register requirements, and stage count. See the papers:
|
|
//
|
|
// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
|
|
// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
|
|
// Conference on Parallel Architectures and Compilation Techiniques.
|
|
//
|
|
// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
|
|
// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
|
|
// Transactions on Computers, Vol. 50, No. 3, 2001.
|
|
//
|
|
// "An Implementation of Swing Modulo Scheduling With Extensions for
|
|
// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
|
|
// Urbana-Champaign, 2005.
|
|
//
|
|
//
|
|
// The SMS algorithm consists of three main steps after computing the minimal
|
|
// initiation interval (MII).
|
|
// 1) Analyze the dependence graph and compute information about each
|
|
// instruction in the graph.
|
|
// 2) Order the nodes (instructions) by priority based upon the heuristics
|
|
// described in the algorithm.
|
|
// 3) Attempt to schedule the nodes in the specified order using the MII.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
|
|
#define LLVM_CODEGEN_MACHINEPIPELINER_H
|
|
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
|
|
namespace llvm {
|
|
|
|
class AAResults;
|
|
class NodeSet;
|
|
class SMSchedule;
|
|
|
|
extern cl::opt<bool> SwpEnableCopyToPhi;
|
|
|
|
/// The main class in the implementation of the target independent
|
|
/// software pipeliner pass.
|
|
class MachinePipeliner : public MachineFunctionPass {
|
|
public:
|
|
MachineFunction *MF = nullptr;
|
|
MachineOptimizationRemarkEmitter *ORE = nullptr;
|
|
const MachineLoopInfo *MLI = nullptr;
|
|
const MachineDominatorTree *MDT = nullptr;
|
|
const InstrItineraryData *InstrItins;
|
|
const TargetInstrInfo *TII = nullptr;
|
|
RegisterClassInfo RegClassInfo;
|
|
bool disabledByPragma = false;
|
|
unsigned II_setByPragma = 0;
|
|
|
|
#ifndef NDEBUG
|
|
static int NumTries;
|
|
#endif
|
|
|
|
/// Cache the target analysis information about the loop.
|
|
struct LoopInfo {
|
|
MachineBasicBlock *TBB = nullptr;
|
|
MachineBasicBlock *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> BrCond;
|
|
MachineInstr *LoopInductionVar = nullptr;
|
|
MachineInstr *LoopCompare = nullptr;
|
|
};
|
|
LoopInfo LI;
|
|
|
|
static char ID;
|
|
|
|
MachinePipeliner() : MachineFunctionPass(ID) {
|
|
initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
private:
|
|
void preprocessPhiNodes(MachineBasicBlock &B);
|
|
bool canPipelineLoop(MachineLoop &L);
|
|
bool scheduleLoop(MachineLoop &L);
|
|
bool swingModuloScheduler(MachineLoop &L);
|
|
void setPragmaPipelineOptions(MachineLoop &L);
|
|
};
|
|
|
|
/// This class builds the dependence graph for the instructions in a loop,
|
|
/// and attempts to schedule the instructions using the SMS algorithm.
|
|
class SwingSchedulerDAG : public ScheduleDAGInstrs {
|
|
MachinePipeliner &Pass;
|
|
/// The minimum initiation interval between iterations for this schedule.
|
|
unsigned MII = 0;
|
|
/// The maximum initiation interval between iterations for this schedule.
|
|
unsigned MAX_II = 0;
|
|
/// Set to true if a valid pipelined schedule is found for the loop.
|
|
bool Scheduled = false;
|
|
MachineLoop &Loop;
|
|
LiveIntervals &LIS;
|
|
const RegisterClassInfo &RegClassInfo;
|
|
unsigned II_setByPragma = 0;
|
|
|
|
/// A toplogical ordering of the SUnits, which is needed for changing
|
|
/// dependences and iterating over the SUnits.
|
|
ScheduleDAGTopologicalSort Topo;
|
|
|
|
struct NodeInfo {
|
|
int ASAP = 0;
|
|
int ALAP = 0;
|
|
int ZeroLatencyDepth = 0;
|
|
int ZeroLatencyHeight = 0;
|
|
|
|
NodeInfo() = default;
|
|
};
|
|
/// Computed properties for each node in the graph.
|
|
std::vector<NodeInfo> ScheduleInfo;
|
|
|
|
enum OrderKind { BottomUp = 0, TopDown = 1 };
|
|
/// Computed node ordering for scheduling.
|
|
SetVector<SUnit *> NodeOrder;
|
|
|
|
using NodeSetType = SmallVector<NodeSet, 8>;
|
|
using ValueMapTy = DenseMap<unsigned, unsigned>;
|
|
using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
|
|
using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
|
|
|
|
/// Instructions to change when emitting the final schedule.
|
|
DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
|
|
|
|
/// We may create a new instruction, so remember it because it
|
|
/// must be deleted when the pass is finished.
|
|
DenseMap<MachineInstr*, MachineInstr *> NewMIs;
|
|
|
|
/// Ordered list of DAG postprocessing steps.
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
|
|
|
|
/// Helper class to implement Johnson's circuit finding algorithm.
|
|
class Circuits {
|
|
std::vector<SUnit> &SUnits;
|
|
SetVector<SUnit *> Stack;
|
|
BitVector Blocked;
|
|
SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
|
|
SmallVector<SmallVector<int, 4>, 16> AdjK;
|
|
// Node to Index from ScheduleDAGTopologicalSort
|
|
std::vector<int> *Node2Idx;
|
|
unsigned NumPaths;
|
|
static unsigned MaxPaths;
|
|
|
|
public:
|
|
Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
|
|
: SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
|
|
Node2Idx = new std::vector<int>(SUs.size());
|
|
unsigned Idx = 0;
|
|
for (const auto &NodeNum : Topo)
|
|
Node2Idx->at(NodeNum) = Idx++;
|
|
}
|
|
|
|
~Circuits() { delete Node2Idx; }
|
|
|
|
/// Reset the data structures used in the circuit algorithm.
|
|
void reset() {
|
|
Stack.clear();
|
|
Blocked.reset();
|
|
B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
|
|
NumPaths = 0;
|
|
}
|
|
|
|
void createAdjacencyStructure(SwingSchedulerDAG *DAG);
|
|
bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
|
|
void unblock(int U);
|
|
};
|
|
|
|
struct CopyToPhiMutation : public ScheduleDAGMutation {
|
|
void apply(ScheduleDAGInstrs *DAG) override;
|
|
};
|
|
|
|
public:
|
|
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
|
|
const RegisterClassInfo &rci, unsigned II)
|
|
: ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
|
|
RegClassInfo(rci), II_setByPragma(II), Topo(SUnits, &ExitSU) {
|
|
P.MF->getSubtarget().getSMSMutations(Mutations);
|
|
if (SwpEnableCopyToPhi)
|
|
Mutations.push_back(std::make_unique<CopyToPhiMutation>());
|
|
}
|
|
|
|
void schedule() override;
|
|
void finishBlock() override;
|
|
|
|
/// Return true if the loop kernel has been scheduled.
|
|
bool hasNewSchedule() { return Scheduled; }
|
|
|
|
/// Return the earliest time an instruction may be scheduled.
|
|
int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
|
|
|
|
/// Return the latest time an instruction my be scheduled.
|
|
int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
|
|
|
|
/// The mobility function, which the number of slots in which
|
|
/// an instruction may be scheduled.
|
|
int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
|
|
|
|
/// The depth, in the dependence graph, for a node.
|
|
unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
|
|
|
|
/// The maximum unweighted length of a path from an arbitrary node to the
|
|
/// given node in which each edge has latency 0
|
|
int getZeroLatencyDepth(SUnit *Node) {
|
|
return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
|
|
}
|
|
|
|
/// The height, in the dependence graph, for a node.
|
|
unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
|
|
|
|
/// The maximum unweighted length of a path from the given node to an
|
|
/// arbitrary node in which each edge has latency 0
|
|
int getZeroLatencyHeight(SUnit *Node) {
|
|
return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
|
|
}
|
|
|
|
/// Return true if the dependence is a back-edge in the data dependence graph.
|
|
/// Since the DAG doesn't contain cycles, we represent a cycle in the graph
|
|
/// using an anti dependence from a Phi to an instruction.
|
|
bool isBackedge(SUnit *Source, const SDep &Dep) {
|
|
if (Dep.getKind() != SDep::Anti)
|
|
return false;
|
|
return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
|
|
}
|
|
|
|
bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
|
|
|
|
/// The distance function, which indicates that operation V of iteration I
|
|
/// depends on operations U of iteration I-distance.
|
|
unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
|
|
// Instructions that feed a Phi have a distance of 1. Computing larger
|
|
// values for arrays requires data dependence information.
|
|
if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
|
|
|
|
void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
|
|
|
|
/// Return the new base register that was stored away for the changed
|
|
/// instruction.
|
|
unsigned getInstrBaseReg(SUnit *SU) {
|
|
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
|
|
InstrChanges.find(SU);
|
|
if (It != InstrChanges.end())
|
|
return It->second.first;
|
|
return 0;
|
|
}
|
|
|
|
void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
|
|
Mutations.push_back(std::move(Mutation));
|
|
}
|
|
|
|
static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
|
|
|
|
private:
|
|
void addLoopCarriedDependences(AAResults *AA);
|
|
void updatePhiDependences();
|
|
void changeDependences();
|
|
unsigned calculateResMII();
|
|
unsigned calculateRecMII(NodeSetType &RecNodeSets);
|
|
void findCircuits(NodeSetType &NodeSets);
|
|
void fuseRecs(NodeSetType &NodeSets);
|
|
void removeDuplicateNodes(NodeSetType &NodeSets);
|
|
void computeNodeFunctions(NodeSetType &NodeSets);
|
|
void registerPressureFilter(NodeSetType &NodeSets);
|
|
void colocateNodeSets(NodeSetType &NodeSets);
|
|
void checkNodeSets(NodeSetType &NodeSets);
|
|
void groupRemainingNodes(NodeSetType &NodeSets);
|
|
void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
|
|
SetVector<SUnit *> &NodesAdded);
|
|
void computeNodeOrder(NodeSetType &NodeSets);
|
|
void checkValidNodeOrder(const NodeSetType &Circuits) const;
|
|
bool schedulePipeline(SMSchedule &Schedule);
|
|
bool computeDelta(MachineInstr &MI, unsigned &Delta);
|
|
MachineInstr *findDefInLoop(Register Reg);
|
|
bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
|
|
unsigned &OffsetPos, unsigned &NewBase,
|
|
int64_t &NewOffset);
|
|
void postprocessDAG();
|
|
/// Set the Minimum Initiation Interval for this schedule attempt.
|
|
void setMII(unsigned ResMII, unsigned RecMII);
|
|
/// Set the Maximum Initiation Interval for this schedule attempt.
|
|
void setMAX_II();
|
|
};
|
|
|
|
/// A NodeSet contains a set of SUnit DAG nodes with additional information
|
|
/// that assigns a priority to the set.
|
|
class NodeSet {
|
|
SetVector<SUnit *> Nodes;
|
|
bool HasRecurrence = false;
|
|
unsigned RecMII = 0;
|
|
int MaxMOV = 0;
|
|
unsigned MaxDepth = 0;
|
|
unsigned Colocate = 0;
|
|
SUnit *ExceedPressure = nullptr;
|
|
unsigned Latency = 0;
|
|
|
|
public:
|
|
using iterator = SetVector<SUnit *>::const_iterator;
|
|
|
|
NodeSet() = default;
|
|
NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
|
|
Latency = 0;
|
|
for (unsigned i = 0, e = Nodes.size(); i < e; ++i) {
|
|
DenseMap<SUnit *, unsigned> SuccSUnitLatency;
|
|
for (const SDep &Succ : Nodes[i]->Succs) {
|
|
auto SuccSUnit = Succ.getSUnit();
|
|
if (!Nodes.count(SuccSUnit))
|
|
continue;
|
|
unsigned CurLatency = Succ.getLatency();
|
|
unsigned MaxLatency = 0;
|
|
if (SuccSUnitLatency.count(SuccSUnit))
|
|
MaxLatency = SuccSUnitLatency[SuccSUnit];
|
|
if (CurLatency > MaxLatency)
|
|
SuccSUnitLatency[SuccSUnit] = CurLatency;
|
|
}
|
|
for (auto SUnitLatency : SuccSUnitLatency)
|
|
Latency += SUnitLatency.second;
|
|
}
|
|
}
|
|
|
|
bool insert(SUnit *SU) { return Nodes.insert(SU); }
|
|
|
|
void insert(iterator S, iterator E) { Nodes.insert(S, E); }
|
|
|
|
template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
|
|
return Nodes.remove_if(P);
|
|
}
|
|
|
|
unsigned count(SUnit *SU) const { return Nodes.count(SU); }
|
|
|
|
bool hasRecurrence() { return HasRecurrence; };
|
|
|
|
unsigned size() const { return Nodes.size(); }
|
|
|
|
bool empty() const { return Nodes.empty(); }
|
|
|
|
SUnit *getNode(unsigned i) const { return Nodes[i]; };
|
|
|
|
void setRecMII(unsigned mii) { RecMII = mii; };
|
|
|
|
void setColocate(unsigned c) { Colocate = c; };
|
|
|
|
void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
|
|
|
|
bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
|
|
|
|
int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
|
|
|
|
int getRecMII() { return RecMII; }
|
|
|
|
/// Summarize node functions for the entire node set.
|
|
void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
|
|
for (SUnit *SU : *this) {
|
|
MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
|
|
MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
|
|
}
|
|
}
|
|
|
|
unsigned getLatency() { return Latency; }
|
|
|
|
unsigned getMaxDepth() { return MaxDepth; }
|
|
|
|
void clear() {
|
|
Nodes.clear();
|
|
RecMII = 0;
|
|
HasRecurrence = false;
|
|
MaxMOV = 0;
|
|
MaxDepth = 0;
|
|
Colocate = 0;
|
|
ExceedPressure = nullptr;
|
|
}
|
|
|
|
operator SetVector<SUnit *> &() { return Nodes; }
|
|
|
|
/// Sort the node sets by importance. First, rank them by recurrence MII,
|
|
/// then by mobility (least mobile done first), and finally by depth.
|
|
/// Each node set may contain a colocate value which is used as the first
|
|
/// tie breaker, if it's set.
|
|
bool operator>(const NodeSet &RHS) const {
|
|
if (RecMII == RHS.RecMII) {
|
|
if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
|
|
return Colocate < RHS.Colocate;
|
|
if (MaxMOV == RHS.MaxMOV)
|
|
return MaxDepth > RHS.MaxDepth;
|
|
return MaxMOV < RHS.MaxMOV;
|
|
}
|
|
return RecMII > RHS.RecMII;
|
|
}
|
|
|
|
bool operator==(const NodeSet &RHS) const {
|
|
return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
|
|
MaxDepth == RHS.MaxDepth;
|
|
}
|
|
|
|
bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
|
|
|
|
iterator begin() { return Nodes.begin(); }
|
|
iterator end() { return Nodes.end(); }
|
|
void print(raw_ostream &os) const;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void dump() const;
|
|
#endif
|
|
};
|
|
|
|
// 16 was selected based on the number of ProcResource kinds for all
|
|
// existing Subtargets, so that SmallVector don't need to resize too often.
|
|
static const int DefaultProcResSize = 16;
|
|
|
|
class ResourceManager {
|
|
private:
|
|
const MCSubtargetInfo *STI;
|
|
const MCSchedModel &SM;
|
|
const bool UseDFA;
|
|
std::unique_ptr<DFAPacketizer> DFAResources;
|
|
/// Each processor resource is associated with a so-called processor resource
|
|
/// mask. This vector allows to correlate processor resource IDs with
|
|
/// processor resource masks. There is exactly one element per each processor
|
|
/// resource declared by the scheduling model.
|
|
llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceMasks;
|
|
|
|
llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceCount;
|
|
|
|
public:
|
|
ResourceManager(const TargetSubtargetInfo *ST)
|
|
: STI(ST), SM(ST->getSchedModel()), UseDFA(ST->useDFAforSMS()),
|
|
ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
|
|
ProcResourceCount(SM.getNumProcResourceKinds(), 0) {
|
|
if (UseDFA)
|
|
DFAResources.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
|
|
initProcResourceVectors(SM, ProcResourceMasks);
|
|
}
|
|
|
|
void initProcResourceVectors(const MCSchedModel &SM,
|
|
SmallVectorImpl<uint64_t> &Masks);
|
|
/// Check if the resources occupied by a MCInstrDesc are available in
|
|
/// the current state.
|
|
bool canReserveResources(const MCInstrDesc *MID) const;
|
|
|
|
/// Reserve the resources occupied by a MCInstrDesc and change the current
|
|
/// state to reflect that change.
|
|
void reserveResources(const MCInstrDesc *MID);
|
|
|
|
/// Check if the resources occupied by a machine instruction are available
|
|
/// in the current state.
|
|
bool canReserveResources(const MachineInstr &MI) const;
|
|
|
|
/// Reserve the resources occupied by a machine instruction and change the
|
|
/// current state to reflect that change.
|
|
void reserveResources(const MachineInstr &MI);
|
|
|
|
/// Reset the state
|
|
void clearResources();
|
|
};
|
|
|
|
/// This class represents the scheduled code. The main data structure is a
|
|
/// map from scheduled cycle to instructions. During scheduling, the
|
|
/// data structure explicitly represents all stages/iterations. When
|
|
/// the algorithm finshes, the schedule is collapsed into a single stage,
|
|
/// which represents instructions from different loop iterations.
|
|
///
|
|
/// The SMS algorithm allows negative values for cycles, so the first cycle
|
|
/// in the schedule is the smallest cycle value.
|
|
class SMSchedule {
|
|
private:
|
|
/// Map from execution cycle to instructions.
|
|
DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
|
|
|
|
/// Map from instruction to execution cycle.
|
|
std::map<SUnit *, int> InstrToCycle;
|
|
|
|
/// Keep track of the first cycle value in the schedule. It starts
|
|
/// as zero, but the algorithm allows negative values.
|
|
int FirstCycle = 0;
|
|
|
|
/// Keep track of the last cycle value in the schedule.
|
|
int LastCycle = 0;
|
|
|
|
/// The initiation interval (II) for the schedule.
|
|
int InitiationInterval = 0;
|
|
|
|
/// Target machine information.
|
|
const TargetSubtargetInfo &ST;
|
|
|
|
/// Virtual register information.
|
|
MachineRegisterInfo &MRI;
|
|
|
|
ResourceManager ProcItinResources;
|
|
|
|
public:
|
|
SMSchedule(MachineFunction *mf)
|
|
: ST(mf->getSubtarget()), MRI(mf->getRegInfo()), ProcItinResources(&ST) {}
|
|
|
|
void reset() {
|
|
ScheduledInstrs.clear();
|
|
InstrToCycle.clear();
|
|
FirstCycle = 0;
|
|
LastCycle = 0;
|
|
InitiationInterval = 0;
|
|
}
|
|
|
|
/// Set the initiation interval for this schedule.
|
|
void setInitiationInterval(int ii) { InitiationInterval = ii; }
|
|
|
|
/// Return the first cycle in the completed schedule. This
|
|
/// can be a negative value.
|
|
int getFirstCycle() const { return FirstCycle; }
|
|
|
|
/// Return the last cycle in the finalized schedule.
|
|
int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
|
|
|
|
/// Return the cycle of the earliest scheduled instruction in the dependence
|
|
/// chain.
|
|
int earliestCycleInChain(const SDep &Dep);
|
|
|
|
/// Return the cycle of the latest scheduled instruction in the dependence
|
|
/// chain.
|
|
int latestCycleInChain(const SDep &Dep);
|
|
|
|
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
|
|
int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
|
|
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
|
|
|
|
/// Iterators for the cycle to instruction map.
|
|
using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
|
|
using const_sched_iterator =
|
|
DenseMap<int, std::deque<SUnit *>>::const_iterator;
|
|
|
|
/// Return true if the instruction is scheduled at the specified stage.
|
|
bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
|
|
return (stageScheduled(SU) == (int)StageNum);
|
|
}
|
|
|
|
/// Return the stage for a scheduled instruction. Return -1 if
|
|
/// the instruction has not been scheduled.
|
|
int stageScheduled(SUnit *SU) const {
|
|
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
|
|
if (it == InstrToCycle.end())
|
|
return -1;
|
|
return (it->second - FirstCycle) / InitiationInterval;
|
|
}
|
|
|
|
/// Return the cycle for a scheduled instruction. This function normalizes
|
|
/// the first cycle to be 0.
|
|
unsigned cycleScheduled(SUnit *SU) const {
|
|
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
|
|
assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
|
|
return (it->second - FirstCycle) % InitiationInterval;
|
|
}
|
|
|
|
/// Return the maximum stage count needed for this schedule.
|
|
unsigned getMaxStageCount() {
|
|
return (LastCycle - FirstCycle) / InitiationInterval;
|
|
}
|
|
|
|
/// Return the instructions that are scheduled at the specified cycle.
|
|
std::deque<SUnit *> &getInstructions(int cycle) {
|
|
return ScheduledInstrs[cycle];
|
|
}
|
|
|
|
bool isValidSchedule(SwingSchedulerDAG *SSD);
|
|
void finalizeSchedule(SwingSchedulerDAG *SSD);
|
|
void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
|
|
std::deque<SUnit *> &Insts);
|
|
bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
|
|
bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
|
|
MachineOperand &MO);
|
|
void print(raw_ostream &os) const;
|
|
void dump() const;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_MACHINEPIPELINER_H
|