1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/tools/llvm-mca/Scheduler.cpp
Andrea Di Biagio 46e908a592 [llvm-mca] improve the instruction issue logic implemented by the Scheduler.
This patch modifies the Scheduler heuristic used to select the next instruction
to issue to the pipelines.

The motivating example is test X86/BtVer2/add-sequence.s, for which llvm-mca
wrongly reported an estimated IPC of 1.50. According to perf, the actual IPC for
that test should have been ~2.00.
It turns out that an IPC of 2.00 for test add-sequence.s cannot possibly be
predicted by a Scheduler that only prioritizes instructions based on their
"age". A similar issue also affected test X86/BtVer2/dependent-pmuld-paddd.s,
for which llvm-mca wrongly estimated an IPC of 0.84 instead of an IPC of 1.00.

Instructions in the ReadyQueue are now ranked based on two factors:
 - The "age" of an instruction.
 - The number of unique users of writes associated with an instruction.

The new logic still prioritizes older instructions over younger instructions to
minimize the pressure on the reorder buffer. However, the number of users of an
instruction now also affects the overall rank. This potentially increases the
ability of the Scheduler to extract instruction level parallelism.  This patch
fixes the problem with the wrong IPC reported for test add-sequence.s and test
dependent-pmuld-paddd.s.

llvm-svn: 336420
2018-07-06 08:08:30 +00:00

404 lines
13 KiB
C++

//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A scheduler for processor resource units and processor resource groups.
//
//===----------------------------------------------------------------------===//
#include "Scheduler.h"
#include "Support.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace mca {
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
uint64_t ResourceState::selectNextInSequence() {
assert(isReady());
uint64_t Next = getNextInSequence();
while (!isSubResourceReady(Next)) {
updateNextInSequence();
Next = getNextInSequence();
}
return Next;
}
#ifndef NDEBUG
void ResourceState::dump() const {
dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask
<< ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask
<< ", BufferSize=" << BufferSize
<< ", AvailableSlots=" << AvailableSlots
<< ", Reserved=" << Unavailable << '\n';
}
#endif
void ResourceManager::initialize(const llvm::MCSchedModel &SM) {
computeProcResourceMasks(SM, ProcResID2Mask);
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I)
addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]);
}
// Adds a new resource state in Resources, as well as a new descriptor in
// ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState
// objects from resource mask identifiers.
void ResourceManager::addResource(const MCProcResourceDesc &Desc,
unsigned Index, uint64_t Mask) {
assert(Resources.find(Mask) == Resources.end() && "Resource already added!");
Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Index, Mask);
}
// Returns the actual resource consumed by this Use.
// First, is the primary resource ID.
// Second, is the specific sub-resource ID.
std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) {
ResourceState &RS = *Resources[ResourceID];
uint64_t SubResourceID = RS.selectNextInSequence();
if (RS.isAResourceGroup())
return selectPipe(SubResourceID);
return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID);
}
void ResourceState::removeFromNextInSequence(uint64_t ID) {
assert(NextInSequenceMask);
assert(countPopulation(ID) == 1);
if (ID > getNextInSequence())
RemovedFromNextInSequence |= ID;
NextInSequenceMask = NextInSequenceMask & (~ID);
if (!NextInSequenceMask) {
NextInSequenceMask = ResourceSizeMask;
assert(NextInSequenceMask != RemovedFromNextInSequence);
NextInSequenceMask ^= RemovedFromNextInSequence;
RemovedFromNextInSequence = 0;
}
}
void ResourceManager::use(ResourceRef RR) {
// Mark the sub-resource referenced by RR as used.
ResourceState &RS = *Resources[RR.first];
RS.markSubResourceAsUsed(RR.second);
// If there are still available units in RR.first,
// then we are done.
if (RS.isReady())
return;
// Notify to other resources that RR.first is no longer available.
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first)) {
Current.markSubResourceAsUsed(RR.first);
Current.removeFromNextInSequence(RR.first);
}
}
}
void ResourceManager::release(ResourceRef RR) {
ResourceState &RS = *Resources[RR.first];
bool WasFullyUsed = !RS.isReady();
RS.releaseSubResource(RR.second);
if (!WasFullyUsed)
return;
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first))
Current.releaseSubResource(RR.first);
}
}
ResourceStateEvent
ResourceManager::canBeDispatched(ArrayRef<uint64_t> Buffers) const {
ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE;
for (uint64_t Buffer : Buffers) {
Result = isBufferAvailable(Buffer);
if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE)
break;
}
return Result;
}
void ResourceManager::reserveBuffers(ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers) {
reserveBuffer(R);
ResourceState &Resource = *Resources[R];
if (Resource.isADispatchHazard()) {
assert(!Resource.isReserved());
Resource.setReserved();
}
}
}
void ResourceManager::releaseBuffers(ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers)
releaseBuffer(R);
}
bool ResourceManager::canBeIssued(const InstrDesc &Desc) const {
return std::all_of(Desc.Resources.begin(), Desc.Resources.end(),
[&](const std::pair<uint64_t, const ResourceUsage> &E) {
unsigned NumUnits =
E.second.isReserved() ? 0U : E.second.NumUnits;
return isReady(E.first, NumUnits);
});
}
// Returns true if all resources are in-order, and there is at least one
// resource which is a dispatch hazard (BufferSize = 0).
bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) {
if (!canBeIssued(Desc))
return false;
bool AllInOrderResources = all_of(Desc.Buffers, [&](uint64_t BufferMask) {
const ResourceState &Resource = *Resources[BufferMask];
return Resource.isInOrder() || Resource.isADispatchHazard();
});
if (!AllInOrderResources)
return false;
return any_of(Desc.Buffers, [&](uint64_t BufferMask) {
return Resources[BufferMask]->isADispatchHazard();
});
}
void ResourceManager::issueInstruction(
const InstrDesc &Desc,
SmallVectorImpl<std::pair<ResourceRef, double>> &Pipes) {
for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) {
const CycleSegment &CS = R.second.CS;
if (!CS.size()) {
releaseResource(R.first);
continue;
}
assert(CS.begin() == 0 && "Invalid {Start, End} cycles!");
if (!R.second.isReserved()) {
ResourceRef Pipe = selectPipe(R.first);
use(Pipe);
BusyResources[Pipe] += CS.size();
// Replace the resource mask with a valid processor resource index.
const ResourceState &RS = *Resources[Pipe.first];
Pipe.first = RS.getProcResourceID();
Pipes.emplace_back(
std::pair<ResourceRef, double>(Pipe, static_cast<double>(CS.size())));
} else {
assert((countPopulation(R.first) > 1) && "Expected a group!");
// Mark this group as reserved.
assert(R.second.isReserved());
reserveResource(R.first);
BusyResources[ResourceRef(R.first, R.first)] += CS.size();
}
}
}
void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) {
for (std::pair<ResourceRef, unsigned> &BR : BusyResources) {
if (BR.second)
BR.second--;
if (!BR.second) {
// Release this resource.
const ResourceRef &RR = BR.first;
if (countPopulation(RR.first) == 1)
release(RR);
releaseResource(RR.first);
ResourcesFreed.push_back(RR);
}
}
for (const ResourceRef &RF : ResourcesFreed)
BusyResources.erase(RF);
}
#ifndef NDEBUG
void Scheduler::dump() const {
dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n';
dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n';
dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n';
Resources->dump();
}
#endif
bool Scheduler::canBeDispatched(const InstRef &IR,
HWStallEvent::GenericEventType &Event) const {
Event = HWStallEvent::Invalid;
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (Desc.MayLoad && LSU->isLQFull())
Event = HWStallEvent::LoadQueueFull;
else if (Desc.MayStore && LSU->isSQFull())
Event = HWStallEvent::StoreQueueFull;
else {
switch (Resources->canBeDispatched(Desc.Buffers)) {
default:
return true;
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
Event = HWStallEvent::SchedulerQueueFull;
break;
case ResourceStateEvent::RS_RESERVED:
Event = HWStallEvent::DispatchGroupStall;
}
}
return false;
}
void Scheduler::issueInstructionImpl(
InstRef &IR,
SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) {
Instruction *IS = IR.getInstruction();
const InstrDesc &D = IS->getDesc();
// Issue the instruction and collect all the consumed resources
// into a vector. That vector is then used to notify the listener.
Resources->issueInstruction(D, UsedResources);
// Notify the instruction that it started executing.
// This updates the internal state of each write.
IS->execute();
if (IS->isExecuting())
IssuedQueue[IR.getSourceIndex()] = IS;
}
// Release the buffered resources and issue the instruction.
void Scheduler::issueInstruction(
InstRef &IR,
SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
releaseBuffers(Desc.Buffers);
issueInstructionImpl(IR, UsedResources);
}
void Scheduler::promoteToReadyQueue(SmallVectorImpl<InstRef> &Ready) {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const unsigned IID = I->first;
Instruction *IS = I->second;
// Check if this instruction is now ready. In case, force
// a transition in state using method 'update()'.
if (!IS->isReady())
IS->update();
const InstrDesc &Desc = IS->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
if (!IS->isReady() || (IsMemOp && !LSU->isReady({IID, IS}))) {
++I;
continue;
}
Ready.emplace_back(IID, IS);
ReadyQueue[IID] = IS;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
}
}
InstRef Scheduler::select() {
// Find the oldest ready-to-issue instruction in the ReadyQueue.
auto It = std::find_if(ReadyQueue.begin(), ReadyQueue.end(),
[&](const QueueEntryTy &Entry) {
const InstrDesc &D = Entry.second->getDesc();
return Resources->canBeIssued(D);
});
if (It == ReadyQueue.end())
return {0, nullptr};
// We want to prioritize older instructions over younger instructions to
// minimize the pressure on the reorder buffer. We also want to
// rank higher the instructions with more users to better expose ILP.
// Compute a rank value based on the age of an instruction (i.e. its source
// index) and its number of users. The lower the rank value, the better.
int Rank = It->first - It->second->getNumUsers();
for (auto I = It, E = ReadyQueue.end(); I != E; ++I) {
int CurrentRank = I->first - I->second->getNumUsers();
if (CurrentRank < Rank) {
const InstrDesc &D = I->second->getDesc();
if (Resources->canBeIssued(D))
It = I;
}
}
// We found an instruction to issue.
InstRef IR(It->first, It->second);
ReadyQueue.erase(It);
return IR;
}
void Scheduler::updatePendingQueue(SmallVectorImpl<InstRef> &Ready) {
// Notify to instructions in the pending queue that a new cycle just
// started.
for (QueueEntryTy Entry : WaitQueue)
Entry.second->cycleEvent();
promoteToReadyQueue(Ready);
}
void Scheduler::updateIssuedQueue(SmallVectorImpl<InstRef> &Executed) {
for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Instruction *IS = Entry.second;
IS->cycleEvent();
if (IS->isExecuted()) {
Executed.push_back({Entry.first, Entry.second});
auto ToRemove = I;
++I;
IssuedQueue.erase(ToRemove);
} else {
LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction " << Entry.first
<< " is still executing.\n");
++I;
}
}
}
void Scheduler::onInstructionExecuted(const InstRef &IR) {
LSU->onInstructionExecuted(IR);
}
void Scheduler::reclaimSimulatedResources(SmallVectorImpl<ResourceRef> &Freed) {
Resources->cycleEvent(Freed);
}
bool Scheduler::reserveResources(InstRef &IR) {
// If necessary, reserve queue entries in the load-store unit (LSU).
const bool Reserved = LSU->reserve(IR);
if (!IR.getInstruction()->isReady() || (Reserved && !LSU->isReady(IR))) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding " << IR << " to the Wait Queue\n");
WaitQueue[IR.getSourceIndex()] = IR.getInstruction();
return false;
}
return true;
}
bool Scheduler::issueImmediately(InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (!Desc.isZeroLatency() && !Resources->mustIssueImmediately(Desc)) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding " << IR
<< " to the Ready Queue\n");
ReadyQueue[IR.getSourceIndex()] = IR.getInstruction();
return false;
}
return true;
}
} // namespace mca