1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Transforms/Scalar/Scalarizer.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

773 lines
26 KiB
C++

//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass converts vector operations into scalar operations, in order
// to expose optimization opportunities on the individual scalar operations.
// It is mainly intended for targets that do not have vector units, but it
// may also be useful for revectorizing code to different vector widths.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "scalarizer"
namespace {
// Used to store the scattered form of a vector.
typedef SmallVector<Value *, 8> ValueVector;
// Used to map a vector Value to its scattered form. We use std::map
// because we want iterators to persist across insertion and because the
// values are relatively large.
typedef std::map<Value *, ValueVector> ScatterMap;
// Lists Instructions that have been replaced with scalar implementations,
// along with a pointer to their scattered forms.
typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
// Provides a very limited vector-like interface for lazily accessing one
// component of a scattered vector or vector pointer.
class Scatterer {
public:
Scatterer() {}
// Scatter V into Size components. If new instructions are needed,
// insert them before BBI in BB. If Cache is nonnull, use it to cache
// the results.
Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr = nullptr);
// Return component I, creating a new Value for it if necessary.
Value *operator[](unsigned I);
// Return the number of components.
unsigned size() const { return Size; }
private:
BasicBlock *BB;
BasicBlock::iterator BBI;
Value *V;
ValueVector *CachePtr;
PointerType *PtrTy;
ValueVector Tmp;
unsigned Size;
};
// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
// called Name that compares X and Y in the same way as FCI.
struct FCmpSplitter {
FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
}
FCmpInst &FCI;
};
// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
// called Name that compares X and Y in the same way as ICI.
struct ICmpSplitter {
ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
}
ICmpInst &ICI;
};
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
// a binary operator like BO called Name with operands X and Y.
struct BinarySplitter {
BinarySplitter(BinaryOperator &bo) : BO(bo) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
}
BinaryOperator &BO;
};
// Information about a load or store that we're scalarizing.
struct VectorLayout {
VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
// Return the alignment of element I.
uint64_t getElemAlign(unsigned I) {
return MinAlign(VecAlign, I * ElemSize);
}
// The type of the vector.
VectorType *VecTy;
// The type of each element.
Type *ElemTy;
// The alignment of the vector.
uint64_t VecAlign;
// The size of each element.
uint64_t ElemSize;
};
class Scalarizer : public FunctionPass,
public InstVisitor<Scalarizer, bool> {
public:
static char ID;
Scalarizer() :
FunctionPass(ID) {
initializeScalarizerPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
// InstVisitor methods. They return true if the instruction was scalarized,
// false if nothing changed.
bool visitInstruction(Instruction &) { return false; }
bool visitSelectInst(SelectInst &SI);
bool visitICmpInst(ICmpInst &);
bool visitFCmpInst(FCmpInst &);
bool visitBinaryOperator(BinaryOperator &);
bool visitGetElementPtrInst(GetElementPtrInst &);
bool visitCastInst(CastInst &);
bool visitBitCastInst(BitCastInst &);
bool visitShuffleVectorInst(ShuffleVectorInst &);
bool visitPHINode(PHINode &);
bool visitLoadInst(LoadInst &);
bool visitStoreInst(StoreInst &);
bool visitCallInst(CallInst &I);
static void registerOptions() {
// This is disabled by default because having separate loads and stores
// makes it more likely that the -combiner-alias-analysis limits will be
// reached.
OptionRegistry::registerOption<bool, Scalarizer,
&Scalarizer::ScalarizeLoadStore>(
"scalarize-load-store",
"Allow the scalarizer pass to scalarize loads and store", false);
}
private:
Scatterer scatter(Instruction *, Value *);
void gather(Instruction *, const ValueVector &);
bool canTransferMetadata(unsigned Kind);
void transferMetadata(Instruction *, const ValueVector &);
bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
bool finish();
template<typename T> bool splitBinary(Instruction &, const T &);
bool splitCall(CallInst &CI);
ScatterMap Scattered;
GatherList Gathered;
unsigned ParallelLoopAccessMDKind;
bool ScalarizeLoadStore;
};
char Scalarizer::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
"Scalarize vector operations", false, false)
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr)
: BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
Type *Ty = V->getType();
PtrTy = dyn_cast<PointerType>(Ty);
if (PtrTy)
Ty = PtrTy->getElementType();
Size = Ty->getVectorNumElements();
if (!CachePtr)
Tmp.resize(Size, nullptr);
else if (CachePtr->empty())
CachePtr->resize(Size, nullptr);
else
assert(Size == CachePtr->size() && "Inconsistent vector sizes");
}
// Return component I, creating a new Value for it if necessary.
Value *Scatterer::operator[](unsigned I) {
ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
// Try to reuse a previous value.
if (CV[I])
return CV[I];
IRBuilder<> Builder(BB, BBI);
if (PtrTy) {
if (!CV[0]) {
Type *Ty =
PointerType::get(PtrTy->getElementType()->getVectorElementType(),
PtrTy->getAddressSpace());
CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
}
if (I != 0)
CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
V->getName() + ".i" + Twine(I));
} else {
// Search through a chain of InsertElementInsts looking for element I.
// Record other elements in the cache. The new V is still suitable
// for all uncached indices.
for (;;) {
InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
if (!Insert)
break;
ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
if (!Idx)
break;
unsigned J = Idx->getZExtValue();
V = Insert->getOperand(0);
if (I == J) {
CV[J] = Insert->getOperand(1);
return CV[J];
} else if (!CV[J]) {
// Only cache the first entry we find for each index we're not actively
// searching for. This prevents us from going too far up the chain and
// caching incorrect entries.
CV[J] = Insert->getOperand(1);
}
}
CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
V->getName() + ".i" + Twine(I));
}
return CV[I];
}
bool Scalarizer::doInitialization(Module &M) {
ParallelLoopAccessMDKind =
M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
ScalarizeLoadStore =
M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
return false;
}
bool Scalarizer::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
assert(Gathered.empty() && Scattered.empty());
for (BasicBlock &BB : F) {
for (BasicBlock::iterator II = BB.begin(), IE = BB.end(); II != IE;) {
Instruction *I = &*II;
bool Done = visit(I);
++II;
if (Done && I->getType()->isVoidTy())
I->eraseFromParent();
}
}
return finish();
}
// Return a scattered form of V that can be accessed by Point. V must be a
// vector or a pointer to a vector.
Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
if (Argument *VArg = dyn_cast<Argument>(V)) {
// Put the scattered form of arguments in the entry block,
// so that it can be used everywhere.
Function *F = VArg->getParent();
BasicBlock *BB = &F->getEntryBlock();
return Scatterer(BB, BB->begin(), V, &Scattered[V]);
}
if (Instruction *VOp = dyn_cast<Instruction>(V)) {
// Put the scattered form of an instruction directly after the
// instruction.
BasicBlock *BB = VOp->getParent();
return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
V, &Scattered[V]);
}
// In the fallback case, just put the scattered before Point and
// keep the result local to Point.
return Scatterer(Point->getParent(), Point->getIterator(), V);
}
// Replace Op with the gathered form of the components in CV. Defer the
// deletion of Op and creation of the gathered form to the end of the pass,
// so that we can avoid creating the gathered form if all uses of Op are
// replaced with uses of CV.
void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
// Since we're not deleting Op yet, stub out its operands, so that it
// doesn't make anything live unnecessarily.
for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
transferMetadata(Op, CV);
// If we already have a scattered form of Op (created from ExtractElements
// of Op itself), replace them with the new form.
ValueVector &SV = Scattered[Op];
if (!SV.empty()) {
for (unsigned I = 0, E = SV.size(); I != E; ++I) {
Value *V = SV[I];
if (V == nullptr)
continue;
Instruction *Old = cast<Instruction>(V);
CV[I]->takeName(Old);
Old->replaceAllUsesWith(CV[I]);
Old->eraseFromParent();
}
}
SV = CV;
Gathered.push_back(GatherList::value_type(Op, &SV));
}
// Return true if it is safe to transfer the given metadata tag from
// vector to scalar instructions.
bool Scalarizer::canTransferMetadata(unsigned Tag) {
return (Tag == LLVMContext::MD_tbaa
|| Tag == LLVMContext::MD_fpmath
|| Tag == LLVMContext::MD_tbaa_struct
|| Tag == LLVMContext::MD_invariant_load
|| Tag == LLVMContext::MD_alias_scope
|| Tag == LLVMContext::MD_noalias
|| Tag == ParallelLoopAccessMDKind);
}
// Transfer metadata from Op to the instructions in CV if it is known
// to be safe to do so.
void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
Op->getAllMetadataOtherThanDebugLoc(MDs);
for (unsigned I = 0, E = CV.size(); I != E; ++I) {
if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
for (const auto &MD : MDs)
if (canTransferMetadata(MD.first))
New->setMetadata(MD.first, MD.second);
if (Op->getDebugLoc() && !New->getDebugLoc())
New->setDebugLoc(Op->getDebugLoc());
}
}
}
// Try to fill in Layout from Ty, returning true on success. Alignment is
// the alignment of the vector, or 0 if the ABI default should be used.
bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
VectorLayout &Layout, const DataLayout &DL) {
// Make sure we're dealing with a vector.
Layout.VecTy = dyn_cast<VectorType>(Ty);
if (!Layout.VecTy)
return false;
// Check that we're dealing with full-byte elements.
Layout.ElemTy = Layout.VecTy->getElementType();
if (DL.getTypeSizeInBits(Layout.ElemTy) !=
DL.getTypeStoreSizeInBits(Layout.ElemTy))
return false;
if (Alignment)
Layout.VecAlign = Alignment;
else
Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
return true;
}
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
// to create an instruction like I with operands X and Y and name Name.
template<typename Splitter>
bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
VectorType *VT = dyn_cast<VectorType>(I.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(&I);
Scatterer Op0 = scatter(&I, I.getOperand(0));
Scatterer Op1 = scatter(&I, I.getOperand(1));
assert(Op0.size() == NumElems && "Mismatched binary operation");
assert(Op1.size() == NumElems && "Mismatched binary operation");
ValueVector Res;
Res.resize(NumElems);
for (unsigned Elem = 0; Elem < NumElems; ++Elem)
Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
I.getName() + ".i" + Twine(Elem));
gather(&I, Res);
return true;
}
static bool isTriviallyScalariable(Intrinsic::ID ID) {
return isTriviallyVectorizable(ID);
}
// All of the current scalarizable intrinsics only have one mangled type.
static Function *getScalarIntrinsicDeclaration(Module *M,
Intrinsic::ID ID,
VectorType *Ty) {
return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
}
/// If a call to a vector typed intrinsic function, split into a scalar call per
/// element if possible for the intrinsic.
bool Scalarizer::splitCall(CallInst &CI) {
VectorType *VT = dyn_cast<VectorType>(CI.getType());
if (!VT)
return false;
Function *F = CI.getCalledFunction();
if (!F)
return false;
Intrinsic::ID ID = F->getIntrinsicID();
if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
return false;
unsigned NumElems = VT->getNumElements();
unsigned NumArgs = CI.getNumArgOperands();
ValueVector ScalarOperands(NumArgs);
SmallVector<Scatterer, 8> Scattered(NumArgs);
Scattered.resize(NumArgs);
// Assumes that any vector type has the same number of elements as the return
// vector type, which is true for all current intrinsics.
for (unsigned I = 0; I != NumArgs; ++I) {
Value *OpI = CI.getOperand(I);
if (OpI->getType()->isVectorTy()) {
Scattered[I] = scatter(&CI, OpI);
assert(Scattered[I].size() == NumElems && "mismatched call operands");
} else {
ScalarOperands[I] = OpI;
}
}
ValueVector Res(NumElems);
ValueVector ScalarCallOps(NumArgs);
Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
IRBuilder<> Builder(&CI);
// Perform actual scalarization, taking care to preserve any scalar operands.
for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
ScalarCallOps.clear();
for (unsigned J = 0; J != NumArgs; ++J) {
if (hasVectorInstrinsicScalarOpd(ID, J))
ScalarCallOps.push_back(ScalarOperands[J]);
else
ScalarCallOps.push_back(Scattered[J][Elem]);
}
Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
CI.getName() + ".i" + Twine(Elem));
}
gather(&CI, Res);
return true;
}
bool Scalarizer::visitSelectInst(SelectInst &SI) {
VectorType *VT = dyn_cast<VectorType>(SI.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(&SI);
Scatterer Op1 = scatter(&SI, SI.getOperand(1));
Scatterer Op2 = scatter(&SI, SI.getOperand(2));
assert(Op1.size() == NumElems && "Mismatched select");
assert(Op2.size() == NumElems && "Mismatched select");
ValueVector Res;
Res.resize(NumElems);
if (SI.getOperand(0)->getType()->isVectorTy()) {
Scatterer Op0 = scatter(&SI, SI.getOperand(0));
assert(Op0.size() == NumElems && "Mismatched select");
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
SI.getName() + ".i" + Twine(I));
} else {
Value *Op0 = SI.getOperand(0);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
SI.getName() + ".i" + Twine(I));
}
gather(&SI, Res);
return true;
}
bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
return splitBinary(ICI, ICmpSplitter(ICI));
}
bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
return splitBinary(FCI, FCmpSplitter(FCI));
}
bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
return splitBinary(BO, BinarySplitter(BO));
}
bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
if (!VT)
return false;
IRBuilder<> Builder(&GEPI);
unsigned NumElems = VT->getNumElements();
unsigned NumIndices = GEPI.getNumIndices();
// The base pointer might be scalar even if it's a vector GEP. In those cases,
// splat the pointer into a vector value, and scatter that vector.
Value *Op0 = GEPI.getOperand(0);
if (!Op0->getType()->isVectorTy())
Op0 = Builder.CreateVectorSplat(NumElems, Op0);
Scatterer Base = scatter(&GEPI, Op0);
SmallVector<Scatterer, 8> Ops;
Ops.resize(NumIndices);
for (unsigned I = 0; I < NumIndices; ++I) {
Value *Op = GEPI.getOperand(I + 1);
// The indices might be scalars even if it's a vector GEP. In those cases,
// splat the scalar into a vector value, and scatter that vector.
if (!Op->getType()->isVectorTy())
Op = Builder.CreateVectorSplat(NumElems, Op);
Ops[I] = scatter(&GEPI, Op);
}
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
SmallVector<Value *, 8> Indices;
Indices.resize(NumIndices);
for (unsigned J = 0; J < NumIndices; ++J)
Indices[J] = Ops[J][I];
Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
GEPI.getName() + ".i" + Twine(I));
if (GEPI.isInBounds())
if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
NewGEPI->setIsInBounds();
}
gather(&GEPI, Res);
return true;
}
bool Scalarizer::visitCastInst(CastInst &CI) {
VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(&CI);
Scatterer Op0 = scatter(&CI, CI.getOperand(0));
assert(Op0.size() == NumElems && "Mismatched cast");
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
CI.getName() + ".i" + Twine(I));
gather(&CI, Res);
return true;
}
bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
if (!DstVT || !SrcVT)
return false;
unsigned DstNumElems = DstVT->getNumElements();
unsigned SrcNumElems = SrcVT->getNumElements();
IRBuilder<> Builder(&BCI);
Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
ValueVector Res;
Res.resize(DstNumElems);
if (DstNumElems == SrcNumElems) {
for (unsigned I = 0; I < DstNumElems; ++I)
Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
BCI.getName() + ".i" + Twine(I));
} else if (DstNumElems > SrcNumElems) {
// <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
// individual elements to the destination.
unsigned FanOut = DstNumElems / SrcNumElems;
Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
unsigned ResI = 0;
for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
Value *V = Op0[Op0I];
Instruction *VI;
// Look through any existing bitcasts before converting to <N x t2>.
// In the best case, the resulting conversion might be a no-op.
while ((VI = dyn_cast<Instruction>(V)) &&
VI->getOpcode() == Instruction::BitCast)
V = VI->getOperand(0);
V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
Scatterer Mid = scatter(&BCI, V);
for (unsigned MidI = 0; MidI < FanOut; ++MidI)
Res[ResI++] = Mid[MidI];
}
} else {
// <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
unsigned FanIn = SrcNumElems / DstNumElems;
Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
unsigned Op0I = 0;
for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
Value *V = UndefValue::get(MidTy);
for (unsigned MidI = 0; MidI < FanIn; ++MidI)
V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
BCI.getName() + ".i" + Twine(ResI)
+ ".upto" + Twine(MidI));
Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
BCI.getName() + ".i" + Twine(ResI));
}
}
gather(&BCI, Res);
return true;
}
bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
VectorType *VT = dyn_cast<VectorType>(SVI.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
int Selector = SVI.getMaskValue(I);
if (Selector < 0)
Res[I] = UndefValue::get(VT->getElementType());
else if (unsigned(Selector) < Op0.size())
Res[I] = Op0[Selector];
else
Res[I] = Op1[Selector - Op0.size()];
}
gather(&SVI, Res);
return true;
}
bool Scalarizer::visitPHINode(PHINode &PHI) {
VectorType *VT = dyn_cast<VectorType>(PHI.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(&PHI);
ValueVector Res;
Res.resize(NumElems);
unsigned NumOps = PHI.getNumOperands();
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
PHI.getName() + ".i" + Twine(I));
for (unsigned I = 0; I < NumOps; ++I) {
Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
for (unsigned J = 0; J < NumElems; ++J)
cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
}
gather(&PHI, Res);
return true;
}
bool Scalarizer::visitLoadInst(LoadInst &LI) {
if (!ScalarizeLoadStore)
return false;
if (!LI.isSimple())
return false;
VectorLayout Layout;
if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
LI.getModule()->getDataLayout()))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
IRBuilder<> Builder(&LI);
Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
LI.getName() + ".i" + Twine(I));
gather(&LI, Res);
return true;
}
bool Scalarizer::visitStoreInst(StoreInst &SI) {
if (!ScalarizeLoadStore)
return false;
if (!SI.isSimple())
return false;
VectorLayout Layout;
Value *FullValue = SI.getValueOperand();
if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
SI.getModule()->getDataLayout()))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
IRBuilder<> Builder(&SI);
Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
Scatterer Val = scatter(&SI, FullValue);
ValueVector Stores;
Stores.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
unsigned Align = Layout.getElemAlign(I);
Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
}
transferMetadata(&SI, Stores);
return true;
}
bool Scalarizer::visitCallInst(CallInst &CI) {
return splitCall(CI);
}
// Delete the instructions that we scalarized. If a full vector result
// is still needed, recreate it using InsertElements.
bool Scalarizer::finish() {
// The presence of data in Gathered or Scattered indicates changes
// made to the Function.
if (Gathered.empty() && Scattered.empty())
return false;
for (const auto &GMI : Gathered) {
Instruction *Op = GMI.first;
ValueVector &CV = *GMI.second;
if (!Op->use_empty()) {
// The value is still needed, so recreate it using a series of
// InsertElements.
Type *Ty = Op->getType();
Value *Res = UndefValue::get(Ty);
BasicBlock *BB = Op->getParent();
unsigned Count = Ty->getVectorNumElements();
IRBuilder<> Builder(Op);
if (isa<PHINode>(Op))
Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
for (unsigned I = 0; I < Count; ++I)
Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
Op->getName() + ".upto" + Twine(I));
Res->takeName(Op);
Op->replaceAllUsesWith(Res);
}
Op->eraseFromParent();
}
Gathered.clear();
Scattered.clear();
return true;
}
FunctionPass *llvm::createScalarizerPass() {
return new Scalarizer();
}