1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/lib/AsmParser/LLParser.h
Peter Collingbourne 5dcb77e9fb IR: Introduce local_unnamed_addr attribute.
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.

This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
  the normal rule that the global must have a unique address can be broken without
  being observable by the program by performing comparisons against the global's
  address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
  its own copy of the global if it requires one, and the copy in each linkage unit
  must be the same)
- It is a constant or a function (which means that the program cannot observe that
  the unique-address rule has been broken by writing to the global)

Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.

See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.

Part of the fix for PR27553.

Differential Revision: http://reviews.llvm.org/D20348

llvm-svn: 272709
2016-06-14 21:01:22 +00:00

510 lines
20 KiB
C++

//===-- LLParser.h - Parser Class -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the parser class for .ll files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_ASMPARSER_LLPARSER_H
#define LLVM_LIB_ASMPARSER_LLPARSER_H
#include "LLLexer.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/ValueHandle.h"
#include <map>
namespace llvm {
class Module;
class OpaqueType;
class Function;
class Value;
class BasicBlock;
class Instruction;
class Constant;
class GlobalValue;
class Comdat;
class MDString;
class MDNode;
struct SlotMapping;
class StructType;
/// ValID - Represents a reference of a definition of some sort with no type.
/// There are several cases where we have to parse the value but where the
/// type can depend on later context. This may either be a numeric reference
/// or a symbolic (%var) reference. This is just a discriminated union.
struct ValID {
enum {
t_LocalID, t_GlobalID, // ID in UIntVal.
t_LocalName, t_GlobalName, // Name in StrVal.
t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
t_Null, t_Undef, t_Zero, t_None, // No value.
t_EmptyArray, // No value: []
t_Constant, // Value in ConstantVal.
t_InlineAsm, // Value in FTy/StrVal/StrVal2/UIntVal.
t_ConstantStruct, // Value in ConstantStructElts.
t_PackedConstantStruct // Value in ConstantStructElts.
} Kind = t_LocalID;
LLLexer::LocTy Loc;
unsigned UIntVal;
FunctionType *FTy = nullptr;
std::string StrVal, StrVal2;
APSInt APSIntVal;
APFloat APFloatVal{0.0};
Constant *ConstantVal;
std::unique_ptr<Constant *[]> ConstantStructElts;
ValID() = default;
ValID(const ValID &RHS)
: Kind(RHS.Kind), Loc(RHS.Loc), UIntVal(RHS.UIntVal), FTy(RHS.FTy),
StrVal(RHS.StrVal), StrVal2(RHS.StrVal2), APSIntVal(RHS.APSIntVal),
APFloatVal(RHS.APFloatVal), ConstantVal(RHS.ConstantVal) {
assert(!RHS.ConstantStructElts);
}
bool operator<(const ValID &RHS) const {
if (Kind == t_LocalID || Kind == t_GlobalID)
return UIntVal < RHS.UIntVal;
assert((Kind == t_LocalName || Kind == t_GlobalName ||
Kind == t_ConstantStruct || Kind == t_PackedConstantStruct) &&
"Ordering not defined for this ValID kind yet");
return StrVal < RHS.StrVal;
}
};
class LLParser {
public:
typedef LLLexer::LocTy LocTy;
private:
LLVMContext &Context;
LLLexer Lex;
Module *M;
SlotMapping *Slots;
// Instruction metadata resolution. Each instruction can have a list of
// MDRef info associated with them.
//
// The simpler approach of just creating temporary MDNodes and then calling
// RAUW on them when the definition is processed doesn't work because some
// instruction metadata kinds, such as dbg, get stored in the IR in an
// "optimized" format which doesn't participate in the normal value use
// lists. This means that RAUW doesn't work, even on temporary MDNodes
// which otherwise support RAUW. Instead, we defer resolving MDNode
// references until the definitions have been processed.
struct MDRef {
SMLoc Loc;
unsigned MDKind, MDSlot;
};
SmallVector<Instruction*, 64> InstsWithTBAATag;
// Type resolution handling data structures. The location is set when we
// have processed a use of the type but not a definition yet.
StringMap<std::pair<Type*, LocTy> > NamedTypes;
std::map<unsigned, std::pair<Type*, LocTy> > NumberedTypes;
std::map<unsigned, TrackingMDNodeRef> NumberedMetadata;
std::map<unsigned, std::pair<TempMDTuple, LocTy>> ForwardRefMDNodes;
// Global Value reference information.
std::map<std::string, std::pair<GlobalValue*, LocTy> > ForwardRefVals;
std::map<unsigned, std::pair<GlobalValue*, LocTy> > ForwardRefValIDs;
std::vector<GlobalValue*> NumberedVals;
// Comdat forward reference information.
std::map<std::string, LocTy> ForwardRefComdats;
// References to blockaddress. The key is the function ValID, the value is
// a list of references to blocks in that function.
std::map<ValID, std::map<ValID, GlobalValue *>> ForwardRefBlockAddresses;
class PerFunctionState;
/// Reference to per-function state to allow basic blocks to be
/// forward-referenced by blockaddress instructions within the same
/// function.
PerFunctionState *BlockAddressPFS;
// Attribute builder reference information.
std::map<Value*, std::vector<unsigned> > ForwardRefAttrGroups;
std::map<unsigned, AttrBuilder> NumberedAttrBuilders;
public:
LLParser(StringRef F, SourceMgr &SM, SMDiagnostic &Err, Module *M,
SlotMapping *Slots = nullptr)
: Context(M->getContext()), Lex(F, SM, Err, M->getContext()), M(M),
Slots(Slots), BlockAddressPFS(nullptr) {}
bool Run();
bool parseStandaloneConstantValue(Constant *&C, const SlotMapping *Slots);
bool parseTypeAtBeginning(Type *&Ty, unsigned &Read,
const SlotMapping *Slots);
LLVMContext &getContext() { return Context; }
private:
bool Error(LocTy L, const Twine &Msg) const {
return Lex.Error(L, Msg);
}
bool TokError(const Twine &Msg) const {
return Error(Lex.getLoc(), Msg);
}
/// Restore the internal name and slot mappings using the mappings that
/// were created at an earlier parsing stage.
void restoreParsingState(const SlotMapping *Slots);
/// GetGlobalVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
GlobalValue *GetGlobalVal(const std::string &N, Type *Ty, LocTy Loc);
GlobalValue *GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc);
/// Get a Comdat with the specified name, creating a forward reference
/// record if needed.
Comdat *getComdat(const std::string &N, LocTy Loc);
// Helper Routines.
bool ParseToken(lltok::Kind T, const char *ErrMsg);
bool EatIfPresent(lltok::Kind T) {
if (Lex.getKind() != T) return false;
Lex.Lex();
return true;
}
FastMathFlags EatFastMathFlagsIfPresent() {
FastMathFlags FMF;
while (true)
switch (Lex.getKind()) {
case lltok::kw_fast: FMF.setUnsafeAlgebra(); Lex.Lex(); continue;
case lltok::kw_nnan: FMF.setNoNaNs(); Lex.Lex(); continue;
case lltok::kw_ninf: FMF.setNoInfs(); Lex.Lex(); continue;
case lltok::kw_nsz: FMF.setNoSignedZeros(); Lex.Lex(); continue;
case lltok::kw_arcp: FMF.setAllowReciprocal(); Lex.Lex(); continue;
default: return FMF;
}
return FMF;
}
bool ParseOptionalToken(lltok::Kind T, bool &Present,
LocTy *Loc = nullptr) {
if (Lex.getKind() != T) {
Present = false;
} else {
if (Loc)
*Loc = Lex.getLoc();
Lex.Lex();
Present = true;
}
return false;
}
bool ParseStringConstant(std::string &Result);
bool ParseUInt32(unsigned &Val);
bool ParseUInt32(unsigned &Val, LocTy &Loc) {
Loc = Lex.getLoc();
return ParseUInt32(Val);
}
bool ParseUInt64(uint64_t &Val);
bool ParseUInt64(uint64_t &Val, LocTy &Loc) {
Loc = Lex.getLoc();
return ParseUInt64(Val);
}
bool ParseStringAttribute(AttrBuilder &B);
bool ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM);
bool ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM);
bool ParseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr &UnnamedAddr);
bool ParseOptionalAddrSpace(unsigned &AddrSpace);
bool ParseOptionalParamAttrs(AttrBuilder &B);
bool ParseOptionalReturnAttrs(AttrBuilder &B);
bool ParseOptionalLinkage(unsigned &Linkage, bool &HasLinkage,
unsigned &Visibility, unsigned &DLLStorageClass);
void ParseOptionalVisibility(unsigned &Visibility);
void ParseOptionalDLLStorageClass(unsigned &DLLStorageClass);
bool ParseOptionalCallingConv(unsigned &CC);
bool ParseOptionalAlignment(unsigned &Alignment);
bool ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, uint64_t &Bytes);
bool ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
AtomicOrdering &Ordering);
bool ParseOrdering(AtomicOrdering &Ordering);
bool ParseOptionalStackAlignment(unsigned &Alignment);
bool ParseOptionalCommaAlign(unsigned &Alignment, bool &AteExtraComma);
bool ParseOptionalCommaInAlloca(bool &IsInAlloca);
bool parseAllocSizeArguments(unsigned &ElemSizeArg,
Optional<unsigned> &HowManyArg);
bool ParseIndexList(SmallVectorImpl<unsigned> &Indices,
bool &AteExtraComma);
bool ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
bool AteExtraComma;
if (ParseIndexList(Indices, AteExtraComma)) return true;
if (AteExtraComma)
return TokError("expected index");
return false;
}
// Top-Level Entities
bool ParseTopLevelEntities();
bool ValidateEndOfModule();
bool ParseTargetDefinition();
bool ParseModuleAsm();
bool ParseSourceFileName();
bool ParseDepLibs(); // FIXME: Remove in 4.0.
bool ParseUnnamedType();
bool ParseNamedType();
bool ParseDeclare();
bool ParseDefine();
bool ParseGlobalType(bool &IsConstant);
bool ParseUnnamedGlobal();
bool ParseNamedGlobal();
bool ParseGlobal(const std::string &Name, LocTy Loc, unsigned Linkage,
bool HasLinkage, unsigned Visibility,
unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM,
GlobalVariable::UnnamedAddr UnnamedAddr);
bool parseIndirectSymbol(const std::string &Name, LocTy Loc,
unsigned Linkage, unsigned Visibility,
unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM,
GlobalVariable::UnnamedAddr UnnamedAddr);
bool parseComdat();
bool ParseStandaloneMetadata();
bool ParseNamedMetadata();
bool ParseMDString(MDString *&Result);
bool ParseMDNodeID(MDNode *&Result);
bool ParseUnnamedAttrGrp();
bool ParseFnAttributeValuePairs(AttrBuilder &B,
std::vector<unsigned> &FwdRefAttrGrps,
bool inAttrGrp, LocTy &BuiltinLoc);
// Type Parsing.
bool ParseType(Type *&Result, const Twine &Msg, bool AllowVoid = false);
bool ParseType(Type *&Result, bool AllowVoid = false) {
return ParseType(Result, "expected type", AllowVoid);
}
bool ParseType(Type *&Result, const Twine &Msg, LocTy &Loc,
bool AllowVoid = false) {
Loc = Lex.getLoc();
return ParseType(Result, Msg, AllowVoid);
}
bool ParseType(Type *&Result, LocTy &Loc, bool AllowVoid = false) {
Loc = Lex.getLoc();
return ParseType(Result, AllowVoid);
}
bool ParseAnonStructType(Type *&Result, bool Packed);
bool ParseStructBody(SmallVectorImpl<Type*> &Body);
bool ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
std::pair<Type*, LocTy> &Entry,
Type *&ResultTy);
bool ParseArrayVectorType(Type *&Result, bool isVector);
bool ParseFunctionType(Type *&Result);
// Function Semantic Analysis.
class PerFunctionState {
LLParser &P;
Function &F;
std::map<std::string, std::pair<Value*, LocTy> > ForwardRefVals;
std::map<unsigned, std::pair<Value*, LocTy> > ForwardRefValIDs;
std::vector<Value*> NumberedVals;
/// FunctionNumber - If this is an unnamed function, this is the slot
/// number of it, otherwise it is -1.
int FunctionNumber;
public:
PerFunctionState(LLParser &p, Function &f, int FunctionNumber);
~PerFunctionState();
Function &getFunction() const { return F; }
bool FinishFunction();
/// GetVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
Value *GetVal(const std::string &Name, Type *Ty, LocTy Loc);
Value *GetVal(unsigned ID, Type *Ty, LocTy Loc);
/// SetInstName - After an instruction is parsed and inserted into its
/// basic block, this installs its name.
bool SetInstName(int NameID, const std::string &NameStr, LocTy NameLoc,
Instruction *Inst);
/// GetBB - Get a basic block with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// is not a BasicBlock.
BasicBlock *GetBB(const std::string &Name, LocTy Loc);
BasicBlock *GetBB(unsigned ID, LocTy Loc);
/// DefineBB - Define the specified basic block, which is either named or
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *DefineBB(const std::string &Name, LocTy Loc);
bool resolveForwardRefBlockAddresses();
};
bool ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
PerFunctionState *PFS);
bool parseConstantValue(Type *Ty, Constant *&C);
bool ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS);
bool ParseValue(Type *Ty, Value *&V, PerFunctionState &PFS) {
return ParseValue(Ty, V, &PFS);
}
bool ParseValue(Type *Ty, Value *&V, LocTy &Loc,
PerFunctionState &PFS) {
Loc = Lex.getLoc();
return ParseValue(Ty, V, &PFS);
}
bool ParseTypeAndValue(Value *&V, PerFunctionState *PFS);
bool ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
return ParseTypeAndValue(V, &PFS);
}
bool ParseTypeAndValue(Value *&V, LocTy &Loc, PerFunctionState &PFS) {
Loc = Lex.getLoc();
return ParseTypeAndValue(V, PFS);
}
bool ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
PerFunctionState &PFS);
bool ParseTypeAndBasicBlock(BasicBlock *&BB, PerFunctionState &PFS) {
LocTy Loc;
return ParseTypeAndBasicBlock(BB, Loc, PFS);
}
struct ParamInfo {
LocTy Loc;
Value *V;
AttributeSet Attrs;
ParamInfo(LocTy loc, Value *v, AttributeSet attrs)
: Loc(loc), V(v), Attrs(attrs) {}
};
bool ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS,
bool IsMustTailCall = false,
bool InVarArgsFunc = false);
bool
ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> &BundleList,
PerFunctionState &PFS);
bool ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
PerFunctionState &PFS);
// Constant Parsing.
bool ParseValID(ValID &ID, PerFunctionState *PFS = nullptr);
bool ParseGlobalValue(Type *Ty, Constant *&V);
bool ParseGlobalTypeAndValue(Constant *&V);
bool ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts);
bool parseOptionalComdat(StringRef GlobalName, Comdat *&C);
bool ParseMetadataAsValue(Value *&V, PerFunctionState &PFS);
bool ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
PerFunctionState *PFS);
bool ParseMetadata(Metadata *&MD, PerFunctionState *PFS);
bool ParseMDTuple(MDNode *&MD, bool IsDistinct = false);
bool ParseMDNode(MDNode *&MD);
bool ParseMDNodeTail(MDNode *&MD);
bool ParseMDNodeVector(SmallVectorImpl<Metadata *> &MDs);
bool ParseMetadataAttachment(unsigned &Kind, MDNode *&MD);
bool ParseInstructionMetadata(Instruction &Inst);
bool ParseGlobalObjectMetadataAttachment(GlobalObject &GO);
bool ParseOptionalFunctionMetadata(Function &F);
template <class FieldTy>
bool ParseMDField(LocTy Loc, StringRef Name, FieldTy &Result);
template <class FieldTy> bool ParseMDField(StringRef Name, FieldTy &Result);
template <class ParserTy>
bool ParseMDFieldsImplBody(ParserTy parseField);
template <class ParserTy>
bool ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc);
bool ParseSpecializedMDNode(MDNode *&N, bool IsDistinct = false);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
bool Parse##CLASS(MDNode *&Result, bool IsDistinct);
#include "llvm/IR/Metadata.def"
// Function Parsing.
struct ArgInfo {
LocTy Loc;
Type *Ty;
AttributeSet Attrs;
std::string Name;
ArgInfo(LocTy L, Type *ty, AttributeSet Attr, const std::string &N)
: Loc(L), Ty(ty), Attrs(Attr), Name(N) {}
};
bool ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, bool &isVarArg);
bool ParseFunctionHeader(Function *&Fn, bool isDefine);
bool ParseFunctionBody(Function &Fn);
bool ParseBasicBlock(PerFunctionState &PFS);
enum TailCallType { TCT_None, TCT_Tail, TCT_MustTail };
// Instruction Parsing. Each instruction parsing routine can return with a
// normal result, an error result, or return having eaten an extra comma.
enum InstResult { InstNormal = 0, InstError = 1, InstExtraComma = 2 };
int ParseInstruction(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS);
bool ParseCmpPredicate(unsigned &Pred, unsigned Opc);
bool ParseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS);
bool ParseBr(Instruction *&Inst, PerFunctionState &PFS);
bool ParseSwitch(Instruction *&Inst, PerFunctionState &PFS);
bool ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS);
bool ParseInvoke(Instruction *&Inst, PerFunctionState &PFS);
bool ParseResume(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS);
bool ParseArithmetic(Instruction *&I, PerFunctionState &PFS, unsigned Opc,
unsigned OperandType);
bool ParseLogical(Instruction *&I, PerFunctionState &PFS, unsigned Opc);
bool ParseCompare(Instruction *&I, PerFunctionState &PFS, unsigned Opc);
bool ParseCast(Instruction *&I, PerFunctionState &PFS, unsigned Opc);
bool ParseSelect(Instruction *&I, PerFunctionState &PFS);
bool ParseVA_Arg(Instruction *&I, PerFunctionState &PFS);
bool ParseExtractElement(Instruction *&I, PerFunctionState &PFS);
bool ParseInsertElement(Instruction *&I, PerFunctionState &PFS);
bool ParseShuffleVector(Instruction *&I, PerFunctionState &PFS);
int ParsePHI(Instruction *&I, PerFunctionState &PFS);
bool ParseLandingPad(Instruction *&I, PerFunctionState &PFS);
bool ParseCall(Instruction *&I, PerFunctionState &PFS,
CallInst::TailCallKind IsTail);
int ParseAlloc(Instruction *&I, PerFunctionState &PFS);
int ParseLoad(Instruction *&I, PerFunctionState &PFS);
int ParseStore(Instruction *&I, PerFunctionState &PFS);
int ParseCmpXchg(Instruction *&I, PerFunctionState &PFS);
int ParseAtomicRMW(Instruction *&I, PerFunctionState &PFS);
int ParseFence(Instruction *&I, PerFunctionState &PFS);
int ParseGetElementPtr(Instruction *&I, PerFunctionState &PFS);
int ParseExtractValue(Instruction *&I, PerFunctionState &PFS);
int ParseInsertValue(Instruction *&I, PerFunctionState &PFS);
// Use-list order directives.
bool ParseUseListOrder(PerFunctionState *PFS = nullptr);
bool ParseUseListOrderBB();
bool ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes);
bool sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, SMLoc Loc);
};
} // End llvm namespace
#endif