1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/tools/llvm-xray/xray-graph.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

233 lines
7.4 KiB
C++

//===-- xray-graph.h - XRay Function Call Graph Renderer --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Generate a DOT file to represent the function call graph encountered in
// the trace.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_GRAPH_H
#define XRAY_GRAPH_H
#include <string>
#include <vector>
#include "func-id-helper.h"
#include "xray-color-helper.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/XRay/Graph.h"
#include "llvm/XRay/Trace.h"
#include "llvm/XRay/XRayRecord.h"
namespace llvm {
namespace xray {
/// A class encapsulating the logic related to analyzing XRay traces, producting
/// Graphs from them and then exporting those graphs for review.
class GraphRenderer {
public:
/// An enum for enumerating the various statistics gathered on latencies
enum class StatType { NONE, COUNT, MIN, MED, PCT90, PCT99, MAX, SUM };
/// An inner struct for common timing statistics information
struct TimeStat {
int64_t Count;
double Min;
double Median;
double Pct90;
double Pct99;
double Max;
double Sum;
std::string getString(StatType T) const;
double getDouble(StatType T) const;
};
using TimestampT = uint64_t;
/// An inner struct for storing edge attributes for our graph. Here the
/// attributes are mainly function call statistics.
///
/// FIXME: expand to contain more information eg call latencies.
struct CallStats {
TimeStat S;
std::vector<TimestampT> Timings;
};
/// An Inner Struct for storing vertex attributes, at the moment just
/// SymbolNames, however in future we could store bulk function statistics.
///
/// FIXME: Store more attributes based on instrumentation map.
struct FunctionStats {
std::string SymbolName;
TimeStat S = {};
};
struct FunctionAttr {
int32_t FuncId;
uint64_t TSC;
};
using FunctionStack = SmallVector<FunctionAttr, 4>;
using PerThreadFunctionStackMap =
DenseMap<llvm::sys::procid_t, FunctionStack>;
class GraphT : public Graph<FunctionStats, CallStats, int32_t> {
public:
TimeStat GraphEdgeMax = {};
TimeStat GraphVertexMax = {};
};
GraphT G;
using VertexIdentifier = typename decltype(G)::VertexIdentifier;
using EdgeIdentifier = decltype(G)::EdgeIdentifier;
/// Use a Map to store the Function stack for each thread whilst building the
/// graph.
///
/// FIXME: Perhaps we can Build this into LatencyAccountant? or vise versa?
PerThreadFunctionStackMap PerThreadFunctionStack;
/// Usefull object for getting human readable Symbol Names.
FuncIdConversionHelper FuncIdHelper;
bool DeduceSiblingCalls = false;
TimestampT CurrentMaxTSC = 0;
/// A private function to help implement the statistic generation functions;
template <typename U>
void getStats(U begin, U end, GraphRenderer::TimeStat &S);
void updateMaxStats(const TimeStat &S, TimeStat &M);
/// Calculates latency statistics for each edge and stores the data in the
/// Graph
void calculateEdgeStatistics();
/// Calculates latency statistics for each vertex and stores the data in the
/// Graph
void calculateVertexStatistics();
/// Normalises latency statistics for each edge and vertex by CycleFrequency;
void normalizeStatistics(double CycleFrequency);
/// An object to color gradients
ColorHelper CHelper;
public:
/// Takes in a reference to a FuncIdHelper in order to have ready access to
/// Symbol names.
explicit GraphRenderer(const FuncIdConversionHelper &FuncIdHelper, bool DSC)
: FuncIdHelper(FuncIdHelper), DeduceSiblingCalls(DSC),
CHelper(ColorHelper::SequentialScheme::OrRd) {
G[0] = {};
}
/// Process an Xray record and expand the graph.
///
/// This Function will return true on success, or false if records are not
/// presented in per-thread call-tree DFS order. (That is for each thread the
/// Records should be in order runtime on an ideal system.)
///
/// FIXME: Make this more robust against small irregularities.
Error accountRecord(const XRayRecord &Record);
const PerThreadFunctionStackMap &getPerThreadFunctionStack() const {
return PerThreadFunctionStack;
}
class Factory {
public:
bool KeepGoing;
bool DeduceSiblingCalls;
std::string InstrMap;
::llvm::xray::Trace Trace;
Expected<GraphRenderer> getGraphRenderer();
};
/// Output the Embedded graph in DOT format on \p OS, labeling the edges by
/// \p T
void exportGraphAsDOT(raw_ostream &OS, StatType EdgeLabel = StatType::NONE,
StatType EdgeColor = StatType::NONE,
StatType VertexLabel = StatType::NONE,
StatType VertexColor = StatType::NONE);
/// Get a reference to the internal graph.
const GraphT &getGraph() { return G; }
};
/// Vector Sum of TimeStats
inline GraphRenderer::TimeStat operator+(const GraphRenderer::TimeStat &A,
const GraphRenderer::TimeStat &B) {
return {A.Count + B.Count, A.Min + B.Min, A.Median + B.Median,
A.Pct90 + B.Pct90, A.Pct99 + B.Pct99, A.Max + B.Max,
A.Sum + B.Sum};
}
/// Vector Difference of Timestats
inline GraphRenderer::TimeStat operator-(const GraphRenderer::TimeStat &A,
const GraphRenderer::TimeStat &B) {
return {A.Count - B.Count, A.Min - B.Min, A.Median - B.Median,
A.Pct90 - B.Pct90, A.Pct99 - B.Pct99, A.Max - B.Max,
A.Sum - B.Sum};
}
/// Scalar Diference of TimeStat and double
inline GraphRenderer::TimeStat operator/(const GraphRenderer::TimeStat &A,
double B) {
return {static_cast<int64_t>(A.Count / B),
A.Min / B,
A.Median / B,
A.Pct90 / B,
A.Pct99 / B,
A.Max / B,
A.Sum / B};
}
/// Scalar product of TimeStat and Double
inline GraphRenderer::TimeStat operator*(const GraphRenderer::TimeStat &A,
double B) {
return {static_cast<int64_t>(A.Count * B),
A.Min * B,
A.Median * B,
A.Pct90 * B,
A.Pct99 * B,
A.Max * B,
A.Sum * B};
}
/// Scalar product of double TimeStat
inline GraphRenderer::TimeStat operator*(double A,
const GraphRenderer::TimeStat &B) {
return B * A;
}
/// Hadamard Product of TimeStats
inline GraphRenderer::TimeStat operator*(const GraphRenderer::TimeStat &A,
const GraphRenderer::TimeStat &B) {
return {A.Count * B.Count, A.Min * B.Min, A.Median * B.Median,
A.Pct90 * B.Pct90, A.Pct99 * B.Pct99, A.Max * B.Max,
A.Sum * B.Sum};
}
/// Hadamard Division of TimeStats
inline GraphRenderer::TimeStat operator/(const GraphRenderer::TimeStat &A,
const GraphRenderer::TimeStat &B) {
return {A.Count / B.Count, A.Min / B.Min, A.Median / B.Median,
A.Pct90 / B.Pct90, A.Pct99 / B.Pct99, A.Max / B.Max,
A.Sum / B.Sum};
}
} // namespace xray
} // namespace llvm
#endif // XRAY_GRAPH_H