mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
efc9f3486a
This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
380 lines
13 KiB
C++
380 lines
13 KiB
C++
//===----- CompileOnDemandLayer.cpp - Lazily emit IR on first call --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
|
|
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::orc;
|
|
|
|
static ThreadSafeModule extractSubModule(ThreadSafeModule &TSM,
|
|
StringRef Suffix,
|
|
GVPredicate ShouldExtract) {
|
|
|
|
auto DeleteExtractedDefs = [](GlobalValue &GV) {
|
|
// Bump the linkage: this global will be provided by the external module.
|
|
GV.setLinkage(GlobalValue::ExternalLinkage);
|
|
|
|
// Delete the definition in the source module.
|
|
if (isa<Function>(GV)) {
|
|
auto &F = cast<Function>(GV);
|
|
F.deleteBody();
|
|
F.setPersonalityFn(nullptr);
|
|
} else if (isa<GlobalVariable>(GV)) {
|
|
cast<GlobalVariable>(GV).setInitializer(nullptr);
|
|
} else if (isa<GlobalAlias>(GV)) {
|
|
// We need to turn deleted aliases into function or variable decls based
|
|
// on the type of their aliasee.
|
|
auto &A = cast<GlobalAlias>(GV);
|
|
Constant *Aliasee = A.getAliasee();
|
|
assert(A.hasName() && "Anonymous alias?");
|
|
assert(Aliasee->hasName() && "Anonymous aliasee");
|
|
std::string AliasName = std::string(A.getName());
|
|
|
|
if (isa<Function>(Aliasee)) {
|
|
auto *F = cloneFunctionDecl(*A.getParent(), *cast<Function>(Aliasee));
|
|
A.replaceAllUsesWith(F);
|
|
A.eraseFromParent();
|
|
F->setName(AliasName);
|
|
} else if (isa<GlobalVariable>(Aliasee)) {
|
|
auto *G = cloneGlobalVariableDecl(*A.getParent(),
|
|
*cast<GlobalVariable>(Aliasee));
|
|
A.replaceAllUsesWith(G);
|
|
A.eraseFromParent();
|
|
G->setName(AliasName);
|
|
} else
|
|
llvm_unreachable("Alias to unsupported type");
|
|
} else
|
|
llvm_unreachable("Unsupported global type");
|
|
};
|
|
|
|
auto NewTSM = cloneToNewContext(TSM, ShouldExtract, DeleteExtractedDefs);
|
|
NewTSM.withModuleDo([&](Module &M) {
|
|
M.setModuleIdentifier((M.getModuleIdentifier() + Suffix).str());
|
|
});
|
|
|
|
return NewTSM;
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace orc {
|
|
|
|
class PartitioningIRMaterializationUnit : public IRMaterializationUnit {
|
|
public:
|
|
PartitioningIRMaterializationUnit(ExecutionSession &ES,
|
|
const IRSymbolMapper::ManglingOptions &MO,
|
|
ThreadSafeModule TSM,
|
|
CompileOnDemandLayer &Parent)
|
|
: IRMaterializationUnit(ES, MO, std::move(TSM)), Parent(Parent) {}
|
|
|
|
PartitioningIRMaterializationUnit(
|
|
ThreadSafeModule TSM, SymbolFlagsMap SymbolFlags,
|
|
SymbolStringPtr InitSymbol, SymbolNameToDefinitionMap SymbolToDefinition,
|
|
CompileOnDemandLayer &Parent)
|
|
: IRMaterializationUnit(std::move(TSM), std::move(SymbolFlags),
|
|
std::move(InitSymbol),
|
|
std::move(SymbolToDefinition)),
|
|
Parent(Parent) {}
|
|
|
|
private:
|
|
void materialize(std::unique_ptr<MaterializationResponsibility> R) override {
|
|
Parent.emitPartition(std::move(R), std::move(TSM),
|
|
std::move(SymbolToDefinition));
|
|
}
|
|
|
|
void discard(const JITDylib &V, const SymbolStringPtr &Name) override {
|
|
// All original symbols were materialized by the CODLayer and should be
|
|
// final. The function bodies provided by M should never be overridden.
|
|
llvm_unreachable("Discard should never be called on an "
|
|
"ExtractingIRMaterializationUnit");
|
|
}
|
|
|
|
mutable std::mutex SourceModuleMutex;
|
|
CompileOnDemandLayer &Parent;
|
|
};
|
|
|
|
Optional<CompileOnDemandLayer::GlobalValueSet>
|
|
CompileOnDemandLayer::compileRequested(GlobalValueSet Requested) {
|
|
return std::move(Requested);
|
|
}
|
|
|
|
Optional<CompileOnDemandLayer::GlobalValueSet>
|
|
CompileOnDemandLayer::compileWholeModule(GlobalValueSet Requested) {
|
|
return None;
|
|
}
|
|
|
|
CompileOnDemandLayer::CompileOnDemandLayer(
|
|
ExecutionSession &ES, IRLayer &BaseLayer, LazyCallThroughManager &LCTMgr,
|
|
IndirectStubsManagerBuilder BuildIndirectStubsManager)
|
|
: IRLayer(ES, BaseLayer.getManglingOptions()), BaseLayer(BaseLayer),
|
|
LCTMgr(LCTMgr),
|
|
BuildIndirectStubsManager(std::move(BuildIndirectStubsManager)) {}
|
|
|
|
void CompileOnDemandLayer::setPartitionFunction(PartitionFunction Partition) {
|
|
this->Partition = std::move(Partition);
|
|
}
|
|
|
|
void CompileOnDemandLayer::setImplMap(ImplSymbolMap *Imp) {
|
|
this->AliaseeImpls = Imp;
|
|
}
|
|
void CompileOnDemandLayer::emit(
|
|
std::unique_ptr<MaterializationResponsibility> R, ThreadSafeModule TSM) {
|
|
assert(TSM && "Null module");
|
|
|
|
auto &ES = getExecutionSession();
|
|
|
|
// Sort the callables and non-callables, build re-exports and lodge the
|
|
// actual module with the implementation dylib.
|
|
auto &PDR = getPerDylibResources(R->getTargetJITDylib());
|
|
|
|
SymbolAliasMap NonCallables;
|
|
SymbolAliasMap Callables;
|
|
TSM.withModuleDo([&](Module &M) {
|
|
// First, do some cleanup on the module:
|
|
cleanUpModule(M);
|
|
});
|
|
|
|
for (auto &KV : R->getSymbols()) {
|
|
auto &Name = KV.first;
|
|
auto &Flags = KV.second;
|
|
if (Flags.isCallable())
|
|
Callables[Name] = SymbolAliasMapEntry(Name, Flags);
|
|
else
|
|
NonCallables[Name] = SymbolAliasMapEntry(Name, Flags);
|
|
}
|
|
|
|
// Create a partitioning materialization unit and lodge it with the
|
|
// implementation dylib.
|
|
if (auto Err = PDR.getImplDylib().define(
|
|
std::make_unique<PartitioningIRMaterializationUnit>(
|
|
ES, *getManglingOptions(), std::move(TSM), *this))) {
|
|
ES.reportError(std::move(Err));
|
|
R->failMaterialization();
|
|
return;
|
|
}
|
|
|
|
if (!NonCallables.empty())
|
|
if (auto Err =
|
|
R->replace(reexports(PDR.getImplDylib(), std::move(NonCallables),
|
|
JITDylibLookupFlags::MatchAllSymbols))) {
|
|
getExecutionSession().reportError(std::move(Err));
|
|
R->failMaterialization();
|
|
return;
|
|
}
|
|
if (!Callables.empty()) {
|
|
if (auto Err = R->replace(
|
|
lazyReexports(LCTMgr, PDR.getISManager(), PDR.getImplDylib(),
|
|
std::move(Callables), AliaseeImpls))) {
|
|
getExecutionSession().reportError(std::move(Err));
|
|
R->failMaterialization();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
CompileOnDemandLayer::PerDylibResources &
|
|
CompileOnDemandLayer::getPerDylibResources(JITDylib &TargetD) {
|
|
auto I = DylibResources.find(&TargetD);
|
|
if (I == DylibResources.end()) {
|
|
auto &ImplD =
|
|
getExecutionSession().createBareJITDylib(TargetD.getName() + ".impl");
|
|
JITDylibSearchOrder NewLinkOrder;
|
|
TargetD.withLinkOrderDo([&](const JITDylibSearchOrder &TargetLinkOrder) {
|
|
NewLinkOrder = TargetLinkOrder;
|
|
});
|
|
|
|
assert(!NewLinkOrder.empty() && NewLinkOrder.front().first == &TargetD &&
|
|
NewLinkOrder.front().second ==
|
|
JITDylibLookupFlags::MatchAllSymbols &&
|
|
"TargetD must be at the front of its own search order and match "
|
|
"non-exported symbol");
|
|
NewLinkOrder.insert(std::next(NewLinkOrder.begin()),
|
|
{&ImplD, JITDylibLookupFlags::MatchAllSymbols});
|
|
ImplD.setLinkOrder(NewLinkOrder, false);
|
|
TargetD.setLinkOrder(std::move(NewLinkOrder), false);
|
|
|
|
PerDylibResources PDR(ImplD, BuildIndirectStubsManager());
|
|
I = DylibResources.insert(std::make_pair(&TargetD, std::move(PDR))).first;
|
|
}
|
|
|
|
return I->second;
|
|
}
|
|
|
|
void CompileOnDemandLayer::cleanUpModule(Module &M) {
|
|
for (auto &F : M.functions()) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
if (F.hasAvailableExternallyLinkage()) {
|
|
F.deleteBody();
|
|
F.setPersonalityFn(nullptr);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompileOnDemandLayer::expandPartition(GlobalValueSet &Partition) {
|
|
// Expands the partition to ensure the following rules hold:
|
|
// (1) If any alias is in the partition, its aliasee is also in the partition.
|
|
// (2) If any aliasee is in the partition, its aliases are also in the
|
|
// partiton.
|
|
// (3) If any global variable is in the partition then all global variables
|
|
// are in the partition.
|
|
assert(!Partition.empty() && "Unexpected empty partition");
|
|
|
|
const Module &M = *(*Partition.begin())->getParent();
|
|
bool ContainsGlobalVariables = false;
|
|
std::vector<const GlobalValue *> GVsToAdd;
|
|
|
|
for (auto *GV : Partition)
|
|
if (isa<GlobalAlias>(GV))
|
|
GVsToAdd.push_back(
|
|
cast<GlobalValue>(cast<GlobalAlias>(GV)->getAliasee()));
|
|
else if (isa<GlobalVariable>(GV))
|
|
ContainsGlobalVariables = true;
|
|
|
|
for (auto &A : M.aliases())
|
|
if (Partition.count(cast<GlobalValue>(A.getAliasee())))
|
|
GVsToAdd.push_back(&A);
|
|
|
|
if (ContainsGlobalVariables)
|
|
for (auto &G : M.globals())
|
|
GVsToAdd.push_back(&G);
|
|
|
|
for (auto *GV : GVsToAdd)
|
|
Partition.insert(GV);
|
|
}
|
|
|
|
void CompileOnDemandLayer::emitPartition(
|
|
std::unique_ptr<MaterializationResponsibility> R, ThreadSafeModule TSM,
|
|
IRMaterializationUnit::SymbolNameToDefinitionMap Defs) {
|
|
|
|
// FIXME: Need a 'notify lazy-extracting/emitting' callback to tie the
|
|
// extracted module key, extracted module, and source module key
|
|
// together. This could be used, for example, to provide a specific
|
|
// memory manager instance to the linking layer.
|
|
|
|
auto &ES = getExecutionSession();
|
|
GlobalValueSet RequestedGVs;
|
|
for (auto &Name : R->getRequestedSymbols()) {
|
|
if (Name == R->getInitializerSymbol())
|
|
TSM.withModuleDo([&](Module &M) {
|
|
for (auto &GV : getStaticInitGVs(M))
|
|
RequestedGVs.insert(&GV);
|
|
});
|
|
else {
|
|
assert(Defs.count(Name) && "No definition for symbol");
|
|
RequestedGVs.insert(Defs[Name]);
|
|
}
|
|
}
|
|
|
|
/// Perform partitioning with the context lock held, since the partition
|
|
/// function is allowed to access the globals to compute the partition.
|
|
auto GVsToExtract =
|
|
TSM.withModuleDo([&](Module &M) { return Partition(RequestedGVs); });
|
|
|
|
// Take a 'None' partition to mean the whole module (as opposed to an empty
|
|
// partition, which means "materialize nothing"). Emit the whole module
|
|
// unmodified to the base layer.
|
|
if (GVsToExtract == None) {
|
|
Defs.clear();
|
|
BaseLayer.emit(std::move(R), std::move(TSM));
|
|
return;
|
|
}
|
|
|
|
// If the partition is empty, return the whole module to the symbol table.
|
|
if (GVsToExtract->empty()) {
|
|
if (auto Err =
|
|
R->replace(std::make_unique<PartitioningIRMaterializationUnit>(
|
|
std::move(TSM), R->getSymbols(), R->getInitializerSymbol(),
|
|
std::move(Defs), *this))) {
|
|
getExecutionSession().reportError(std::move(Err));
|
|
R->failMaterialization();
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Ok -- we actually need to partition the symbols. Promote the symbol
|
|
// linkages/names, expand the partition to include any required symbols
|
|
// (i.e. symbols that can't be separated from our partition), and
|
|
// then extract the partition.
|
|
//
|
|
// FIXME: We apply this promotion once per partitioning. It's safe, but
|
|
// overkill.
|
|
auto ExtractedTSM =
|
|
TSM.withModuleDo([&](Module &M) -> Expected<ThreadSafeModule> {
|
|
auto PromotedGlobals = PromoteSymbols(M);
|
|
if (!PromotedGlobals.empty()) {
|
|
|
|
MangleAndInterner Mangle(ES, M.getDataLayout());
|
|
SymbolFlagsMap SymbolFlags;
|
|
IRSymbolMapper::add(ES, *getManglingOptions(),
|
|
PromotedGlobals, SymbolFlags);
|
|
|
|
if (auto Err = R->defineMaterializing(SymbolFlags))
|
|
return std::move(Err);
|
|
}
|
|
|
|
expandPartition(*GVsToExtract);
|
|
|
|
// Submodule name is given by hashing the names of the globals.
|
|
std::string SubModuleName;
|
|
{
|
|
std::vector<const GlobalValue*> HashGVs;
|
|
HashGVs.reserve(GVsToExtract->size());
|
|
for (auto *GV : *GVsToExtract)
|
|
HashGVs.push_back(GV);
|
|
llvm::sort(HashGVs, [](const GlobalValue *LHS, const GlobalValue *RHS) {
|
|
return LHS->getName() < RHS->getName();
|
|
});
|
|
hash_code HC(0);
|
|
for (auto *GV : HashGVs) {
|
|
assert(GV->hasName() && "All GVs to extract should be named by now");
|
|
auto GVName = GV->getName();
|
|
HC = hash_combine(HC, hash_combine_range(GVName.begin(), GVName.end()));
|
|
}
|
|
raw_string_ostream(SubModuleName)
|
|
<< ".submodule."
|
|
<< formatv(sizeof(size_t) == 8 ? "{0:x16}" : "{0:x8}",
|
|
static_cast<size_t>(HC))
|
|
<< ".ll";
|
|
}
|
|
|
|
// Extract the requested partiton (plus any necessary aliases) and
|
|
// put the rest back into the impl dylib.
|
|
auto ShouldExtract = [&](const GlobalValue &GV) -> bool {
|
|
return GVsToExtract->count(&GV);
|
|
};
|
|
|
|
return extractSubModule(TSM, SubModuleName , ShouldExtract);
|
|
});
|
|
|
|
if (!ExtractedTSM) {
|
|
ES.reportError(ExtractedTSM.takeError());
|
|
R->failMaterialization();
|
|
return;
|
|
}
|
|
|
|
if (auto Err = R->replace(std::make_unique<PartitioningIRMaterializationUnit>(
|
|
ES, *getManglingOptions(), std::move(TSM), *this))) {
|
|
ES.reportError(std::move(Err));
|
|
R->failMaterialization();
|
|
return;
|
|
}
|
|
BaseLayer.emit(std::move(R), std::move(*ExtractedTSM));
|
|
}
|
|
|
|
} // end namespace orc
|
|
} // end namespace llvm
|