mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
85e4f6f241
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. **ELF object emission** The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission. Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool. The format of `.pseudo_probe_desc` section looks like: ``` .section .pseudo_probe_desc,"",@progbits .quad 6309742469962978389 // Func GUID .quad 4294967295 // Func Hash .byte 9 // Length of func name .ascii "_Z5funcAi" // Func name .quad 7102633082150537521 .quad 138828622701 .byte 12 .ascii "_Z8funcLeafi" .quad 446061515086924981 .quad 4294967295 .byte 9 .ascii "_Z5funcBi" .quad -2016976694713209516 .quad 72617220756 .byte 7 .ascii "_Z3fibi" ``` For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format : ``` FUNCTION BODY (one for each outlined function present in the text section) GUID (uint64) GUID of the function NPROBES (ULEB128) Number of probes originating from this function. NUM_INLINED_FUNCTIONS (ULEB128) Number of callees inlined into this function, aka number of first-level inlinees PROBE RECORDS A list of NPROBES entries. Each entry contains: INDEX (ULEB128) TYPE (uint4) 0 - block probe, 1 - indirect call, 2 - direct call ATTRIBUTE (uint3) reserved ADDRESS_TYPE (uint1) 0 - code address, 1 - address delta CODE_ADDRESS (uint64 or ULEB128) code address or address delta, depending on ADDRESS_TYPE INLINED FUNCTION RECORDS A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined callees. Each record contains: INLINE SITE GUID of the inlinee (uint64) ID of the callsite probe (ULEB128) FUNCTION BODY A FUNCTION BODY entry describing the inlined function. ``` To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index. **Assembling** Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis. A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file. A example assembly looks like: ``` foo2: # @foo2 # %bb.0: # %bb0 pushq %rax testl %edi, %edi .pseudoprobe 837061429793323041 1 0 0 je .LBB1_1 # %bb.2: # %bb2 .pseudoprobe 837061429793323041 6 2 0 callq foo .pseudoprobe 837061429793323041 3 0 0 .pseudoprobe 837061429793323041 4 0 0 popq %rax retq .LBB1_1: # %bb1 .pseudoprobe 837061429793323041 5 1 0 callq *%rsi .pseudoprobe 837061429793323041 2 0 0 .pseudoprobe 837061429793323041 4 0 0 popq %rax retq # -- End function .section .pseudo_probe_desc,"",@progbits .quad 6699318081062747564 .quad 72617220756 .byte 3 .ascii "foo" .quad 837061429793323041 .quad 281547593931412 .byte 4 .ascii "foo2" ``` With inlining turned on, the assembly may look different around %bb2 with an inlined probe: ``` # %bb.2: # %bb2 .pseudoprobe 837061429793323041 3 0 .pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6 .pseudoprobe 837061429793323041 4 0 popq %rax retq ``` **Disassembling** We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file. An example disassembly looks like: ``` 00000000002011a0 <foo2>: 2011a0: 50 push rax 2011a1: 85 ff test edi,edi [Probe]: FUNC: foo2 Index: 1 Type: Block 2011a3: 74 02 je 2011a7 <foo2+0x7> [Probe]: FUNC: foo2 Index: 3 Type: Block [Probe]: FUNC: foo2 Index: 4 Type: Block [Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6 2011a5: 58 pop rax 2011a6: c3 ret [Probe]: FUNC: foo2 Index: 2 Type: Block 2011a7: bf 01 00 00 00 mov edi,0x1 [Probe]: FUNC: foo2 Index: 5 Type: IndirectCall 2011ac: ff d6 call rsi [Probe]: FUNC: foo2 Index: 4 Type: Block 2011ae: 58 pop rax 2011af: c3 ret ``` Reviewed By: wmi Differential Revision: https://reviews.llvm.org/D91878
214 lines
6.9 KiB
C++
214 lines
6.9 KiB
C++
//===- lib/MC/MCPseudoProbe.cpp - Pseudo probe encoding support ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCPseudoProbe.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
|
|
#define DEBUG_TYPE "mcpseudoprobe"
|
|
|
|
using namespace llvm;
|
|
|
|
#ifndef NDEBUG
|
|
int MCPseudoProbeTable::DdgPrintIndent = 0;
|
|
#endif
|
|
|
|
static const MCExpr *buildSymbolDiff(MCObjectStreamer *MCOS, const MCSymbol *A,
|
|
const MCSymbol *B) {
|
|
MCContext &Context = MCOS->getContext();
|
|
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
|
|
const MCExpr *ARef = MCSymbolRefExpr::create(A, Variant, Context);
|
|
const MCExpr *BRef = MCSymbolRefExpr::create(B, Variant, Context);
|
|
const MCExpr *AddrDelta =
|
|
MCBinaryExpr::create(MCBinaryExpr::Sub, ARef, BRef, Context);
|
|
return AddrDelta;
|
|
}
|
|
|
|
void MCPseudoProbe::emit(MCObjectStreamer *MCOS,
|
|
const MCPseudoProbe *LastProbe) const {
|
|
// Emit Index
|
|
MCOS->emitULEB128IntValue(Index);
|
|
// Emit Type and the flag:
|
|
// Type (bit 0 to 3), with bit 4 to 6 for attributes.
|
|
// Flag (bit 7, 0 - code address, 1 - address delta). This indicates whether
|
|
// the following field is a symbolic code address or an address delta.
|
|
assert(Type <= 0xF && "Probe type too big to encode, exceeding 15");
|
|
assert(Attributes <= 0x7 &&
|
|
"Probe attributes too big to encode, exceeding 7");
|
|
uint8_t PackedType = Type | (Attributes << 4);
|
|
uint8_t Flag = LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
|
|
MCOS->emitInt8(Flag | PackedType);
|
|
|
|
if (LastProbe) {
|
|
// Emit the delta between the address label and LastProbe.
|
|
const MCExpr *AddrDelta =
|
|
buildSymbolDiff(MCOS, Label, LastProbe->getLabel());
|
|
int64_t Delta;
|
|
if (AddrDelta->evaluateAsAbsolute(Delta, MCOS->getAssemblerPtr())) {
|
|
MCOS->emitSLEB128IntValue(Delta);
|
|
} else {
|
|
MCOS->insert(new MCPseudoProbeAddrFragment(AddrDelta));
|
|
}
|
|
} else {
|
|
// Emit label as a symbolic code address.
|
|
MCOS->emitSymbolValue(
|
|
Label, MCOS->getContext().getAsmInfo()->getCodePointerSize());
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "Probe: " << Index << "\n";
|
|
});
|
|
}
|
|
|
|
MCPseudoProbeInlineTree::~MCPseudoProbeInlineTree() {
|
|
for (auto &Inlinee : Inlinees)
|
|
delete Inlinee.second;
|
|
}
|
|
|
|
MCPseudoProbeInlineTree *
|
|
MCPseudoProbeInlineTree::getOrAddNode(InlineSite Site) {
|
|
auto Iter = Inlinees.find(Site);
|
|
if (Iter == Inlinees.end()) {
|
|
auto *Node = new MCPseudoProbeInlineTree(std::get<0>(Site));
|
|
Inlinees[Site] = Node;
|
|
return Node;
|
|
} else {
|
|
return Iter->second;
|
|
}
|
|
}
|
|
|
|
void MCPseudoProbeInlineTree::addPseudoProbe(
|
|
const MCPseudoProbe &Probe, const MCPseudoProbeInlineStack &InlineStack) {
|
|
// The function should not be called on the root.
|
|
assert(isRoot() && "Should not be called on root");
|
|
|
|
// When it comes here, the input look like:
|
|
// Probe: GUID of C, ...
|
|
// InlineStack: [88, A], [66, B]
|
|
// which means, Function A inlines function B at call site with a probe id of
|
|
// 88, and B inlines C at probe 66. The tri-tree expects a tree path like {[0,
|
|
// A], [88, B], [66, C]} to locate the tree node where the probe should be
|
|
// added. Note that the edge [0, A] means A is the top-level function we are
|
|
// emitting probes for.
|
|
|
|
// Make a [0, A] edge.
|
|
// An empty inline stack means the function that the probe originates from
|
|
// is a top-level function.
|
|
InlineSite Top;
|
|
if (InlineStack.empty()) {
|
|
Top = InlineSite(Probe.getGuid(), 0);
|
|
} else {
|
|
Top = InlineSite(std::get<0>(InlineStack.front()), 0);
|
|
}
|
|
|
|
auto *Cur = getOrAddNode(Top);
|
|
|
|
// Make interior edges by walking the inline stack. Once it's done, Cur should
|
|
// point to the node that the probe originates from.
|
|
if (!InlineStack.empty()) {
|
|
auto Iter = InlineStack.begin();
|
|
auto Index = std::get<1>(*Iter);
|
|
Iter++;
|
|
for (; Iter != InlineStack.end(); Iter++) {
|
|
// Make an edge by using the previous probe id and current GUID.
|
|
Cur = Cur->getOrAddNode(InlineSite(std::get<0>(*Iter), Index));
|
|
Index = std::get<1>(*Iter);
|
|
}
|
|
Cur = Cur->getOrAddNode(InlineSite(Probe.getGuid(), Index));
|
|
}
|
|
|
|
Cur->Probes.push_back(Probe);
|
|
}
|
|
|
|
void MCPseudoProbeInlineTree::emit(MCObjectStreamer *MCOS,
|
|
const MCPseudoProbe *&LastProbe) {
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "Group [\n";
|
|
MCPseudoProbeTable::DdgPrintIndent += 2;
|
|
});
|
|
// Emit probes grouped by GUID.
|
|
if (Guid != 0) {
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "GUID: " << Guid << "\n";
|
|
});
|
|
// Emit Guid
|
|
MCOS->emitInt64(Guid);
|
|
// Emit number of probes in this node
|
|
MCOS->emitULEB128IntValue(Probes.size());
|
|
// Emit number of direct inlinees
|
|
MCOS->emitULEB128IntValue(Inlinees.size());
|
|
// Emit probes in this group
|
|
for (const auto &Probe : Probes) {
|
|
Probe.emit(MCOS, LastProbe);
|
|
LastProbe = &Probe;
|
|
}
|
|
} else {
|
|
assert(Probes.empty() && "Root should not have probes");
|
|
}
|
|
|
|
// Emit descendent
|
|
for (const auto &Inlinee : Inlinees) {
|
|
if (Guid) {
|
|
// Emit probe index
|
|
MCOS->emitULEB128IntValue(std::get<1>(Inlinee.first));
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
|
|
});
|
|
}
|
|
// Emit the group
|
|
Inlinee.second->emit(MCOS, LastProbe);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
MCPseudoProbeTable::DdgPrintIndent -= 2;
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "]\n";
|
|
});
|
|
}
|
|
|
|
void MCPseudoProbeSection::emit(MCObjectStreamer *MCOS) {
|
|
MCContext &Ctx = MCOS->getContext();
|
|
|
|
for (auto &ProbeSec : MCProbeDivisions) {
|
|
const MCPseudoProbe *LastProbe = nullptr;
|
|
if (auto *S =
|
|
Ctx.getObjectFileInfo()->getPseudoProbeSection(ProbeSec.first)) {
|
|
// Switch to the .pseudoprobe section or a comdat group.
|
|
MCOS->SwitchSection(S);
|
|
// Emit probes grouped by GUID.
|
|
ProbeSec.second.emit(MCOS, LastProbe);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// This emits the pseudo probe tables.
|
|
//
|
|
void MCPseudoProbeTable::emit(MCObjectStreamer *MCOS) {
|
|
MCContext &Ctx = MCOS->getContext();
|
|
auto &ProbeTable = Ctx.getMCPseudoProbeTable();
|
|
|
|
// Bail out early so we don't switch to the pseudo_probe section needlessly
|
|
// and in doing so create an unnecessary (if empty) section.
|
|
auto &ProbeSections = ProbeTable.getProbeSections();
|
|
if (ProbeSections.empty())
|
|
return;
|
|
|
|
LLVM_DEBUG(MCPseudoProbeTable::DdgPrintIndent = 0);
|
|
|
|
// Put out the probe.
|
|
ProbeSections.emit(MCOS);
|
|
}
|