mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
ce78a3156f
FindAvailableLoadedValue() accepts an iterator by reference. If no available value is found, then the iterator will either be left at a clobbering instruction or the beginning of the basic block. This allows using FindAvailableLoadedValue() across multiple blocks. If this functionality is not needed, as is the case in InstCombine, then we can use a much more efficient implementation: First try to find an available value, and only perform clobber checks if we actually found one. As this function only looks at a very small number of instructions (6 by default) and usually doesn't find an available value, this saves many expensive alias analysis queries.
1569 lines
58 KiB
C++
1569 lines
58 KiB
C++
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for load, store and alloca.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
|
|
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
|
|
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
|
|
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
|
|
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
|
|
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
|
|
/// the alloca, and if the source pointer is a pointer to a constant global, we
|
|
/// can optimize this.
|
|
static bool
|
|
isOnlyCopiedFromConstantMemory(AAResults *AA,
|
|
Value *V, MemTransferInst *&TheCopy,
|
|
SmallVectorImpl<Instruction *> &ToDelete) {
|
|
// We track lifetime intrinsics as we encounter them. If we decide to go
|
|
// ahead and replace the value with the global, this lets the caller quickly
|
|
// eliminate the markers.
|
|
|
|
SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
|
|
ValuesToInspect.emplace_back(V, false);
|
|
while (!ValuesToInspect.empty()) {
|
|
auto ValuePair = ValuesToInspect.pop_back_val();
|
|
const bool IsOffset = ValuePair.second;
|
|
for (auto &U : ValuePair.first->uses()) {
|
|
auto *I = cast<Instruction>(U.getUser());
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(I)) {
|
|
// Ignore non-volatile loads, they are always ok.
|
|
if (!LI->isSimple()) return false;
|
|
continue;
|
|
}
|
|
|
|
if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
|
|
// If uses of the bitcast are ok, we are ok.
|
|
ValuesToInspect.emplace_back(I, IsOffset);
|
|
continue;
|
|
}
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
// If the GEP has all zero indices, it doesn't offset the pointer. If it
|
|
// doesn't, it does.
|
|
ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
|
|
continue;
|
|
}
|
|
|
|
if (auto *Call = dyn_cast<CallBase>(I)) {
|
|
// If this is the function being called then we treat it like a load and
|
|
// ignore it.
|
|
if (Call->isCallee(&U))
|
|
continue;
|
|
|
|
unsigned DataOpNo = Call->getDataOperandNo(&U);
|
|
bool IsArgOperand = Call->isArgOperand(&U);
|
|
|
|
// Inalloca arguments are clobbered by the call.
|
|
if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
|
|
return false;
|
|
|
|
// If this is a readonly/readnone call site, then we know it is just a
|
|
// load (but one that potentially returns the value itself), so we can
|
|
// ignore it if we know that the value isn't captured.
|
|
if (Call->onlyReadsMemory() &&
|
|
(Call->use_empty() || Call->doesNotCapture(DataOpNo)))
|
|
continue;
|
|
|
|
// If this is being passed as a byval argument, the caller is making a
|
|
// copy, so it is only a read of the alloca.
|
|
if (IsArgOperand && Call->isByValArgument(DataOpNo))
|
|
continue;
|
|
}
|
|
|
|
// Lifetime intrinsics can be handled by the caller.
|
|
if (I->isLifetimeStartOrEnd()) {
|
|
assert(I->use_empty() && "Lifetime markers have no result to use!");
|
|
ToDelete.push_back(I);
|
|
continue;
|
|
}
|
|
|
|
// If this is isn't our memcpy/memmove, reject it as something we can't
|
|
// handle.
|
|
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
|
|
if (!MI)
|
|
return false;
|
|
|
|
// If the transfer is using the alloca as a source of the transfer, then
|
|
// ignore it since it is a load (unless the transfer is volatile).
|
|
if (U.getOperandNo() == 1) {
|
|
if (MI->isVolatile()) return false;
|
|
continue;
|
|
}
|
|
|
|
// If we already have seen a copy, reject the second one.
|
|
if (TheCopy) return false;
|
|
|
|
// If the pointer has been offset from the start of the alloca, we can't
|
|
// safely handle this.
|
|
if (IsOffset) return false;
|
|
|
|
// If the memintrinsic isn't using the alloca as the dest, reject it.
|
|
if (U.getOperandNo() != 0) return false;
|
|
|
|
// If the source of the memcpy/move is not a constant global, reject it.
|
|
if (!AA->pointsToConstantMemory(MI->getSource()))
|
|
return false;
|
|
|
|
// Otherwise, the transform is safe. Remember the copy instruction.
|
|
TheCopy = MI;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
|
|
/// modified by a copy from a constant global. If we can prove this, we can
|
|
/// replace any uses of the alloca with uses of the global directly.
|
|
static MemTransferInst *
|
|
isOnlyCopiedFromConstantMemory(AAResults *AA,
|
|
AllocaInst *AI,
|
|
SmallVectorImpl<Instruction *> &ToDelete) {
|
|
MemTransferInst *TheCopy = nullptr;
|
|
if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
|
|
return TheCopy;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns true if V is dereferenceable for size of alloca.
|
|
static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
|
|
const DataLayout &DL) {
|
|
if (AI->isArrayAllocation())
|
|
return false;
|
|
uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
|
|
if (!AllocaSize)
|
|
return false;
|
|
return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
|
|
APInt(64, AllocaSize), DL);
|
|
}
|
|
|
|
static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
|
|
AllocaInst &AI) {
|
|
// Check for array size of 1 (scalar allocation).
|
|
if (!AI.isArrayAllocation()) {
|
|
// i32 1 is the canonical array size for scalar allocations.
|
|
if (AI.getArraySize()->getType()->isIntegerTy(32))
|
|
return nullptr;
|
|
|
|
// Canonicalize it.
|
|
return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
|
|
}
|
|
|
|
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
|
|
if (C->getValue().getActiveBits() <= 64) {
|
|
Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
|
|
AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
|
|
New->setAlignment(AI.getAlign());
|
|
|
|
// Scan to the end of the allocation instructions, to skip over a block of
|
|
// allocas if possible...also skip interleaved debug info
|
|
//
|
|
BasicBlock::iterator It(New);
|
|
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
|
|
++It;
|
|
|
|
// Now that I is pointing to the first non-allocation-inst in the block,
|
|
// insert our getelementptr instruction...
|
|
//
|
|
Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
|
|
Value *NullIdx = Constant::getNullValue(IdxTy);
|
|
Value *Idx[2] = {NullIdx, NullIdx};
|
|
Instruction *GEP = GetElementPtrInst::CreateInBounds(
|
|
NewTy, New, Idx, New->getName() + ".sub");
|
|
IC.InsertNewInstBefore(GEP, *It);
|
|
|
|
// Now make everything use the getelementptr instead of the original
|
|
// allocation.
|
|
return IC.replaceInstUsesWith(AI, GEP);
|
|
}
|
|
}
|
|
|
|
if (isa<UndefValue>(AI.getArraySize()))
|
|
return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
|
|
|
|
// Ensure that the alloca array size argument has type intptr_t, so that
|
|
// any casting is exposed early.
|
|
Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
|
|
if (AI.getArraySize()->getType() != IntPtrTy) {
|
|
Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
|
|
return IC.replaceOperand(AI, 0, V);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
// If I and V are pointers in different address space, it is not allowed to
|
|
// use replaceAllUsesWith since I and V have different types. A
|
|
// non-target-specific transformation should not use addrspacecast on V since
|
|
// the two address space may be disjoint depending on target.
|
|
//
|
|
// This class chases down uses of the old pointer until reaching the load
|
|
// instructions, then replaces the old pointer in the load instructions with
|
|
// the new pointer. If during the chasing it sees bitcast or GEP, it will
|
|
// create new bitcast or GEP with the new pointer and use them in the load
|
|
// instruction.
|
|
class PointerReplacer {
|
|
public:
|
|
PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
|
|
|
|
bool collectUsers(Instruction &I);
|
|
void replacePointer(Instruction &I, Value *V);
|
|
|
|
private:
|
|
void replace(Instruction *I);
|
|
Value *getReplacement(Value *I);
|
|
|
|
SmallSetVector<Instruction *, 4> Worklist;
|
|
MapVector<Value *, Value *> WorkMap;
|
|
InstCombinerImpl &IC;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool PointerReplacer::collectUsers(Instruction &I) {
|
|
for (auto U : I.users()) {
|
|
Instruction *Inst = cast<Instruction>(&*U);
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
if (Load->isVolatile())
|
|
return false;
|
|
Worklist.insert(Load);
|
|
} else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
|
|
Worklist.insert(Inst);
|
|
if (!collectUsers(*Inst))
|
|
return false;
|
|
} else if (isa<MemTransferInst>(Inst)) {
|
|
Worklist.insert(Inst);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
|
|
|
|
void PointerReplacer::replace(Instruction *I) {
|
|
if (getReplacement(I))
|
|
return;
|
|
|
|
if (auto *LT = dyn_cast<LoadInst>(I)) {
|
|
auto *V = getReplacement(LT->getPointerOperand());
|
|
assert(V && "Operand not replaced");
|
|
auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
|
|
LT->getAlign(), LT->getOrdering(),
|
|
LT->getSyncScopeID());
|
|
NewI->takeName(LT);
|
|
copyMetadataForLoad(*NewI, *LT);
|
|
|
|
IC.InsertNewInstWith(NewI, *LT);
|
|
IC.replaceInstUsesWith(*LT, NewI);
|
|
WorkMap[LT] = NewI;
|
|
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
auto *V = getReplacement(GEP->getPointerOperand());
|
|
assert(V && "Operand not replaced");
|
|
SmallVector<Value *, 8> Indices;
|
|
Indices.append(GEP->idx_begin(), GEP->idx_end());
|
|
auto *NewI = GetElementPtrInst::Create(
|
|
V->getType()->getPointerElementType(), V, Indices);
|
|
IC.InsertNewInstWith(NewI, *GEP);
|
|
NewI->takeName(GEP);
|
|
WorkMap[GEP] = NewI;
|
|
} else if (auto *BC = dyn_cast<BitCastInst>(I)) {
|
|
auto *V = getReplacement(BC->getOperand(0));
|
|
assert(V && "Operand not replaced");
|
|
auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
|
|
V->getType()->getPointerAddressSpace());
|
|
auto *NewI = new BitCastInst(V, NewT);
|
|
IC.InsertNewInstWith(NewI, *BC);
|
|
NewI->takeName(BC);
|
|
WorkMap[BC] = NewI;
|
|
} else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
|
|
auto *SrcV = getReplacement(MemCpy->getRawSource());
|
|
// The pointer may appear in the destination of a copy, but we don't want to
|
|
// replace it.
|
|
if (!SrcV) {
|
|
assert(getReplacement(MemCpy->getRawDest()) &&
|
|
"destination not in replace list");
|
|
return;
|
|
}
|
|
|
|
IC.Builder.SetInsertPoint(MemCpy);
|
|
auto *NewI = IC.Builder.CreateMemTransferInst(
|
|
MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
|
|
SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
|
|
MemCpy->isVolatile());
|
|
AAMDNodes AAMD;
|
|
MemCpy->getAAMetadata(AAMD);
|
|
if (AAMD)
|
|
NewI->setAAMetadata(AAMD);
|
|
|
|
IC.eraseInstFromFunction(*MemCpy);
|
|
WorkMap[MemCpy] = NewI;
|
|
} else {
|
|
llvm_unreachable("should never reach here");
|
|
}
|
|
}
|
|
|
|
void PointerReplacer::replacePointer(Instruction &I, Value *V) {
|
|
#ifndef NDEBUG
|
|
auto *PT = cast<PointerType>(I.getType());
|
|
auto *NT = cast<PointerType>(V->getType());
|
|
assert(PT != NT && PT->getElementType() == NT->getElementType() &&
|
|
"Invalid usage");
|
|
#endif
|
|
WorkMap[&I] = V;
|
|
|
|
for (Instruction *Workitem : Worklist)
|
|
replace(Workitem);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
|
|
if (auto *I = simplifyAllocaArraySize(*this, AI))
|
|
return I;
|
|
|
|
if (AI.getAllocatedType()->isSized()) {
|
|
// Move all alloca's of zero byte objects to the entry block and merge them
|
|
// together. Note that we only do this for alloca's, because malloc should
|
|
// allocate and return a unique pointer, even for a zero byte allocation.
|
|
if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
|
|
// For a zero sized alloca there is no point in doing an array allocation.
|
|
// This is helpful if the array size is a complicated expression not used
|
|
// elsewhere.
|
|
if (AI.isArrayAllocation())
|
|
return replaceOperand(AI, 0,
|
|
ConstantInt::get(AI.getArraySize()->getType(), 1));
|
|
|
|
// Get the first instruction in the entry block.
|
|
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
|
|
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
|
|
if (FirstInst != &AI) {
|
|
// If the entry block doesn't start with a zero-size alloca then move
|
|
// this one to the start of the entry block. There is no problem with
|
|
// dominance as the array size was forced to a constant earlier already.
|
|
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
|
|
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
|
|
DL.getTypeAllocSize(EntryAI->getAllocatedType())
|
|
.getKnownMinSize() != 0) {
|
|
AI.moveBefore(FirstInst);
|
|
return &AI;
|
|
}
|
|
|
|
// Replace this zero-sized alloca with the one at the start of the entry
|
|
// block after ensuring that the address will be aligned enough for both
|
|
// types.
|
|
const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
|
|
EntryAI->setAlignment(MaxAlign);
|
|
if (AI.getType() != EntryAI->getType())
|
|
return new BitCastInst(EntryAI, AI.getType());
|
|
return replaceInstUsesWith(AI, EntryAI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check to see if this allocation is only modified by a memcpy/memmove from
|
|
// a constant whose alignment is equal to or exceeds that of the allocation.
|
|
// If this is the case, we can change all users to use the constant global
|
|
// instead. This is commonly produced by the CFE by constructs like "void
|
|
// foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
|
|
// read.
|
|
SmallVector<Instruction *, 4> ToDelete;
|
|
if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
|
|
Value *TheSrc = Copy->getSource();
|
|
Align AllocaAlign = AI.getAlign();
|
|
Align SourceAlign = getOrEnforceKnownAlignment(
|
|
TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
|
|
if (AllocaAlign <= SourceAlign &&
|
|
isDereferenceableForAllocaSize(TheSrc, &AI, DL)) {
|
|
LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
|
|
LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
|
|
unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
|
|
auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
|
|
if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
|
|
for (Instruction *Delete : ToDelete)
|
|
eraseInstFromFunction(*Delete);
|
|
|
|
Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
|
|
Instruction *NewI = replaceInstUsesWith(AI, Cast);
|
|
eraseInstFromFunction(*Copy);
|
|
++NumGlobalCopies;
|
|
return NewI;
|
|
}
|
|
|
|
PointerReplacer PtrReplacer(*this);
|
|
if (PtrReplacer.collectUsers(AI)) {
|
|
for (Instruction *Delete : ToDelete)
|
|
eraseInstFromFunction(*Delete);
|
|
|
|
Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
|
|
PtrReplacer.replacePointer(AI, Cast);
|
|
++NumGlobalCopies;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At last, use the generic allocation site handler to aggressively remove
|
|
// unused allocas.
|
|
return visitAllocSite(AI);
|
|
}
|
|
|
|
// Are we allowed to form a atomic load or store of this type?
|
|
static bool isSupportedAtomicType(Type *Ty) {
|
|
return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
|
|
}
|
|
|
|
/// Helper to combine a load to a new type.
|
|
///
|
|
/// This just does the work of combining a load to a new type. It handles
|
|
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
|
|
/// loaded *value* type. This will convert it to a pointer, cast the operand to
|
|
/// that pointer type, load it, etc.
|
|
///
|
|
/// Note that this will create all of the instructions with whatever insert
|
|
/// point the \c InstCombinerImpl currently is using.
|
|
LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
|
|
const Twine &Suffix) {
|
|
assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
|
|
"can't fold an atomic load to requested type");
|
|
|
|
Value *Ptr = LI.getPointerOperand();
|
|
unsigned AS = LI.getPointerAddressSpace();
|
|
Value *NewPtr = nullptr;
|
|
if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
|
|
NewPtr->getType()->getPointerElementType() == NewTy &&
|
|
NewPtr->getType()->getPointerAddressSpace() == AS))
|
|
NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
|
|
|
|
LoadInst *NewLoad = Builder.CreateAlignedLoad(
|
|
NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
|
|
NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
|
|
copyMetadataForLoad(*NewLoad, LI);
|
|
return NewLoad;
|
|
}
|
|
|
|
/// Combine a store to a new type.
|
|
///
|
|
/// Returns the newly created store instruction.
|
|
static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
|
|
Value *V) {
|
|
assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
|
|
"can't fold an atomic store of requested type");
|
|
|
|
Value *Ptr = SI.getPointerOperand();
|
|
unsigned AS = SI.getPointerAddressSpace();
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
|
|
SI.getAllMetadata(MD);
|
|
|
|
StoreInst *NewStore = IC.Builder.CreateAlignedStore(
|
|
V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
|
|
SI.getAlign(), SI.isVolatile());
|
|
NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
|
|
for (const auto &MDPair : MD) {
|
|
unsigned ID = MDPair.first;
|
|
MDNode *N = MDPair.second;
|
|
// Note, essentially every kind of metadata should be preserved here! This
|
|
// routine is supposed to clone a store instruction changing *only its
|
|
// type*. The only metadata it makes sense to drop is metadata which is
|
|
// invalidated when the pointer type changes. This should essentially
|
|
// never be the case in LLVM, but we explicitly switch over only known
|
|
// metadata to be conservatively correct. If you are adding metadata to
|
|
// LLVM which pertains to stores, you almost certainly want to add it
|
|
// here.
|
|
switch (ID) {
|
|
case LLVMContext::MD_dbg:
|
|
case LLVMContext::MD_tbaa:
|
|
case LLVMContext::MD_prof:
|
|
case LLVMContext::MD_fpmath:
|
|
case LLVMContext::MD_tbaa_struct:
|
|
case LLVMContext::MD_alias_scope:
|
|
case LLVMContext::MD_noalias:
|
|
case LLVMContext::MD_nontemporal:
|
|
case LLVMContext::MD_mem_parallel_loop_access:
|
|
case LLVMContext::MD_access_group:
|
|
// All of these directly apply.
|
|
NewStore->setMetadata(ID, N);
|
|
break;
|
|
case LLVMContext::MD_invariant_load:
|
|
case LLVMContext::MD_nonnull:
|
|
case LLVMContext::MD_noundef:
|
|
case LLVMContext::MD_range:
|
|
case LLVMContext::MD_align:
|
|
case LLVMContext::MD_dereferenceable:
|
|
case LLVMContext::MD_dereferenceable_or_null:
|
|
// These don't apply for stores.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NewStore;
|
|
}
|
|
|
|
/// Returns true if instruction represent minmax pattern like:
|
|
/// select ((cmp load V1, load V2), V1, V2).
|
|
static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
|
|
assert(V->getType()->isPointerTy() && "Expected pointer type.");
|
|
// Ignore possible ty* to ixx* bitcast.
|
|
V = InstCombiner::peekThroughBitcast(V);
|
|
// Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
|
|
// pattern.
|
|
CmpInst::Predicate Pred;
|
|
Instruction *L1;
|
|
Instruction *L2;
|
|
Value *LHS;
|
|
Value *RHS;
|
|
if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
|
|
m_Value(LHS), m_Value(RHS))))
|
|
return false;
|
|
LoadTy = L1->getType();
|
|
return (match(L1, m_Load(m_Specific(LHS))) &&
|
|
match(L2, m_Load(m_Specific(RHS)))) ||
|
|
(match(L1, m_Load(m_Specific(RHS))) &&
|
|
match(L2, m_Load(m_Specific(LHS))));
|
|
}
|
|
|
|
/// Combine loads to match the type of their uses' value after looking
|
|
/// through intervening bitcasts.
|
|
///
|
|
/// The core idea here is that if the result of a load is used in an operation,
|
|
/// we should load the type most conducive to that operation. For example, when
|
|
/// loading an integer and converting that immediately to a pointer, we should
|
|
/// instead directly load a pointer.
|
|
///
|
|
/// However, this routine must never change the width of a load or the number of
|
|
/// loads as that would introduce a semantic change. This combine is expected to
|
|
/// be a semantic no-op which just allows loads to more closely model the types
|
|
/// of their consuming operations.
|
|
///
|
|
/// Currently, we also refuse to change the precise type used for an atomic load
|
|
/// or a volatile load. This is debatable, and might be reasonable to change
|
|
/// later. However, it is risky in case some backend or other part of LLVM is
|
|
/// relying on the exact type loaded to select appropriate atomic operations.
|
|
static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
|
|
LoadInst &LI) {
|
|
// FIXME: We could probably with some care handle both volatile and ordered
|
|
// atomic loads here but it isn't clear that this is important.
|
|
if (!LI.isUnordered())
|
|
return nullptr;
|
|
|
|
if (LI.use_empty())
|
|
return nullptr;
|
|
|
|
// swifterror values can't be bitcasted.
|
|
if (LI.getPointerOperand()->isSwiftError())
|
|
return nullptr;
|
|
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
|
|
// Fold away bit casts of the loaded value by loading the desired type.
|
|
// Note that we should not do this for pointer<->integer casts,
|
|
// because that would result in type punning.
|
|
if (LI.hasOneUse()) {
|
|
// Don't transform when the type is x86_amx, it makes the pass that lower
|
|
// x86_amx type happy.
|
|
if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
|
|
assert(!LI.getType()->isX86_AMXTy() &&
|
|
"load from x86_amx* should not happen!");
|
|
if (BC->getType()->isX86_AMXTy())
|
|
return nullptr;
|
|
}
|
|
|
|
if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
|
|
if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
|
|
CI->getDestTy()->isPtrOrPtrVectorTy())
|
|
if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
|
|
LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
|
|
CI->replaceAllUsesWith(NewLoad);
|
|
IC.eraseInstFromFunction(*CI);
|
|
return &LI;
|
|
}
|
|
}
|
|
|
|
// FIXME: We should also canonicalize loads of vectors when their elements are
|
|
// cast to other types.
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
|
|
// FIXME: We could probably with some care handle both volatile and atomic
|
|
// stores here but it isn't clear that this is important.
|
|
if (!LI.isSimple())
|
|
return nullptr;
|
|
|
|
Type *T = LI.getType();
|
|
if (!T->isAggregateType())
|
|
return nullptr;
|
|
|
|
StringRef Name = LI.getName();
|
|
assert(LI.getAlignment() && "Alignment must be set at this point");
|
|
|
|
if (auto *ST = dyn_cast<StructType>(T)) {
|
|
// If the struct only have one element, we unpack.
|
|
auto NumElements = ST->getNumElements();
|
|
if (NumElements == 1) {
|
|
LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
|
|
".unpack");
|
|
AAMDNodes AAMD;
|
|
LI.getAAMetadata(AAMD);
|
|
NewLoad->setAAMetadata(AAMD);
|
|
return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
|
|
UndefValue::get(T), NewLoad, 0, Name));
|
|
}
|
|
|
|
// We don't want to break loads with padding here as we'd loose
|
|
// the knowledge that padding exists for the rest of the pipeline.
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
auto *SL = DL.getStructLayout(ST);
|
|
if (SL->hasPadding())
|
|
return nullptr;
|
|
|
|
const auto Align = LI.getAlign();
|
|
auto *Addr = LI.getPointerOperand();
|
|
auto *IdxType = Type::getInt32Ty(T->getContext());
|
|
auto *Zero = ConstantInt::get(IdxType, 0);
|
|
|
|
Value *V = UndefValue::get(T);
|
|
for (unsigned i = 0; i < NumElements; i++) {
|
|
Value *Indices[2] = {
|
|
Zero,
|
|
ConstantInt::get(IdxType, i),
|
|
};
|
|
auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
|
|
Name + ".elt");
|
|
auto *L = IC.Builder.CreateAlignedLoad(
|
|
ST->getElementType(i), Ptr,
|
|
commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
|
|
// Propagate AA metadata. It'll still be valid on the narrowed load.
|
|
AAMDNodes AAMD;
|
|
LI.getAAMetadata(AAMD);
|
|
L->setAAMetadata(AAMD);
|
|
V = IC.Builder.CreateInsertValue(V, L, i);
|
|
}
|
|
|
|
V->setName(Name);
|
|
return IC.replaceInstUsesWith(LI, V);
|
|
}
|
|
|
|
if (auto *AT = dyn_cast<ArrayType>(T)) {
|
|
auto *ET = AT->getElementType();
|
|
auto NumElements = AT->getNumElements();
|
|
if (NumElements == 1) {
|
|
LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
|
|
AAMDNodes AAMD;
|
|
LI.getAAMetadata(AAMD);
|
|
NewLoad->setAAMetadata(AAMD);
|
|
return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
|
|
UndefValue::get(T), NewLoad, 0, Name));
|
|
}
|
|
|
|
// Bail out if the array is too large. Ideally we would like to optimize
|
|
// arrays of arbitrary size but this has a terrible impact on compile time.
|
|
// The threshold here is chosen arbitrarily, maybe needs a little bit of
|
|
// tuning.
|
|
if (NumElements > IC.MaxArraySizeForCombine)
|
|
return nullptr;
|
|
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
auto EltSize = DL.getTypeAllocSize(ET);
|
|
const auto Align = LI.getAlign();
|
|
|
|
auto *Addr = LI.getPointerOperand();
|
|
auto *IdxType = Type::getInt64Ty(T->getContext());
|
|
auto *Zero = ConstantInt::get(IdxType, 0);
|
|
|
|
Value *V = UndefValue::get(T);
|
|
uint64_t Offset = 0;
|
|
for (uint64_t i = 0; i < NumElements; i++) {
|
|
Value *Indices[2] = {
|
|
Zero,
|
|
ConstantInt::get(IdxType, i),
|
|
};
|
|
auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
|
|
Name + ".elt");
|
|
auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
|
|
commonAlignment(Align, Offset),
|
|
Name + ".unpack");
|
|
AAMDNodes AAMD;
|
|
LI.getAAMetadata(AAMD);
|
|
L->setAAMetadata(AAMD);
|
|
V = IC.Builder.CreateInsertValue(V, L, i);
|
|
Offset += EltSize;
|
|
}
|
|
|
|
V->setName(Name);
|
|
return IC.replaceInstUsesWith(LI, V);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If we can determine that all possible objects pointed to by the provided
|
|
// pointer value are, not only dereferenceable, but also definitively less than
|
|
// or equal to the provided maximum size, then return true. Otherwise, return
|
|
// false (constant global values and allocas fall into this category).
|
|
//
|
|
// FIXME: This should probably live in ValueTracking (or similar).
|
|
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
|
|
const DataLayout &DL) {
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
SmallVector<Value *, 4> Worklist(1, V);
|
|
|
|
do {
|
|
Value *P = Worklist.pop_back_val();
|
|
P = P->stripPointerCasts();
|
|
|
|
if (!Visited.insert(P).second)
|
|
continue;
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
|
|
Worklist.push_back(SI->getTrueValue());
|
|
Worklist.push_back(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(P)) {
|
|
append_range(Worklist, PN->incoming_values());
|
|
continue;
|
|
}
|
|
|
|
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
|
|
if (GA->isInterposable())
|
|
return false;
|
|
Worklist.push_back(GA->getAliasee());
|
|
continue;
|
|
}
|
|
|
|
// If we know how big this object is, and it is less than MaxSize, continue
|
|
// searching. Otherwise, return false.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
|
|
if (!AI->getAllocatedType()->isSized())
|
|
return false;
|
|
|
|
ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
|
|
if (!CS)
|
|
return false;
|
|
|
|
uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
|
|
// Make sure that, even if the multiplication below would wrap as an
|
|
// uint64_t, we still do the right thing.
|
|
if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
|
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
|
|
return false;
|
|
|
|
uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
|
|
if (InitSize > MaxSize)
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
} while (!Worklist.empty());
|
|
|
|
return true;
|
|
}
|
|
|
|
// If we're indexing into an object of a known size, and the outer index is
|
|
// not a constant, but having any value but zero would lead to undefined
|
|
// behavior, replace it with zero.
|
|
//
|
|
// For example, if we have:
|
|
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
|
|
// ...
|
|
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
|
|
// ... = load i32* %arrayidx, align 4
|
|
// Then we know that we can replace %x in the GEP with i64 0.
|
|
//
|
|
// FIXME: We could fold any GEP index to zero that would cause UB if it were
|
|
// not zero. Currently, we only handle the first such index. Also, we could
|
|
// also search through non-zero constant indices if we kept track of the
|
|
// offsets those indices implied.
|
|
static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
|
|
GetElementPtrInst *GEPI, Instruction *MemI,
|
|
unsigned &Idx) {
|
|
if (GEPI->getNumOperands() < 2)
|
|
return false;
|
|
|
|
// Find the first non-zero index of a GEP. If all indices are zero, return
|
|
// one past the last index.
|
|
auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
|
|
unsigned I = 1;
|
|
for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
|
|
Value *V = GEPI->getOperand(I);
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
if (CI->isZero())
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
return I;
|
|
};
|
|
|
|
// Skip through initial 'zero' indices, and find the corresponding pointer
|
|
// type. See if the next index is not a constant.
|
|
Idx = FirstNZIdx(GEPI);
|
|
if (Idx == GEPI->getNumOperands())
|
|
return false;
|
|
if (isa<Constant>(GEPI->getOperand(Idx)))
|
|
return false;
|
|
|
|
SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
|
|
Type *SourceElementType = GEPI->getSourceElementType();
|
|
// Size information about scalable vectors is not available, so we cannot
|
|
// deduce whether indexing at n is undefined behaviour or not. Bail out.
|
|
if (isa<ScalableVectorType>(SourceElementType))
|
|
return false;
|
|
|
|
Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
|
|
if (!AllocTy || !AllocTy->isSized())
|
|
return false;
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
|
|
|
|
// If there are more indices after the one we might replace with a zero, make
|
|
// sure they're all non-negative. If any of them are negative, the overall
|
|
// address being computed might be before the base address determined by the
|
|
// first non-zero index.
|
|
auto IsAllNonNegative = [&]() {
|
|
for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
|
|
KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
|
|
if (Known.isNonNegative())
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// FIXME: If the GEP is not inbounds, and there are extra indices after the
|
|
// one we'll replace, those could cause the address computation to wrap
|
|
// (rendering the IsAllNonNegative() check below insufficient). We can do
|
|
// better, ignoring zero indices (and other indices we can prove small
|
|
// enough not to wrap).
|
|
if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
|
|
return false;
|
|
|
|
// Note that isObjectSizeLessThanOrEq will return true only if the pointer is
|
|
// also known to be dereferenceable.
|
|
return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
|
|
IsAllNonNegative();
|
|
}
|
|
|
|
// If we're indexing into an object with a variable index for the memory
|
|
// access, but the object has only one element, we can assume that the index
|
|
// will always be zero. If we replace the GEP, return it.
|
|
template <typename T>
|
|
static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
|
|
T &MemI) {
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
unsigned Idx;
|
|
if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
|
|
Instruction *NewGEPI = GEPI->clone();
|
|
NewGEPI->setOperand(Idx,
|
|
ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
|
|
NewGEPI->insertBefore(GEPI);
|
|
MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
|
|
return NewGEPI;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
|
|
if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
|
|
return false;
|
|
|
|
auto *Ptr = SI.getPointerOperand();
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
|
|
Ptr = GEPI->getOperand(0);
|
|
return (isa<ConstantPointerNull>(Ptr) &&
|
|
!NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
|
|
}
|
|
|
|
static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
|
|
const Value *GEPI0 = GEPI->getOperand(0);
|
|
if (isa<ConstantPointerNull>(GEPI0) &&
|
|
!NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
|
|
return true;
|
|
}
|
|
if (isa<UndefValue>(Op) ||
|
|
(isa<ConstantPointerNull>(Op) &&
|
|
!NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
|
|
Value *Op = LI.getOperand(0);
|
|
|
|
// Try to canonicalize the loaded type.
|
|
if (Instruction *Res = combineLoadToOperationType(*this, LI))
|
|
return Res;
|
|
|
|
// Attempt to improve the alignment.
|
|
Align KnownAlign = getOrEnforceKnownAlignment(
|
|
Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
|
|
if (KnownAlign > LI.getAlign())
|
|
LI.setAlignment(KnownAlign);
|
|
|
|
// Replace GEP indices if possible.
|
|
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
|
|
Worklist.push(NewGEPI);
|
|
return &LI;
|
|
}
|
|
|
|
if (Instruction *Res = unpackLoadToAggregate(*this, LI))
|
|
return Res;
|
|
|
|
// Do really simple store-to-load forwarding and load CSE, to catch cases
|
|
// where there are several consecutive memory accesses to the same location,
|
|
// separated by a few arithmetic operations.
|
|
bool IsLoadCSE = false;
|
|
if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
|
|
if (IsLoadCSE)
|
|
combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
|
|
|
|
return replaceInstUsesWith(
|
|
LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
|
|
LI.getName() + ".cast"));
|
|
}
|
|
|
|
// None of the following transforms are legal for volatile/ordered atomic
|
|
// loads. Most of them do apply for unordered atomics.
|
|
if (!LI.isUnordered()) return nullptr;
|
|
|
|
// load(gep null, ...) -> unreachable
|
|
// load null/undef -> unreachable
|
|
// TODO: Consider a target hook for valid address spaces for this xforms.
|
|
if (canSimplifyNullLoadOrGEP(LI, Op)) {
|
|
// Insert a new store to null instruction before the load to indicate
|
|
// that this code is not reachable. We do this instead of inserting
|
|
// an unreachable instruction directly because we cannot modify the
|
|
// CFG.
|
|
StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
SI->setDebugLoc(LI.getDebugLoc());
|
|
return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
|
|
if (Op->hasOneUse()) {
|
|
// Change select and PHI nodes to select values instead of addresses: this
|
|
// helps alias analysis out a lot, allows many others simplifications, and
|
|
// exposes redundancy in the code.
|
|
//
|
|
// Note that we cannot do the transformation unless we know that the
|
|
// introduced loads cannot trap! Something like this is valid as long as
|
|
// the condition is always false: load (select bool %C, int* null, int* %G),
|
|
// but it would not be valid if we transformed it to load from null
|
|
// unconditionally.
|
|
//
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
|
|
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
|
|
Align Alignment = LI.getAlign();
|
|
if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
|
|
Alignment, DL, SI) &&
|
|
isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
|
|
Alignment, DL, SI)) {
|
|
LoadInst *V1 =
|
|
Builder.CreateLoad(LI.getType(), SI->getOperand(1),
|
|
SI->getOperand(1)->getName() + ".val");
|
|
LoadInst *V2 =
|
|
Builder.CreateLoad(LI.getType(), SI->getOperand(2),
|
|
SI->getOperand(2)->getName() + ".val");
|
|
assert(LI.isUnordered() && "implied by above");
|
|
V1->setAlignment(Alignment);
|
|
V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
|
|
V2->setAlignment(Alignment);
|
|
V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
|
|
return SelectInst::Create(SI->getCondition(), V1, V2);
|
|
}
|
|
|
|
// load (select (cond, null, P)) -> load P
|
|
if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
|
|
!NullPointerIsDefined(SI->getFunction(),
|
|
LI.getPointerAddressSpace()))
|
|
return replaceOperand(LI, 0, SI->getOperand(2));
|
|
|
|
// load (select (cond, P, null)) -> load P
|
|
if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
|
|
!NullPointerIsDefined(SI->getFunction(),
|
|
LI.getPointerAddressSpace()))
|
|
return replaceOperand(LI, 0, SI->getOperand(1));
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Look for extractelement/insertvalue sequence that acts like a bitcast.
|
|
///
|
|
/// \returns underlying value that was "cast", or nullptr otherwise.
|
|
///
|
|
/// For example, if we have:
|
|
///
|
|
/// %E0 = extractelement <2 x double> %U, i32 0
|
|
/// %V0 = insertvalue [2 x double] undef, double %E0, 0
|
|
/// %E1 = extractelement <2 x double> %U, i32 1
|
|
/// %V1 = insertvalue [2 x double] %V0, double %E1, 1
|
|
///
|
|
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
|
|
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
|
|
/// Note that %U may contain non-undef values where %V1 has undef.
|
|
static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
|
|
Value *U = nullptr;
|
|
while (auto *IV = dyn_cast<InsertValueInst>(V)) {
|
|
auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
|
|
if (!E)
|
|
return nullptr;
|
|
auto *W = E->getVectorOperand();
|
|
if (!U)
|
|
U = W;
|
|
else if (U != W)
|
|
return nullptr;
|
|
auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
|
|
if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
|
|
return nullptr;
|
|
V = IV->getAggregateOperand();
|
|
}
|
|
if (!isa<UndefValue>(V) ||!U)
|
|
return nullptr;
|
|
|
|
auto *UT = cast<VectorType>(U->getType());
|
|
auto *VT = V->getType();
|
|
// Check that types UT and VT are bitwise isomorphic.
|
|
const auto &DL = IC.getDataLayout();
|
|
if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
|
|
return nullptr;
|
|
}
|
|
if (auto *AT = dyn_cast<ArrayType>(VT)) {
|
|
if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
|
|
return nullptr;
|
|
} else {
|
|
auto *ST = cast<StructType>(VT);
|
|
if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
|
|
return nullptr;
|
|
for (const auto *EltT : ST->elements()) {
|
|
if (EltT != UT->getElementType())
|
|
return nullptr;
|
|
}
|
|
}
|
|
return U;
|
|
}
|
|
|
|
/// Combine stores to match the type of value being stored.
|
|
///
|
|
/// The core idea here is that the memory does not have any intrinsic type and
|
|
/// where we can we should match the type of a store to the type of value being
|
|
/// stored.
|
|
///
|
|
/// However, this routine must never change the width of a store or the number of
|
|
/// stores as that would introduce a semantic change. This combine is expected to
|
|
/// be a semantic no-op which just allows stores to more closely model the types
|
|
/// of their incoming values.
|
|
///
|
|
/// Currently, we also refuse to change the precise type used for an atomic or
|
|
/// volatile store. This is debatable, and might be reasonable to change later.
|
|
/// However, it is risky in case some backend or other part of LLVM is relying
|
|
/// on the exact type stored to select appropriate atomic operations.
|
|
///
|
|
/// \returns true if the store was successfully combined away. This indicates
|
|
/// the caller must erase the store instruction. We have to let the caller erase
|
|
/// the store instruction as otherwise there is no way to signal whether it was
|
|
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
|
|
static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
|
|
// FIXME: We could probably with some care handle both volatile and ordered
|
|
// atomic stores here but it isn't clear that this is important.
|
|
if (!SI.isUnordered())
|
|
return false;
|
|
|
|
// swifterror values can't be bitcasted.
|
|
if (SI.getPointerOperand()->isSwiftError())
|
|
return false;
|
|
|
|
Value *V = SI.getValueOperand();
|
|
|
|
// Fold away bit casts of the stored value by storing the original type.
|
|
if (auto *BC = dyn_cast<BitCastInst>(V)) {
|
|
assert(!BC->getType()->isX86_AMXTy() &&
|
|
"store to x86_amx* should not happen!");
|
|
V = BC->getOperand(0);
|
|
// Don't transform when the type is x86_amx, it makes the pass that lower
|
|
// x86_amx type happy.
|
|
if (V->getType()->isX86_AMXTy())
|
|
return false;
|
|
if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
|
|
combineStoreToNewValue(IC, SI, V);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Value *U = likeBitCastFromVector(IC, V))
|
|
if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
|
|
combineStoreToNewValue(IC, SI, U);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: We should also canonicalize stores of vectors when their elements
|
|
// are cast to other types.
|
|
return false;
|
|
}
|
|
|
|
static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
|
|
// FIXME: We could probably with some care handle both volatile and atomic
|
|
// stores here but it isn't clear that this is important.
|
|
if (!SI.isSimple())
|
|
return false;
|
|
|
|
Value *V = SI.getValueOperand();
|
|
Type *T = V->getType();
|
|
|
|
if (!T->isAggregateType())
|
|
return false;
|
|
|
|
if (auto *ST = dyn_cast<StructType>(T)) {
|
|
// If the struct only have one element, we unpack.
|
|
unsigned Count = ST->getNumElements();
|
|
if (Count == 1) {
|
|
V = IC.Builder.CreateExtractValue(V, 0);
|
|
combineStoreToNewValue(IC, SI, V);
|
|
return true;
|
|
}
|
|
|
|
// We don't want to break loads with padding here as we'd loose
|
|
// the knowledge that padding exists for the rest of the pipeline.
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
auto *SL = DL.getStructLayout(ST);
|
|
if (SL->hasPadding())
|
|
return false;
|
|
|
|
const auto Align = SI.getAlign();
|
|
|
|
SmallString<16> EltName = V->getName();
|
|
EltName += ".elt";
|
|
auto *Addr = SI.getPointerOperand();
|
|
SmallString<16> AddrName = Addr->getName();
|
|
AddrName += ".repack";
|
|
|
|
auto *IdxType = Type::getInt32Ty(ST->getContext());
|
|
auto *Zero = ConstantInt::get(IdxType, 0);
|
|
for (unsigned i = 0; i < Count; i++) {
|
|
Value *Indices[2] = {
|
|
Zero,
|
|
ConstantInt::get(IdxType, i),
|
|
};
|
|
auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
|
|
AddrName);
|
|
auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
|
|
auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
|
|
llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
|
|
AAMDNodes AAMD;
|
|
SI.getAAMetadata(AAMD);
|
|
NS->setAAMetadata(AAMD);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (auto *AT = dyn_cast<ArrayType>(T)) {
|
|
// If the array only have one element, we unpack.
|
|
auto NumElements = AT->getNumElements();
|
|
if (NumElements == 1) {
|
|
V = IC.Builder.CreateExtractValue(V, 0);
|
|
combineStoreToNewValue(IC, SI, V);
|
|
return true;
|
|
}
|
|
|
|
// Bail out if the array is too large. Ideally we would like to optimize
|
|
// arrays of arbitrary size but this has a terrible impact on compile time.
|
|
// The threshold here is chosen arbitrarily, maybe needs a little bit of
|
|
// tuning.
|
|
if (NumElements > IC.MaxArraySizeForCombine)
|
|
return false;
|
|
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
auto EltSize = DL.getTypeAllocSize(AT->getElementType());
|
|
const auto Align = SI.getAlign();
|
|
|
|
SmallString<16> EltName = V->getName();
|
|
EltName += ".elt";
|
|
auto *Addr = SI.getPointerOperand();
|
|
SmallString<16> AddrName = Addr->getName();
|
|
AddrName += ".repack";
|
|
|
|
auto *IdxType = Type::getInt64Ty(T->getContext());
|
|
auto *Zero = ConstantInt::get(IdxType, 0);
|
|
|
|
uint64_t Offset = 0;
|
|
for (uint64_t i = 0; i < NumElements; i++) {
|
|
Value *Indices[2] = {
|
|
Zero,
|
|
ConstantInt::get(IdxType, i),
|
|
};
|
|
auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
|
|
AddrName);
|
|
auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
|
|
auto EltAlign = commonAlignment(Align, Offset);
|
|
Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
|
|
AAMDNodes AAMD;
|
|
SI.getAAMetadata(AAMD);
|
|
NS->setAAMetadata(AAMD);
|
|
Offset += EltSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// equivalentAddressValues - Test if A and B will obviously have the same
|
|
/// value. This includes recognizing that %t0 and %t1 will have the same
|
|
/// value in code like this:
|
|
/// %t0 = getelementptr \@a, 0, 3
|
|
/// store i32 0, i32* %t0
|
|
/// %t1 = getelementptr \@a, 0, 3
|
|
/// %t2 = load i32* %t1
|
|
///
|
|
static bool equivalentAddressValues(Value *A, Value *B) {
|
|
// Test if the values are trivially equivalent.
|
|
if (A == B) return true;
|
|
|
|
// Test if the values come form identical arithmetic instructions.
|
|
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
|
|
// its only used to compare two uses within the same basic block, which
|
|
// means that they'll always either have the same value or one of them
|
|
// will have an undefined value.
|
|
if (isa<BinaryOperator>(A) ||
|
|
isa<CastInst>(A) ||
|
|
isa<PHINode>(A) ||
|
|
isa<GetElementPtrInst>(A))
|
|
if (Instruction *BI = dyn_cast<Instruction>(B))
|
|
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
|
|
return true;
|
|
|
|
// Otherwise they may not be equivalent.
|
|
return false;
|
|
}
|
|
|
|
/// Converts store (bitcast (load (bitcast (select ...)))) to
|
|
/// store (load (select ...)), where select is minmax:
|
|
/// select ((cmp load V1, load V2), V1, V2).
|
|
static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
|
|
StoreInst &SI) {
|
|
// bitcast?
|
|
if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
|
|
return false;
|
|
// load? integer?
|
|
Value *LoadAddr;
|
|
if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
|
|
return false;
|
|
auto *LI = cast<LoadInst>(SI.getValueOperand());
|
|
if (!LI->getType()->isIntegerTy())
|
|
return false;
|
|
Type *CmpLoadTy;
|
|
if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
|
|
return false;
|
|
|
|
// Make sure the type would actually change.
|
|
// This condition can be hit with chains of bitcasts.
|
|
if (LI->getType() == CmpLoadTy)
|
|
return false;
|
|
|
|
// Make sure we're not changing the size of the load/store.
|
|
const auto &DL = IC.getDataLayout();
|
|
if (DL.getTypeStoreSizeInBits(LI->getType()) !=
|
|
DL.getTypeStoreSizeInBits(CmpLoadTy))
|
|
return false;
|
|
|
|
if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
|
|
auto *SI = dyn_cast<StoreInst>(U);
|
|
return SI && SI->getPointerOperand() != LI &&
|
|
InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
|
|
LoadAddr &&
|
|
!SI->getPointerOperand()->isSwiftError();
|
|
}))
|
|
return false;
|
|
|
|
IC.Builder.SetInsertPoint(LI);
|
|
LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
|
|
// Replace all the stores with stores of the newly loaded value.
|
|
for (auto *UI : LI->users()) {
|
|
auto *USI = cast<StoreInst>(UI);
|
|
IC.Builder.SetInsertPoint(USI);
|
|
combineStoreToNewValue(IC, *USI, NewLI);
|
|
}
|
|
IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
|
|
IC.eraseInstFromFunction(*LI);
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
|
|
Value *Val = SI.getOperand(0);
|
|
Value *Ptr = SI.getOperand(1);
|
|
|
|
// Try to canonicalize the stored type.
|
|
if (combineStoreToValueType(*this, SI))
|
|
return eraseInstFromFunction(SI);
|
|
|
|
// Attempt to improve the alignment.
|
|
const Align KnownAlign = getOrEnforceKnownAlignment(
|
|
Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
|
|
if (KnownAlign > SI.getAlign())
|
|
SI.setAlignment(KnownAlign);
|
|
|
|
// Try to canonicalize the stored type.
|
|
if (unpackStoreToAggregate(*this, SI))
|
|
return eraseInstFromFunction(SI);
|
|
|
|
if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
|
|
return eraseInstFromFunction(SI);
|
|
|
|
// Replace GEP indices if possible.
|
|
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
|
|
Worklist.push(NewGEPI);
|
|
return &SI;
|
|
}
|
|
|
|
// Don't hack volatile/ordered stores.
|
|
// FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
|
|
if (!SI.isUnordered()) return nullptr;
|
|
|
|
// If the RHS is an alloca with a single use, zapify the store, making the
|
|
// alloca dead.
|
|
if (Ptr->hasOneUse()) {
|
|
if (isa<AllocaInst>(Ptr))
|
|
return eraseInstFromFunction(SI);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
if (isa<AllocaInst>(GEP->getOperand(0))) {
|
|
if (GEP->getOperand(0)->hasOneUse())
|
|
return eraseInstFromFunction(SI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have a store to a location which is known constant, we can conclude
|
|
// that the store must be storing the constant value (else the memory
|
|
// wouldn't be constant), and this must be a noop.
|
|
if (AA->pointsToConstantMemory(Ptr))
|
|
return eraseInstFromFunction(SI);
|
|
|
|
// Do really simple DSE, to catch cases where there are several consecutive
|
|
// stores to the same location, separated by a few arithmetic operations. This
|
|
// situation often occurs with bitfield accesses.
|
|
BasicBlock::iterator BBI(SI);
|
|
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
|
|
--ScanInsts) {
|
|
--BBI;
|
|
// Don't count debug info directives, lest they affect codegen,
|
|
// and we skip pointer-to-pointer bitcasts, which are NOPs.
|
|
if (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
ScanInsts++;
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
|
|
// Prev store isn't volatile, and stores to the same location?
|
|
if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
|
|
SI.getOperand(1))) {
|
|
++NumDeadStore;
|
|
// Manually add back the original store to the worklist now, so it will
|
|
// be processed after the operands of the removed store, as this may
|
|
// expose additional DSE opportunities.
|
|
Worklist.push(&SI);
|
|
eraseInstFromFunction(*PrevSI);
|
|
return nullptr;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If this is a load, we have to stop. However, if the loaded value is from
|
|
// the pointer we're loading and is producing the pointer we're storing,
|
|
// then *this* store is dead (X = load P; store X -> P).
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
|
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
|
|
assert(SI.isUnordered() && "can't eliminate ordering operation");
|
|
return eraseInstFromFunction(SI);
|
|
}
|
|
|
|
// Otherwise, this is a load from some other location. Stores before it
|
|
// may not be dead.
|
|
break;
|
|
}
|
|
|
|
// Don't skip over loads, throws or things that can modify memory.
|
|
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
|
|
break;
|
|
}
|
|
|
|
// store X, null -> turns into 'unreachable' in SimplifyCFG
|
|
// store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
|
|
if (canSimplifyNullStoreOrGEP(SI)) {
|
|
if (!isa<UndefValue>(Val))
|
|
return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
|
|
return nullptr; // Do not modify these!
|
|
}
|
|
|
|
// store undef, Ptr -> noop
|
|
if (isa<UndefValue>(Val))
|
|
return eraseInstFromFunction(SI);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to transform:
|
|
/// if () { *P = v1; } else { *P = v2 }
|
|
/// or:
|
|
/// *P = v1; if () { *P = v2; }
|
|
/// into a phi node with a store in the successor.
|
|
bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
|
|
if (!SI.isUnordered())
|
|
return false; // This code has not been audited for volatile/ordered case.
|
|
|
|
// Check if the successor block has exactly 2 incoming edges.
|
|
BasicBlock *StoreBB = SI.getParent();
|
|
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
|
|
if (!DestBB->hasNPredecessors(2))
|
|
return false;
|
|
|
|
// Capture the other block (the block that doesn't contain our store).
|
|
pred_iterator PredIter = pred_begin(DestBB);
|
|
if (*PredIter == StoreBB)
|
|
++PredIter;
|
|
BasicBlock *OtherBB = *PredIter;
|
|
|
|
// Bail out if all of the relevant blocks aren't distinct. This can happen,
|
|
// for example, if SI is in an infinite loop.
|
|
if (StoreBB == DestBB || OtherBB == DestBB)
|
|
return false;
|
|
|
|
// Verify that the other block ends in a branch and is not otherwise empty.
|
|
BasicBlock::iterator BBI(OtherBB->getTerminator());
|
|
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
|
|
if (!OtherBr || BBI == OtherBB->begin())
|
|
return false;
|
|
|
|
// If the other block ends in an unconditional branch, check for the 'if then
|
|
// else' case. There is an instruction before the branch.
|
|
StoreInst *OtherStore = nullptr;
|
|
if (OtherBr->isUnconditional()) {
|
|
--BBI;
|
|
// Skip over debugging info.
|
|
while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
if (BBI==OtherBB->begin())
|
|
return false;
|
|
--BBI;
|
|
}
|
|
// If this isn't a store, isn't a store to the same location, or is not the
|
|
// right kind of store, bail out.
|
|
OtherStore = dyn_cast<StoreInst>(BBI);
|
|
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
} else {
|
|
// Otherwise, the other block ended with a conditional branch. If one of the
|
|
// destinations is StoreBB, then we have the if/then case.
|
|
if (OtherBr->getSuccessor(0) != StoreBB &&
|
|
OtherBr->getSuccessor(1) != StoreBB)
|
|
return false;
|
|
|
|
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
|
|
// if/then triangle. See if there is a store to the same ptr as SI that
|
|
// lives in OtherBB.
|
|
for (;; --BBI) {
|
|
// Check to see if we find the matching store.
|
|
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
|
|
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
break;
|
|
}
|
|
// If we find something that may be using or overwriting the stored
|
|
// value, or if we run out of instructions, we can't do the transform.
|
|
if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
|
|
BBI->mayWriteToMemory() || BBI == OtherBB->begin())
|
|
return false;
|
|
}
|
|
|
|
// In order to eliminate the store in OtherBr, we have to make sure nothing
|
|
// reads or overwrites the stored value in StoreBB.
|
|
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
|
|
// FIXME: This should really be AA driven.
|
|
if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Insert a PHI node now if we need it.
|
|
Value *MergedVal = OtherStore->getOperand(0);
|
|
// The debug locations of the original instructions might differ. Merge them.
|
|
DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
|
|
OtherStore->getDebugLoc());
|
|
if (MergedVal != SI.getOperand(0)) {
|
|
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
|
|
PN->addIncoming(SI.getOperand(0), SI.getParent());
|
|
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
|
|
MergedVal = InsertNewInstBefore(PN, DestBB->front());
|
|
PN->setDebugLoc(MergedLoc);
|
|
}
|
|
|
|
// Advance to a place where it is safe to insert the new store and insert it.
|
|
BBI = DestBB->getFirstInsertionPt();
|
|
StoreInst *NewSI =
|
|
new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
|
|
SI.getOrdering(), SI.getSyncScopeID());
|
|
InsertNewInstBefore(NewSI, *BBI);
|
|
NewSI->setDebugLoc(MergedLoc);
|
|
|
|
// If the two stores had AA tags, merge them.
|
|
AAMDNodes AATags;
|
|
SI.getAAMetadata(AATags);
|
|
if (AATags) {
|
|
OtherStore->getAAMetadata(AATags, /* Merge = */ true);
|
|
NewSI->setAAMetadata(AATags);
|
|
}
|
|
|
|
// Nuke the old stores.
|
|
eraseInstFromFunction(SI);
|
|
eraseInstFromFunction(*OtherStore);
|
|
return true;
|
|
}
|