1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Transforms/Utils/BasicBlockUtils.cpp
gbtozers 9b334d3086 [DebugInfo] Handle multiple variable location operands in IR
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.

Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.

Differential Revision: https://reviews.llvm.org/D88232
2021-03-09 16:44:38 +00:00

1580 lines
61 KiB
C++

//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform manipulations on basic blocks, and
// instructions contained within basic blocks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "basicblock-utils"
void llvm::DetatchDeadBlocks(
ArrayRef<BasicBlock *> BBs,
SmallVectorImpl<DominatorTree::UpdateType> *Updates,
bool KeepOneInputPHIs) {
for (auto *BB : BBs) {
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
for (BasicBlock *Succ : successors(BB)) {
Succ->removePredecessor(BB, KeepOneInputPHIs);
if (Updates && UniqueSuccessors.insert(Succ).second)
Updates->push_back({DominatorTree::Delete, BB, Succ});
}
// Zap all the instructions in the block.
while (!BB->empty()) {
Instruction &I = BB->back();
// If this instruction is used, replace uses with an arbitrary value.
// Because control flow can't get here, we don't care what we replace the
// value with. Note that since this block is unreachable, and all values
// contained within it must dominate their uses, that all uses will
// eventually be removed (they are themselves dead).
if (!I.use_empty())
I.replaceAllUsesWith(UndefValue::get(I.getType()));
BB->getInstList().pop_back();
}
new UnreachableInst(BB->getContext(), BB);
assert(BB->getInstList().size() == 1 &&
isa<UnreachableInst>(BB->getTerminator()) &&
"The successor list of BB isn't empty before "
"applying corresponding DTU updates.");
}
}
void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
bool KeepOneInputPHIs) {
DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
}
void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
bool KeepOneInputPHIs) {
#ifndef NDEBUG
// Make sure that all predecessors of each dead block is also dead.
SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
assert(Dead.size() == BBs.size() && "Duplicating blocks?");
for (auto *BB : Dead)
for (BasicBlock *Pred : predecessors(BB))
assert(Dead.count(Pred) && "All predecessors must be dead!");
#endif
SmallVector<DominatorTree::UpdateType, 4> Updates;
DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
if (DTU)
DTU->applyUpdates(Updates);
for (BasicBlock *BB : BBs)
if (DTU)
DTU->deleteBB(BB);
else
BB->eraseFromParent();
}
bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
bool KeepOneInputPHIs) {
df_iterator_default_set<BasicBlock*> Reachable;
// Mark all reachable blocks.
for (BasicBlock *BB : depth_first_ext(&F, Reachable))
(void)BB/* Mark all reachable blocks */;
// Collect all dead blocks.
std::vector<BasicBlock*> DeadBlocks;
for (BasicBlock &BB : F)
if (!Reachable.count(&BB))
DeadBlocks.push_back(&BB);
// Delete the dead blocks.
DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
return !DeadBlocks.empty();
}
bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
MemoryDependenceResults *MemDep) {
if (!isa<PHINode>(BB->begin()))
return false;
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
if (MemDep)
MemDep->removeInstruction(PN); // Memdep updates AA itself.
PN->eraseFromParent();
}
return true;
}
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
MemorySSAUpdater *MSSAU) {
// Recursively deleting a PHI may cause multiple PHIs to be deleted
// or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
SmallVector<WeakTrackingVH, 8> PHIs;
for (PHINode &PN : BB->phis())
PHIs.push_back(&PN);
bool Changed = false;
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
return Changed;
}
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
LoopInfo *LI, MemorySSAUpdater *MSSAU,
MemoryDependenceResults *MemDep,
bool PredecessorWithTwoSuccessors) {
if (BB->hasAddressTaken())
return false;
// Can't merge if there are multiple predecessors, or no predecessors.
BasicBlock *PredBB = BB->getUniquePredecessor();
if (!PredBB) return false;
// Don't break self-loops.
if (PredBB == BB) return false;
// Don't break unwinding instructions.
if (PredBB->getTerminator()->isExceptionalTerminator())
return false;
// Can't merge if there are multiple distinct successors.
if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
return false;
// Currently only allow PredBB to have two predecessors, one being BB.
// Update BI to branch to BB's only successor instead of BB.
BranchInst *PredBB_BI;
BasicBlock *NewSucc = nullptr;
unsigned FallThruPath;
if (PredecessorWithTwoSuccessors) {
if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
return false;
BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BB_JmpI || !BB_JmpI->isUnconditional())
return false;
NewSucc = BB_JmpI->getSuccessor(0);
FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
}
// Can't merge if there is PHI loop.
for (PHINode &PN : BB->phis())
if (llvm::is_contained(PN.incoming_values(), &PN))
return false;
LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
<< PredBB->getName() << "\n");
// Begin by getting rid of unneeded PHIs.
SmallVector<AssertingVH<Value>, 4> IncomingValues;
if (isa<PHINode>(BB->front())) {
for (PHINode &PN : BB->phis())
if (!isa<PHINode>(PN.getIncomingValue(0)) ||
cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
IncomingValues.push_back(PN.getIncomingValue(0));
FoldSingleEntryPHINodes(BB, MemDep);
}
// DTU update: Collect all the edges that exit BB.
// These dominator edges will be redirected from Pred.
std::vector<DominatorTree::UpdateType> Updates;
if (DTU) {
SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
succ_end(BB));
Updates.reserve(1 + (2 * UniqueSuccessors.size()));
// Add insert edges first. Experimentally, for the particular case of two
// blocks that can be merged, with a single successor and single predecessor
// respectively, it is beneficial to have all insert updates first. Deleting
// edges first may lead to unreachable blocks, followed by inserting edges
// making the blocks reachable again. Such DT updates lead to high compile
// times. We add inserts before deletes here to reduce compile time.
for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
// This successor of BB may already have PredBB as a predecessor.
if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
Updates.push_back({DominatorTree::Delete, PredBB, BB});
}
Instruction *PTI = PredBB->getTerminator();
Instruction *STI = BB->getTerminator();
Instruction *Start = &*BB->begin();
// If there's nothing to move, mark the starting instruction as the last
// instruction in the block. Terminator instruction is handled separately.
if (Start == STI)
Start = PTI;
// Move all definitions in the successor to the predecessor...
PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
BB->begin(), STI->getIterator());
if (MSSAU)
MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(PredBB);
if (PredecessorWithTwoSuccessors) {
// Delete the unconditional branch from BB.
BB->getInstList().pop_back();
// Update branch in the predecessor.
PredBB_BI->setSuccessor(FallThruPath, NewSucc);
} else {
// Delete the unconditional branch from the predecessor.
PredBB->getInstList().pop_back();
// Move terminator instruction.
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
// Terminator may be a memory accessing instruction too.
if (MSSAU)
if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
}
// Add unreachable to now empty BB.
new UnreachableInst(BB->getContext(), BB);
// Inherit predecessors name if it exists.
if (!PredBB->hasName())
PredBB->takeName(BB);
if (LI)
LI->removeBlock(BB);
if (MemDep)
MemDep->invalidateCachedPredecessors();
// Finally, erase the old block and update dominator info.
if (DTU) {
assert(BB->getInstList().size() == 1 &&
isa<UnreachableInst>(BB->getTerminator()) &&
"The successor list of BB isn't empty before "
"applying corresponding DTU updates.");
DTU->applyUpdates(Updates);
DTU->deleteBB(BB);
} else {
BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
}
return true;
}
bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
LoopInfo *LI) {
assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
bool BlocksHaveBeenMerged = false;
while (!MergeBlocks.empty()) {
BasicBlock *BB = *MergeBlocks.begin();
BasicBlock *Dest = BB->getSingleSuccessor();
if (Dest && (!L || L->contains(Dest))) {
BasicBlock *Fold = Dest->getUniquePredecessor();
(void)Fold;
if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
assert(Fold == BB &&
"Expecting BB to be unique predecessor of the Dest block");
MergeBlocks.erase(Dest);
BlocksHaveBeenMerged = true;
} else
MergeBlocks.erase(BB);
} else
MergeBlocks.erase(BB);
}
return BlocksHaveBeenMerged;
}
/// Remove redundant instructions within sequences of consecutive dbg.value
/// instructions. This is done using a backward scan to keep the last dbg.value
/// describing a specific variable/fragment.
///
/// BackwardScan strategy:
/// ----------------------
/// Given a sequence of consecutive DbgValueInst like this
///
/// dbg.value ..., "x", FragmentX1 (*)
/// dbg.value ..., "y", FragmentY1
/// dbg.value ..., "x", FragmentX2
/// dbg.value ..., "x", FragmentX1 (**)
///
/// then the instruction marked with (*) can be removed (it is guaranteed to be
/// obsoleted by the instruction marked with (**) as the latter instruction is
/// describing the same variable using the same fragment info).
///
/// Possible improvements:
/// - Check fully overlapping fragments and not only identical fragments.
/// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
/// instructions being part of the sequence of consecutive instructions.
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
SmallVector<DbgValueInst *, 8> ToBeRemoved;
SmallDenseSet<DebugVariable> VariableSet;
for (auto &I : reverse(*BB)) {
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
DebugVariable Key(DVI->getVariable(),
DVI->getExpression(),
DVI->getDebugLoc()->getInlinedAt());
auto R = VariableSet.insert(Key);
// If the same variable fragment is described more than once it is enough
// to keep the last one (i.e. the first found since we for reverse
// iteration).
if (!R.second)
ToBeRemoved.push_back(DVI);
continue;
}
// Sequence with consecutive dbg.value instrs ended. Clear the map to
// restart identifying redundant instructions if case we find another
// dbg.value sequence.
VariableSet.clear();
}
for (auto &Instr : ToBeRemoved)
Instr->eraseFromParent();
return !ToBeRemoved.empty();
}
/// Remove redundant dbg.value instructions using a forward scan. This can
/// remove a dbg.value instruction that is redundant due to indicating that a
/// variable has the same value as already being indicated by an earlier
/// dbg.value.
///
/// ForwardScan strategy:
/// ---------------------
/// Given two identical dbg.value instructions, separated by a block of
/// instructions that isn't describing the same variable, like this
///
/// dbg.value X1, "x", FragmentX1 (**)
/// <block of instructions, none being "dbg.value ..., "x", ...">
/// dbg.value X1, "x", FragmentX1 (*)
///
/// then the instruction marked with (*) can be removed. Variable "x" is already
/// described as being mapped to the SSA value X1.
///
/// Possible improvements:
/// - Keep track of non-overlapping fragments.
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
SmallVector<DbgValueInst *, 8> ToBeRemoved;
DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
VariableMap;
for (auto &I : *BB) {
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
DebugVariable Key(DVI->getVariable(),
NoneType(),
DVI->getDebugLoc()->getInlinedAt());
auto VMI = VariableMap.find(Key);
// Update the map if we found a new value/expression describing the
// variable, or if the variable wasn't mapped already.
SmallVector<Value *, 4> Values(DVI->getValues());
if (VMI == VariableMap.end() || VMI->second.first != Values ||
VMI->second.second != DVI->getExpression()) {
VariableMap[Key] = {Values, DVI->getExpression()};
continue;
}
// Found an identical mapping. Remember the instruction for later removal.
ToBeRemoved.push_back(DVI);
}
}
for (auto &Instr : ToBeRemoved)
Instr->eraseFromParent();
return !ToBeRemoved.empty();
}
bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) {
bool MadeChanges = false;
// By using the "backward scan" strategy before the "forward scan" strategy we
// can remove both dbg.value (2) and (3) in a situation like this:
//
// (1) dbg.value V1, "x", DIExpression()
// ...
// (2) dbg.value V2, "x", DIExpression()
// (3) dbg.value V1, "x", DIExpression()
//
// The backward scan will remove (2), it is made obsolete by (3). After
// getting (2) out of the way, the foward scan will remove (3) since "x"
// already is described as having the value V1 at (1).
MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
if (RemovePseudoOp)
MadeChanges |= removeRedundantPseudoProbes(BB);
if (MadeChanges)
LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
<< BB->getName() << "\n");
return MadeChanges;
}
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Value *V) {
Instruction &I = *BI;
// Replaces all of the uses of the instruction with uses of the value
I.replaceAllUsesWith(V);
// Make sure to propagate a name if there is one already.
if (I.hasName() && !V->hasName())
V->takeName(&I);
// Delete the unnecessary instruction now...
BI = BIL.erase(BI);
}
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Instruction *I) {
assert(I->getParent() == nullptr &&
"ReplaceInstWithInst: Instruction already inserted into basic block!");
// Copy debug location to newly added instruction, if it wasn't already set
// by the caller.
if (!I->getDebugLoc())
I->setDebugLoc(BI->getDebugLoc());
// Insert the new instruction into the basic block...
BasicBlock::iterator New = BIL.insert(BI, I);
// Replace all uses of the old instruction, and delete it.
ReplaceInstWithValue(BIL, BI, I);
// Move BI back to point to the newly inserted instruction
BI = New;
}
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
BasicBlock::iterator BI(From);
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
LoopInfo *LI, MemorySSAUpdater *MSSAU,
const Twine &BBName) {
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
// If this is a critical edge, let SplitCriticalEdge do it.
Instruction *LatchTerm = BB->getTerminator();
if (SplitCriticalEdge(
LatchTerm, SuccNum,
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
BBName))
return LatchTerm->getSuccessor(SuccNum);
// If the edge isn't critical, then BB has a single successor or Succ has a
// single pred. Split the block.
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
// If the successor only has a single pred, split the top of the successor
// block.
assert(SP == BB && "CFG broken");
SP = nullptr;
return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
/*Before=*/true);
}
// Otherwise, if BB has a single successor, split it at the bottom of the
// block.
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
"Should have a single succ!");
return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
}
unsigned
llvm::SplitAllCriticalEdges(Function &F,
const CriticalEdgeSplittingOptions &Options) {
unsigned NumBroken = 0;
for (BasicBlock &BB : F) {
Instruction *TI = BB.getTerminator();
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
!isa<CallBrInst>(TI))
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (SplitCriticalEdge(TI, i, Options))
++NumBroken;
}
return NumBroken;
}
static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
DomTreeUpdater *DTU, DominatorTree *DT,
LoopInfo *LI, MemorySSAUpdater *MSSAU,
const Twine &BBName, bool Before) {
if (Before) {
DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
return splitBlockBefore(Old, SplitPt,
DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
BBName);
}
BasicBlock::iterator SplitIt = SplitPt->getIterator();
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
++SplitIt;
std::string Name = BBName.str();
BasicBlock *New = Old->splitBasicBlock(
SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
if (LI)
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, *LI);
if (DTU) {
SmallVector<DominatorTree::UpdateType, 8> Updates;
// Old dominates New. New node dominates all other nodes dominated by Old.
SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
succ_end(New));
Updates.push_back({DominatorTree::Insert, Old, New});
Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
}
DTU->applyUpdates(Updates);
} else if (DT)
// Old dominates New. New node dominates all other nodes dominated by Old.
if (DomTreeNode *OldNode = DT->getNode(Old)) {
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
DomTreeNode *NewNode = DT->addNewBlock(New, Old);
for (DomTreeNode *I : Children)
DT->changeImmediateDominator(I, NewNode);
}
// Move MemoryAccesses still tracked in Old, but part of New now.
// Update accesses in successor blocks accordingly.
if (MSSAU)
MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
return New;
}
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU, const Twine &BBName,
bool Before) {
return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
Before);
}
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
DomTreeUpdater *DTU, LoopInfo *LI,
MemorySSAUpdater *MSSAU, const Twine &BBName,
bool Before) {
return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
Before);
}
BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
DomTreeUpdater *DTU, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
const Twine &BBName) {
BasicBlock::iterator SplitIt = SplitPt->getIterator();
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
++SplitIt;
std::string Name = BBName.str();
BasicBlock *New = Old->splitBasicBlock(
SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
/* Before=*/true);
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
if (LI)
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, *LI);
if (DTU) {
SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
// New dominates Old. The predecessor nodes of the Old node dominate
// New node.
SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
pred_end(New));
DTUpdates.push_back({DominatorTree::Insert, New, Old});
DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
}
DTU->applyUpdates(DTUpdates);
// Move MemoryAccesses still tracked in Old, but part of New now.
// Update accesses in successor blocks accordingly.
if (MSSAU) {
MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
if (VerifyMemorySSA)
MSSAU->getMemorySSA()->verifyMemorySSA();
}
}
return New;
}
/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
ArrayRef<BasicBlock *> Preds,
DomTreeUpdater *DTU, DominatorTree *DT,
LoopInfo *LI, MemorySSAUpdater *MSSAU,
bool PreserveLCSSA, bool &HasLoopExit) {
// Update dominator tree if available.
if (DTU) {
// Recalculation of DomTree is needed when updating a forward DomTree and
// the Entry BB is replaced.
if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
// The entry block was removed and there is no external interface for
// the dominator tree to be notified of this change. In this corner-case
// we recalculate the entire tree.
DTU->recalculate(*NewBB->getParent());
} else {
// Split block expects NewBB to have a non-empty set of predecessors.
SmallVector<DominatorTree::UpdateType, 8> Updates;
SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
Updates.reserve(Updates.size() + 2 * UniquePreds.size());
for (auto *UniquePred : UniquePreds) {
Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
}
DTU->applyUpdates(Updates);
}
} else if (DT) {
if (OldBB == DT->getRootNode()->getBlock()) {
assert(NewBB == &NewBB->getParent()->getEntryBlock());
DT->setNewRoot(NewBB);
} else {
// Split block expects NewBB to have a non-empty set of predecessors.
DT->splitBlock(NewBB);
}
}
// Update MemoryPhis after split if MemorySSA is available
if (MSSAU)
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
// The rest of the logic is only relevant for updating the loop structures.
if (!LI)
return;
if (DTU && DTU->hasDomTree())
DT = &DTU->getDomTree();
assert(DT && "DT should be available to update LoopInfo!");
Loop *L = LI->getLoopFor(OldBB);
// If we need to preserve loop analyses, collect some information about how
// this split will affect loops.
bool IsLoopEntry = !!L;
bool SplitMakesNewLoopHeader = false;
for (BasicBlock *Pred : Preds) {
// Preds that are not reachable from entry should not be used to identify if
// OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
// are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
// as true and make the NewBB the header of some loop. This breaks LI.
if (!DT->isReachableFromEntry(Pred))
continue;
// If we need to preserve LCSSA, determine if any of the preds is a loop
// exit.
if (PreserveLCSSA)
if (Loop *PL = LI->getLoopFor(Pred))
if (!PL->contains(OldBB))
HasLoopExit = true;
// If we need to preserve LoopInfo, note whether any of the preds crosses
// an interesting loop boundary.
if (!L)
continue;
if (L->contains(Pred))
IsLoopEntry = false;
else
SplitMakesNewLoopHeader = true;
}
// Unless we have a loop for OldBB, nothing else to do here.
if (!L)
return;
if (IsLoopEntry) {
// Add the new block to the nearest enclosing loop (and not an adjacent
// loop). To find this, examine each of the predecessors and determine which
// loops enclose them, and select the most-nested loop which contains the
// loop containing the block being split.
Loop *InnermostPredLoop = nullptr;
for (BasicBlock *Pred : Preds) {
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
// Seek a loop which actually contains the block being split (to avoid
// adjacent loops).
while (PredLoop && !PredLoop->contains(OldBB))
PredLoop = PredLoop->getParentLoop();
// Select the most-nested of these loops which contains the block.
if (PredLoop && PredLoop->contains(OldBB) &&
(!InnermostPredLoop ||
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
InnermostPredLoop = PredLoop;
}
}
if (InnermostPredLoop)
InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
} else {
L->addBasicBlockToLoop(NewBB, *LI);
if (SplitMakesNewLoopHeader)
L->moveToHeader(NewBB);
}
}
/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
/// This also updates AliasAnalysis, if available.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
ArrayRef<BasicBlock *> Preds, BranchInst *BI,
bool HasLoopExit) {
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I++);
// Check to see if all of the values coming in are the same. If so, we
// don't need to create a new PHI node, unless it's needed for LCSSA.
Value *InVal = nullptr;
if (!HasLoopExit) {
InVal = PN->getIncomingValueForBlock(Preds[0]);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (!PredSet.count(PN->getIncomingBlock(i)))
continue;
if (!InVal)
InVal = PN->getIncomingValue(i);
else if (InVal != PN->getIncomingValue(i)) {
InVal = nullptr;
break;
}
}
}
if (InVal) {
// If all incoming values for the new PHI would be the same, just don't
// make a new PHI. Instead, just remove the incoming values from the old
// PHI.
// NOTE! This loop walks backwards for a reason! First off, this minimizes
// the cost of removal if we end up removing a large number of values, and
// second off, this ensures that the indices for the incoming values
// aren't invalidated when we remove one.
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
if (PredSet.count(PN->getIncomingBlock(i)))
PN->removeIncomingValue(i, false);
// Add an incoming value to the PHI node in the loop for the preheader
// edge.
PN->addIncoming(InVal, NewBB);
continue;
}
// If the values coming into the block are not the same, we need a new
// PHI.
// Create the new PHI node, insert it into NewBB at the end of the block
PHINode *NewPHI =
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
// NOTE! This loop walks backwards for a reason! First off, this minimizes
// the cost of removal if we end up removing a large number of values, and
// second off, this ensures that the indices for the incoming values aren't
// invalidated when we remove one.
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
BasicBlock *IncomingBB = PN->getIncomingBlock(i);
if (PredSet.count(IncomingBB)) {
Value *V = PN->removeIncomingValue(i, false);
NewPHI->addIncoming(V, IncomingBB);
}
}
PN->addIncoming(NewPHI, NewBB);
}
}
static void SplitLandingPadPredecessorsImpl(
BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
static BasicBlock *
SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
const char *Suffix, DomTreeUpdater *DTU,
DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
// Do not attempt to split that which cannot be split.
if (!BB->canSplitPredecessors())
return nullptr;
// For the landingpads we need to act a bit differently.
// Delegate this work to the SplitLandingPadPredecessors.
if (BB->isLandingPad()) {
SmallVector<BasicBlock*, 2> NewBBs;
std::string NewName = std::string(Suffix) + ".split-lp";
SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
DTU, DT, LI, MSSAU, PreserveLCSSA);
return NewBBs[0];
}
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(
BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
Loop *L = nullptr;
BasicBlock *OldLatch = nullptr;
// Splitting the predecessors of a loop header creates a preheader block.
if (LI && LI->isLoopHeader(BB)) {
L = LI->getLoopFor(BB);
// Using the loop start line number prevents debuggers stepping into the
// loop body for this instruction.
BI->setDebugLoc(L->getStartLoc());
// If BB is the header of the Loop, it is possible that the loop is
// modified, such that the current latch does not remain the latch of the
// loop. If that is the case, the loop metadata from the current latch needs
// to be applied to the new latch.
OldLatch = L->getLoopLatch();
} else
BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
// Move the edges from Preds to point to NewBB instead of BB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from a CallBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
}
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
// account for the newly created predecessor.
if (Preds.empty()) {
// Insert dummy values as the incoming value.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
}
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
HasLoopExit);
if (!Preds.empty()) {
// Update the PHI nodes in BB with the values coming from NewBB.
UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
}
if (OldLatch) {
BasicBlock *NewLatch = L->getLoopLatch();
if (NewLatch != OldLatch) {
MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
}
}
return NewBB;
}
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
ArrayRef<BasicBlock *> Preds,
const char *Suffix, DominatorTree *DT,
LoopInfo *LI, MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
MSSAU, PreserveLCSSA);
}
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
ArrayRef<BasicBlock *> Preds,
const char *Suffix,
DomTreeUpdater *DTU, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
/*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
}
static void SplitLandingPadPredecessorsImpl(
BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
// it right before the original block.
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
OrigBB->getName() + Suffix1,
OrigBB->getParent(), OrigBB);
NewBBs.push_back(NewBB1);
// The new block unconditionally branches to the old block.
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
}
bool HasLoopExit = false;
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
PreserveLCSSA, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
// Move the remaining edges from OrigBB to point to NewBB2.
SmallVector<BasicBlock*, 8> NewBB2Preds;
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
i != e; ) {
BasicBlock *Pred = *i++;
if (Pred == NewBB1) continue;
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
NewBB2Preds.push_back(Pred);
e = pred_end(OrigBB);
}
BasicBlock *NewBB2 = nullptr;
if (!NewBB2Preds.empty()) {
// Create another basic block for the rest of OrigBB's predecessors.
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
OrigBB->getName() + Suffix2,
OrigBB->getParent(), OrigBB);
NewBBs.push_back(NewBB2);
// The new block unconditionally branches to the old block.
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
// Move the remaining edges from OrigBB to point to NewBB2.
for (BasicBlock *NewBB2Pred : NewBB2Preds)
NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
HasLoopExit = false;
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
PreserveLCSSA, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
}
LandingPadInst *LPad = OrigBB->getLandingPadInst();
Instruction *Clone1 = LPad->clone();
Clone1->setName(Twine("lpad") + Suffix1);
NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
if (NewBB2) {
Instruction *Clone2 = LPad->clone();
Clone2->setName(Twine("lpad") + Suffix2);
NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
// Create a PHI node for the two cloned landingpad instructions only
// if the original landingpad instruction has some uses.
if (!LPad->use_empty()) {
assert(!LPad->getType()->isTokenTy() &&
"Split cannot be applied if LPad is token type. Otherwise an "
"invalid PHINode of token type would be created.");
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
PN->addIncoming(Clone1, NewBB1);
PN->addIncoming(Clone2, NewBB2);
LPad->replaceAllUsesWith(PN);
}
LPad->eraseFromParent();
} else {
// There is no second clone. Just replace the landing pad with the first
// clone.
LPad->replaceAllUsesWith(Clone1);
LPad->eraseFromParent();
}
}
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
ArrayRef<BasicBlock *> Preds,
const char *Suffix1, const char *Suffix2,
SmallVectorImpl<BasicBlock *> &NewBBs,
DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
return SplitLandingPadPredecessorsImpl(
OrigBB, Preds, Suffix1, Suffix2, NewBBs,
/*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
}
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
ArrayRef<BasicBlock *> Preds,
const char *Suffix1, const char *Suffix2,
SmallVectorImpl<BasicBlock *> &NewBBs,
DomTreeUpdater *DTU, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
PreserveLCSSA);
}
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
BasicBlock *Pred,
DomTreeUpdater *DTU) {
Instruction *UncondBranch = Pred->getTerminator();
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
Pred->getInstList().push_back(NewRet);
// If the return instruction returns a value, and if the value was a
// PHI node in "BB", propagate the right value into the return.
for (Use &Op : NewRet->operands()) {
Value *V = Op;
Instruction *NewBC = nullptr;
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
// Return value might be bitcasted. Clone and insert it before the
// return instruction.
V = BCI->getOperand(0);
NewBC = BCI->clone();
Pred->getInstList().insert(NewRet->getIterator(), NewBC);
Op = NewBC;
}
Instruction *NewEV = nullptr;
if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
V = EVI->getOperand(0);
NewEV = EVI->clone();
if (NewBC) {
NewBC->setOperand(0, NewEV);
Pred->getInstList().insert(NewBC->getIterator(), NewEV);
} else {
Pred->getInstList().insert(NewRet->getIterator(), NewEV);
Op = NewEV;
}
}
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (PN->getParent() == BB) {
if (NewEV) {
NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
} else if (NewBC)
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
else
Op = PN->getIncomingValueForBlock(Pred);
}
}
}
// Update any PHI nodes in the returning block to realize that we no
// longer branch to them.
BB->removePredecessor(Pred);
UncondBranch->eraseFromParent();
if (DTU)
DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
return cast<ReturnInst>(NewRet);
}
static Instruction *
SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
bool Unreachable, MDNode *BranchWeights,
DomTreeUpdater *DTU, DominatorTree *DT,
LoopInfo *LI, BasicBlock *ThenBlock) {
SmallVector<DominatorTree::UpdateType, 8> Updates;
BasicBlock *Head = SplitBefore->getParent();
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
if (DTU) {
SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
succ_end(Tail));
Updates.push_back({DominatorTree::Insert, Head, Tail});
Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
}
}
Instruction *HeadOldTerm = Head->getTerminator();
LLVMContext &C = Head->getContext();
Instruction *CheckTerm;
bool CreateThenBlock = (ThenBlock == nullptr);
if (CreateThenBlock) {
ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
if (Unreachable)
CheckTerm = new UnreachableInst(C, ThenBlock);
else {
CheckTerm = BranchInst::Create(Tail, ThenBlock);
if (DTU)
Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
}
CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
} else
CheckTerm = ThenBlock->getTerminator();
BranchInst *HeadNewTerm =
BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
if (DTU)
Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
if (DTU)
DTU->applyUpdates(Updates);
else if (DT) {
if (DomTreeNode *OldNode = DT->getNode(Head)) {
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
for (DomTreeNode *Child : Children)
DT->changeImmediateDominator(Child, NewNode);
// Head dominates ThenBlock.
if (CreateThenBlock)
DT->addNewBlock(ThenBlock, Head);
else
DT->changeImmediateDominator(ThenBlock, Head);
}
}
if (LI) {
if (Loop *L = LI->getLoopFor(Head)) {
L->addBasicBlockToLoop(ThenBlock, *LI);
L->addBasicBlockToLoop(Tail, *LI);
}
}
return CheckTerm;
}
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
Instruction *SplitBefore,
bool Unreachable,
MDNode *BranchWeights,
DominatorTree *DT, LoopInfo *LI,
BasicBlock *ThenBlock) {
return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
BranchWeights,
/*DTU=*/nullptr, DT, LI, ThenBlock);
}
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
Instruction *SplitBefore,
bool Unreachable,
MDNode *BranchWeights,
DomTreeUpdater *DTU, LoopInfo *LI,
BasicBlock *ThenBlock) {
return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
BranchWeights, DTU, /*DT=*/nullptr, LI,
ThenBlock);
}
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
Instruction **ThenTerm,
Instruction **ElseTerm,
MDNode *BranchWeights) {
BasicBlock *Head = SplitBefore->getParent();
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
Instruction *HeadOldTerm = Head->getTerminator();
LLVMContext &C = Head->getContext();
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
*ThenTerm = BranchInst::Create(Tail, ThenBlock);
(*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
*ElseTerm = BranchInst::Create(Tail, ElseBlock);
(*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
BranchInst *HeadNewTerm =
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
}
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
BasicBlock *&IfFalse) {
PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
BasicBlock *Pred1 = nullptr;
BasicBlock *Pred2 = nullptr;
if (SomePHI) {
if (SomePHI->getNumIncomingValues() != 2)
return nullptr;
Pred1 = SomePHI->getIncomingBlock(0);
Pred2 = SomePHI->getIncomingBlock(1);
} else {
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) // No predecessor
return nullptr;
Pred1 = *PI++;
if (PI == PE) // Only one predecessor
return nullptr;
Pred2 = *PI++;
if (PI != PE) // More than two predecessors
return nullptr;
}
// We can only handle branches. Other control flow will be lowered to
// branches if possible anyway.
BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
if (!Pred1Br || !Pred2Br)
return nullptr;
// Eliminate code duplication by ensuring that Pred1Br is conditional if
// either are.
if (Pred2Br->isConditional()) {
// If both branches are conditional, we don't have an "if statement". In
// reality, we could transform this case, but since the condition will be
// required anyway, we stand no chance of eliminating it, so the xform is
// probably not profitable.
if (Pred1Br->isConditional())
return nullptr;
std::swap(Pred1, Pred2);
std::swap(Pred1Br, Pred2Br);
}
if (Pred1Br->isConditional()) {
// The only thing we have to watch out for here is to make sure that Pred2
// doesn't have incoming edges from other blocks. If it does, the condition
// doesn't dominate BB.
if (!Pred2->getSinglePredecessor())
return nullptr;
// If we found a conditional branch predecessor, make sure that it branches
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
if (Pred1Br->getSuccessor(0) == BB &&
Pred1Br->getSuccessor(1) == Pred2) {
IfTrue = Pred1;
IfFalse = Pred2;
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
Pred1Br->getSuccessor(1) == BB) {
IfTrue = Pred2;
IfFalse = Pred1;
} else {
// We know that one arm of the conditional goes to BB, so the other must
// go somewhere unrelated, and this must not be an "if statement".
return nullptr;
}
return Pred1Br->getCondition();
}
// Ok, if we got here, both predecessors end with an unconditional branch to
// BB. Don't panic! If both blocks only have a single (identical)
// predecessor, and THAT is a conditional branch, then we're all ok!
BasicBlock *CommonPred = Pred1->getSinglePredecessor();
if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
return nullptr;
// Otherwise, if this is a conditional branch, then we can use it!
BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
if (!BI) return nullptr;
assert(BI->isConditional() && "Two successors but not conditional?");
if (BI->getSuccessor(0) == Pred1) {
IfTrue = Pred1;
IfFalse = Pred2;
} else {
IfTrue = Pred2;
IfFalse = Pred1;
}
return BI->getCondition();
}
// After creating a control flow hub, the operands of PHINodes in an outgoing
// block Out no longer match the predecessors of that block. Predecessors of Out
// that are incoming blocks to the hub are now replaced by just one edge from
// the hub. To match this new control flow, the corresponding values from each
// PHINode must now be moved a new PHINode in the first guard block of the hub.
//
// This operation cannot be performed with SSAUpdater, because it involves one
// new use: If the block Out is in the list of Incoming blocks, then the newly
// created PHI in the Hub will use itself along that edge from Out to Hub.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
const SetVector<BasicBlock *> &Incoming,
BasicBlock *FirstGuardBlock) {
auto I = Out->begin();
while (I != Out->end() && isa<PHINode>(I)) {
auto Phi = cast<PHINode>(I);
auto NewPhi =
PHINode::Create(Phi->getType(), Incoming.size(),
Phi->getName() + ".moved", &FirstGuardBlock->back());
for (auto In : Incoming) {
Value *V = UndefValue::get(Phi->getType());
if (In == Out) {
V = NewPhi;
} else if (Phi->getBasicBlockIndex(In) != -1) {
V = Phi->removeIncomingValue(In, false);
}
NewPhi->addIncoming(V, In);
}
assert(NewPhi->getNumIncomingValues() == Incoming.size());
if (Phi->getNumOperands() == 0) {
Phi->replaceAllUsesWith(NewPhi);
I = Phi->eraseFromParent();
continue;
}
Phi->addIncoming(NewPhi, GuardBlock);
++I;
}
}
using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
using BBSetVector = SetVector<BasicBlock *>;
// Redirects the terminator of the incoming block to the first guard
// block in the hub. The condition of the original terminator (if it
// was conditional) and its original successors are returned as a
// tuple <condition, succ0, succ1>. The function additionally filters
// out successors that are not in the set of outgoing blocks.
//
// - condition is non-null iff the branch is conditional.
// - Succ1 is non-null iff the sole/taken target is an outgoing block.
// - Succ2 is non-null iff condition is non-null and the fallthrough
// target is an outgoing block.
static std::tuple<Value *, BasicBlock *, BasicBlock *>
redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
const BBSetVector &Outgoing) {
auto Branch = cast<BranchInst>(BB->getTerminator());
auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
BasicBlock *Succ0 = Branch->getSuccessor(0);
BasicBlock *Succ1 = nullptr;
Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
if (Branch->isUnconditional()) {
Branch->setSuccessor(0, FirstGuardBlock);
assert(Succ0);
} else {
Succ1 = Branch->getSuccessor(1);
Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
assert(Succ0 || Succ1);
if (Succ0 && !Succ1) {
Branch->setSuccessor(0, FirstGuardBlock);
} else if (Succ1 && !Succ0) {
Branch->setSuccessor(1, FirstGuardBlock);
} else {
Branch->eraseFromParent();
BranchInst::Create(FirstGuardBlock, BB);
}
}
assert(Succ0 || Succ1);
return std::make_tuple(Condition, Succ0, Succ1);
}
// Capture the existing control flow as guard predicates, and redirect
// control flow from every incoming block to the first guard block in
// the hub.
//
// There is one guard predicate for each outgoing block OutBB. The
// predicate is a PHINode with one input for each InBB which
// represents whether the hub should transfer control flow to OutBB if
// it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
// evaluates them in the same order as the Outgoing set-vector, and
// control branches to the first outgoing block whose predicate
// evaluates to true.
static void convertToGuardPredicates(
BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
const BBSetVector &Outgoing) {
auto &Context = Incoming.front()->getContext();
auto BoolTrue = ConstantInt::getTrue(Context);
auto BoolFalse = ConstantInt::getFalse(Context);
// The predicate for the last outgoing is trivially true, and so we
// process only the first N-1 successors.
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
auto Out = Outgoing[i];
LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
auto Phi =
PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
StringRef("Guard.") + Out->getName(), FirstGuardBlock);
GuardPredicates[Out] = Phi;
}
for (auto In : Incoming) {
Value *Condition;
BasicBlock *Succ0;
BasicBlock *Succ1;
std::tie(Condition, Succ0, Succ1) =
redirectToHub(In, FirstGuardBlock, Outgoing);
// Optimization: Consider an incoming block A with both successors
// Succ0 and Succ1 in the set of outgoing blocks. The predicates
// for Succ0 and Succ1 complement each other. If Succ0 is visited
// first in the loop below, control will branch to Succ0 using the
// corresponding predicate. But if that branch is not taken, then
// control must reach Succ1, which means that the predicate for
// Succ1 is always true.
bool OneSuccessorDone = false;
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
auto Out = Outgoing[i];
auto Phi = GuardPredicates[Out];
if (Out != Succ0 && Out != Succ1) {
Phi->addIncoming(BoolFalse, In);
continue;
}
// Optimization: When only one successor is an outgoing block,
// the predicate is always true.
if (!Succ0 || !Succ1 || OneSuccessorDone) {
Phi->addIncoming(BoolTrue, In);
continue;
}
assert(Succ0 && Succ1);
OneSuccessorDone = true;
if (Out == Succ0) {
Phi->addIncoming(Condition, In);
continue;
}
auto Inverted = invertCondition(Condition);
DeletionCandidates.push_back(Condition);
Phi->addIncoming(Inverted, In);
}
}
}
// For each outgoing block OutBB, create a guard block in the Hub. The
// first guard block was already created outside, and available as the
// first element in the vector of guard blocks.
//
// Each guard block terminates in a conditional branch that transfers
// control to the corresponding outgoing block or the next guard
// block. The last guard block has two outgoing blocks as successors
// since the condition for the final outgoing block is trivially
// true. So we create one less block (including the first guard block)
// than the number of outgoing blocks.
static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
Function *F, const BBSetVector &Outgoing,
BBPredicates &GuardPredicates, StringRef Prefix) {
for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
GuardBlocks.push_back(
BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
}
assert(GuardBlocks.size() == GuardPredicates.size());
// To help keep the loop simple, temporarily append the last
// outgoing block to the list of guard blocks.
GuardBlocks.push_back(Outgoing.back());
for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
auto Out = Outgoing[i];
assert(GuardPredicates.count(Out));
BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
GuardBlocks[i]);
}
// Remove the last block from the guard list.
GuardBlocks.pop_back();
}
BasicBlock *llvm::CreateControlFlowHub(
DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
const BBSetVector &Incoming, const BBSetVector &Outgoing,
const StringRef Prefix) {
auto F = Incoming.front()->getParent();
auto FirstGuardBlock =
BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
SmallVector<DominatorTree::UpdateType, 16> Updates;
if (DTU) {
for (auto In : Incoming) {
Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
for (auto Succ : successors(In)) {
if (Outgoing.count(Succ))
Updates.push_back({DominatorTree::Delete, In, Succ});
}
}
}
BBPredicates GuardPredicates;
SmallVector<WeakVH, 8> DeletionCandidates;
convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
Incoming, Outgoing);
GuardBlocks.push_back(FirstGuardBlock);
createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
// Update the PHINodes in each outgoing block to match the new control flow.
for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
}
reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
if (DTU) {
int NumGuards = GuardBlocks.size();
assert((int)Outgoing.size() == NumGuards + 1);
for (int i = 0; i != NumGuards - 1; ++i) {
Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
Updates.push_back(
{DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
}
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards - 1]});
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards]});
DTU->applyUpdates(Updates);
}
for (auto I : DeletionCandidates) {
if (I->use_empty())
if (auto Inst = dyn_cast_or_null<Instruction>(I))
Inst->eraseFromParent();
}
return FirstGuardBlock;
}