1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Transforms/Utils/IntegerDivision.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

674 lines
26 KiB
C++

//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of 32bit and 64bit scalar integer
// division for targets that don't have native support. It's largely derived
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
// but hand-tuned for targets that prefer less control flow.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "integer-division"
/// Generate code to compute the remainder of two signed integers. Returns the
/// remainder, which will have the sign of the dividend. Builder's insert point
/// should be pointing where the caller wants code generated, e.g. at the srem
/// instruction. This will generate a urem in the process, and Builder's insert
/// point will be pointing at the uren (if present, i.e. not folded), ready to
/// be expanded if the user wishes
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
ConstantInt *Shift;
if (BitWidth == 64) {
Shift = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Shift = Builder.getInt32(31);
}
// Following instructions are generated for both i32 (shift 31) and
// i64 (shift 63).
// ; %dividend_sgn = ashr i32 %dividend, 31
// ; %divisor_sgn = ashr i32 %divisor, 31
// ; %dvd_xor = xor i32 %dividend, %dividend_sgn
// ; %dvs_xor = xor i32 %divisor, %divisor_sgn
// ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
// ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
// ; %urem = urem i32 %dividend, %divisor
// ; %xored = xor i32 %urem, %dividend_sgn
// ; %srem = sub i32 %xored, %dividend_sgn
Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
Value *URem = Builder.CreateURem(UDividend, UDivisor);
Value *Xored = Builder.CreateXor(URem, DividendSign);
Value *SRem = Builder.CreateSub(Xored, DividendSign);
if (Instruction *URemInst = dyn_cast<Instruction>(URem))
Builder.SetInsertPoint(URemInst);
return SRem;
}
/// Generate code to compute the remainder of two unsigned integers. Returns the
/// remainder. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the urem instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// Remainder = Dividend - Quotient*Divisor
// Following instructions are generated for both i32 and i64
// ; %quotient = udiv i32 %dividend, %divisor
// ; %product = mul i32 %divisor, %quotient
// ; %remainder = sub i32 %dividend, %product
Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
Value *Product = Builder.CreateMul(Divisor, Quotient);
Value *Remainder = Builder.CreateSub(Dividend, Product);
if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
Builder.SetInsertPoint(UDiv);
return Remainder;
}
/// Generate code to divide two signed integers. Returns the quotient, rounded
/// towards 0. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes.
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// Implementation taken from compiler-rt's __divsi3 and __divdi3
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
ConstantInt *Shift;
if (BitWidth == 64) {
Shift = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Shift = Builder.getInt32(31);
}
// Following instructions are generated for both i32 (shift 31) and
// i64 (shift 63).
// ; %tmp = ashr i32 %dividend, 31
// ; %tmp1 = ashr i32 %divisor, 31
// ; %tmp2 = xor i32 %tmp, %dividend
// ; %u_dvnd = sub nsw i32 %tmp2, %tmp
// ; %tmp3 = xor i32 %tmp1, %divisor
// ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
// ; %q_sgn = xor i32 %tmp1, %tmp
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
// ; %tmp4 = xor i32 %q_mag, %q_sgn
// ; %q = sub i32 %tmp4, %q_sgn
Value *Tmp = Builder.CreateAShr(Dividend, Shift);
Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
Builder.SetInsertPoint(UDiv);
return Q;
}
/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
/// Returns the quotient, rounded towards 0. Builder's insert point should
/// point where the caller wants code generated, e.g. at the udiv instruction.
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// The basic algorithm can be found in the compiler-rt project's
// implementation of __udivsi3.c. Here, we do a lower-level IR based approach
// that's been hand-tuned to lessen the amount of control flow involved.
// Some helper values
IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
unsigned BitWidth = DivTy->getBitWidth();
ConstantInt *Zero;
ConstantInt *One;
ConstantInt *NegOne;
ConstantInt *MSB;
if (BitWidth == 64) {
Zero = Builder.getInt64(0);
One = Builder.getInt64(1);
NegOne = ConstantInt::getSigned(DivTy, -1);
MSB = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Zero = Builder.getInt32(0);
One = Builder.getInt32(1);
NegOne = ConstantInt::getSigned(DivTy, -1);
MSB = Builder.getInt32(31);
}
ConstantInt *True = Builder.getTrue();
BasicBlock *IBB = Builder.GetInsertBlock();
Function *F = IBB->getParent();
Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
DivTy);
// Our CFG is going to look like:
// +---------------------+
// | special-cases |
// | ... |
// +---------------------+
// | |
// | +----------+
// | | bb1 |
// | | ... |
// | +----------+
// | | |
// | | +------------+
// | | | preheader |
// | | | ... |
// | | +------------+
// | | |
// | | | +---+
// | | | | |
// | | +------------+ |
// | | | do-while | |
// | | | ... | |
// | | +------------+ |
// | | | | |
// | +-----------+ +---+
// | | loop-exit |
// | | ... |
// | +-----------+
// | |
// +-------+
// | ... |
// | end |
// +-------+
BasicBlock *SpecialCases = Builder.GetInsertBlock();
SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
"udiv-end");
BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
"udiv-loop-exit", F, End);
BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
"udiv-do-while", F, End);
BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
"udiv-preheader", F, End);
BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
"udiv-bb1", F, End);
// We'll be overwriting the terminator to insert our extra blocks
SpecialCases->getTerminator()->eraseFromParent();
// Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
// First off, check for special cases: dividend or divisor is zero, divisor
// is greater than dividend, and divisor is 1.
// ; special-cases:
// ; %ret0_1 = icmp eq i32 %divisor, 0
// ; %ret0_2 = icmp eq i32 %dividend, 0
// ; %ret0_3 = or i1 %ret0_1, %ret0_2
// ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
// ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
// ; %sr = sub nsw i32 %tmp0, %tmp1
// ; %ret0_4 = icmp ugt i32 %sr, 31
// ; %ret0 = or i1 %ret0_3, %ret0_4
// ; %retDividend = icmp eq i32 %sr, 31
// ; %retVal = select i1 %ret0, i32 0, i32 %dividend
// ; %earlyRet = or i1 %ret0, %retDividend
// ; br i1 %earlyRet, label %end, label %bb1
Builder.SetInsertPoint(SpecialCases);
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
Builder.CreateCondBr(EarlyRet, End, BB1);
// ; bb1: ; preds = %special-cases
// ; %sr_1 = add i32 %sr, 1
// ; %tmp2 = sub i32 31, %sr
// ; %q = shl i32 %dividend, %tmp2
// ; %skipLoop = icmp eq i32 %sr_1, 0
// ; br i1 %skipLoop, label %loop-exit, label %preheader
Builder.SetInsertPoint(BB1);
Value *SR_1 = Builder.CreateAdd(SR, One);
Value *Tmp2 = Builder.CreateSub(MSB, SR);
Value *Q = Builder.CreateShl(Dividend, Tmp2);
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
// ; preheader: ; preds = %bb1
// ; %tmp3 = lshr i32 %dividend, %sr_1
// ; %tmp4 = add i32 %divisor, -1
// ; br label %do-while
Builder.SetInsertPoint(Preheader);
Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
Builder.CreateBr(DoWhile);
// ; do-while: ; preds = %do-while, %preheader
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
// ; %tmp5 = shl i32 %r_1, 1
// ; %tmp6 = lshr i32 %q_2, 31
// ; %tmp7 = or i32 %tmp5, %tmp6
// ; %tmp8 = shl i32 %q_2, 1
// ; %q_1 = or i32 %carry_1, %tmp8
// ; %tmp9 = sub i32 %tmp4, %tmp7
// ; %tmp10 = ashr i32 %tmp9, 31
// ; %carry = and i32 %tmp10, 1
// ; %tmp11 = and i32 %tmp10, %divisor
// ; %r = sub i32 %tmp7, %tmp11
// ; %sr_2 = add i32 %sr_3, -1
// ; %tmp12 = icmp eq i32 %sr_2, 0
// ; br i1 %tmp12, label %loop-exit, label %do-while
Builder.SetInsertPoint(DoWhile);
PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
Value *Tmp5 = Builder.CreateShl(R_1, One);
Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
Value *Tmp8 = Builder.CreateShl(Q_2, One);
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
Value *Carry = Builder.CreateAnd(Tmp10, One);
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
Value *R = Builder.CreateSub(Tmp7, Tmp11);
Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
// ; loop-exit: ; preds = %do-while, %bb1
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
// ; %tmp13 = shl i32 %q_3, 1
// ; %q_4 = or i32 %carry_2, %tmp13
// ; br label %end
Builder.SetInsertPoint(LoopExit);
PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
Value *Tmp13 = Builder.CreateShl(Q_3, One);
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
Builder.CreateBr(End);
// ; end: ; preds = %loop-exit, %special-cases
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
// ; ret i32 %q_5
Builder.SetInsertPoint(End, End->begin());
PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
// Populate the Phis, since all values have now been created. Our Phis were:
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
Carry_1->addIncoming(Zero, Preheader);
Carry_1->addIncoming(Carry, DoWhile);
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
SR_3->addIncoming(SR_1, Preheader);
SR_3->addIncoming(SR_2, DoWhile);
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
R_1->addIncoming(Tmp3, Preheader);
R_1->addIncoming(R, DoWhile);
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
Q_2->addIncoming(Q, Preheader);
Q_2->addIncoming(Q_1, DoWhile);
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
Carry_2->addIncoming(Zero, BB1);
Carry_2->addIncoming(Carry, DoWhile);
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
Q_3->addIncoming(Q, BB1);
Q_3->addIncoming(Q_1, DoWhile);
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
Q_5->addIncoming(Q_4, LoopExit);
Q_5->addIncoming(RetVal, SpecialCases);
return Q_5;
}
/// Generate code to calculate the remainder of two integers, replacing Rem with
/// the generated code. This currently generates code using the udiv expansion,
/// but future work includes generating more specialized code, e.g. when more
/// information about the operands are known. Implements both 32bit and 64bit
/// scalar division.
///
/// Replace Rem with generated code.
bool llvm::expandRemainder(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
IRBuilder<> Builder(Rem);
assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
assert((Rem->getType()->getIntegerBitWidth() == 32 ||
Rem->getType()->getIntegerBitWidth() == 64) &&
"Div of bitwidth other than 32 or 64 not supported");
// First prepare the sign if it's a signed remainder
if (Rem->getOpcode() == Instruction::SRem) {
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
Rem->getOperand(1), Builder);
// Check whether this is the insert point while Rem is still valid.
bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
Rem->replaceAllUsesWith(Remainder);
Rem->dropAllReferences();
Rem->eraseFromParent();
// If we didn't actually generate an urem instruction, we're done
// This happens for example if the input were constant. In this case the
// Builder insertion point was unchanged
if (IsInsertPoint)
return true;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Rem = BO;
}
Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
Rem->getOperand(1),
Builder);
Rem->replaceAllUsesWith(Remainder);
Rem->dropAllReferences();
Rem->eraseFromParent();
// Expand the udiv
if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
expandDivision(UDiv);
}
return true;
}
/// Generate code to divide two integers, replacing Div with the generated
/// code. This currently generates code similarly to compiler-rt's
/// implementations, but future work includes generating more specialized code
/// when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// Replace Div with generated code.
bool llvm::expandDivision(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
IRBuilder<> Builder(Div);
assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
assert((Div->getType()->getIntegerBitWidth() == 32 ||
Div->getType()->getIntegerBitWidth() == 64) &&
"Div of bitwidth other than 32 or 64 not supported");
// First prepare the sign if it's a signed division
if (Div->getOpcode() == Instruction::SDiv) {
// Lower the code to unsigned division, and reset Div to point to the udiv.
Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
Div->getOperand(1), Builder);
// Check whether this is the insert point while Div is still valid.
bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
Div->replaceAllUsesWith(Quotient);
Div->dropAllReferences();
Div->eraseFromParent();
// If we didn't actually generate an udiv instruction, we're done
// This happens for example if the input were constant. In this case the
// Builder insertion point was unchanged
if (IsInsertPoint)
return true;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Div = BO;
}
// Insert the unsigned division code
Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
Div->getOperand(1),
Builder);
Div->replaceAllUsesWith(Quotient);
Div->dropAllReferences();
Div->eraseFromParent();
return true;
}
/// Generate code to compute the remainder of two integers of bitwidth up to
/// 32 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 32 bits; that is, these routines are good for targets
/// that have no or very little suppport for smaller than 32 bit integer
/// arithmetic.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
Type *RemTy = Rem->getType();
assert(!RemTy->isVectorTy() && "Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
assert(RemTyBitWidth <= 32 &&
"Div of bitwidth greater than 32 not supported");
if (RemTyBitWidth == 32)
return expandRemainder(Rem);
// If bitwidth smaller than 32 extend inputs, extend output and proceed
// with 32 bit division.
IRBuilder<> Builder(Rem);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtRem;
Value *Trunc;
Type *Int32Ty = Builder.getInt32Ty();
if (Rem->getOpcode() == Instruction::SRem) {
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
Rem->replaceAllUsesWith(Trunc);
Rem->dropAllReferences();
Rem->eraseFromParent();
return expandRemainder(cast<BinaryOperator>(ExtRem));
}
/// Generate code to compute the remainder of two integers of bitwidth up to
/// 64 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 64 bits.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
Type *RemTy = Rem->getType();
assert(!RemTy->isVectorTy() && "Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
if (RemTyBitWidth == 64)
return expandRemainder(Rem);
// If bitwidth smaller than 64 extend inputs, extend output and proceed
// with 64 bit division.
IRBuilder<> Builder(Rem);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtRem;
Value *Trunc;
Type *Int64Ty = Builder.getInt64Ty();
if (Rem->getOpcode() == Instruction::SRem) {
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
Rem->replaceAllUsesWith(Trunc);
Rem->dropAllReferences();
Rem->eraseFromParent();
return expandRemainder(cast<BinaryOperator>(ExtRem));
}
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 32 bits; that is, these routines are good for targets that have no
/// or very little support for smaller than 32 bit integer arithmetic.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
Type *DivTy = Div->getType();
assert(!DivTy->isVectorTy() && "Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
if (DivTyBitWidth == 32)
return expandDivision(Div);
// If bitwidth smaller than 32 extend inputs, extend output and proceed
// with 32 bit division.
IRBuilder<> Builder(Div);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtDiv;
Value *Trunc;
Type *Int32Ty = Builder.getInt32Ty();
if (Div->getOpcode() == Instruction::SDiv) {
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
Div->replaceAllUsesWith(Trunc);
Div->dropAllReferences();
Div->eraseFromParent();
return expandDivision(cast<BinaryOperator>(ExtDiv));
}
/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 64 bits.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
Type *DivTy = Div->getType();
assert(!DivTy->isVectorTy() && "Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
assert(DivTyBitWidth <= 64 &&
"Div of bitwidth greater than 64 not supported");
if (DivTyBitWidth == 64)
return expandDivision(Div);
// If bitwidth smaller than 64 extend inputs, extend output and proceed
// with 64 bit division.
IRBuilder<> Builder(Div);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtDiv;
Value *Trunc;
Type *Int64Ty = Builder.getInt64Ty();
if (Div->getOpcode() == Instruction::SDiv) {
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
Div->replaceAllUsesWith(Trunc);
Div->dropAllReferences();
Div->eraseFromParent();
return expandDivision(cast<BinaryOperator>(ExtDiv));
}