mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
2475907f4b
Added field 'MustIssueImmediately' to the instruction descriptor of instructions that only consume in-order issue/dispatch processor resources. This speeds up queries from the hardware Scheduler, and gives an average ~5% speedup on a release build. No functional change intended. llvm-svn: 350397
248 lines
8.0 KiB
C++
248 lines
8.0 KiB
C++
//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A scheduler for processor resource units and processor resource groups.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MCA/HardwareUnits/Scheduler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
namespace llvm {
|
|
namespace mca {
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
void Scheduler::initializeStrategy(std::unique_ptr<SchedulerStrategy> S) {
|
|
// Ensure we have a valid (non-null) strategy object.
|
|
Strategy = S ? std::move(S) : llvm::make_unique<DefaultSchedulerStrategy>();
|
|
}
|
|
|
|
// Anchor the vtable of SchedulerStrategy and DefaultSchedulerStrategy.
|
|
SchedulerStrategy::~SchedulerStrategy() = default;
|
|
DefaultSchedulerStrategy::~DefaultSchedulerStrategy() = default;
|
|
|
|
#ifndef NDEBUG
|
|
void Scheduler::dump() const {
|
|
dbgs() << "[SCHEDULER]: WaitSet size is: " << WaitSet.size() << '\n';
|
|
dbgs() << "[SCHEDULER]: ReadySet size is: " << ReadySet.size() << '\n';
|
|
dbgs() << "[SCHEDULER]: IssuedSet size is: " << IssuedSet.size() << '\n';
|
|
Resources->dump();
|
|
}
|
|
#endif
|
|
|
|
Scheduler::Status Scheduler::isAvailable(const InstRef &IR) const {
|
|
const InstrDesc &Desc = IR.getInstruction()->getDesc();
|
|
|
|
switch (Resources->canBeDispatched(Desc.Buffers)) {
|
|
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
|
|
return Scheduler::SC_BUFFERS_FULL;
|
|
case ResourceStateEvent::RS_RESERVED:
|
|
return Scheduler::SC_DISPATCH_GROUP_STALL;
|
|
case ResourceStateEvent::RS_BUFFER_AVAILABLE:
|
|
break;
|
|
}
|
|
|
|
// Give lower priority to LSUnit stall events.
|
|
switch (LSU.isAvailable(IR)) {
|
|
case LSUnit::LSU_LQUEUE_FULL:
|
|
return Scheduler::SC_LOAD_QUEUE_FULL;
|
|
case LSUnit::LSU_SQUEUE_FULL:
|
|
return Scheduler::SC_STORE_QUEUE_FULL;
|
|
case LSUnit::LSU_AVAILABLE:
|
|
return Scheduler::SC_AVAILABLE;
|
|
}
|
|
|
|
llvm_unreachable("Don't know how to process this LSU state result!");
|
|
}
|
|
|
|
void Scheduler::issueInstructionImpl(
|
|
InstRef &IR,
|
|
SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &UsedResources) {
|
|
Instruction *IS = IR.getInstruction();
|
|
const InstrDesc &D = IS->getDesc();
|
|
|
|
// Issue the instruction and collect all the consumed resources
|
|
// into a vector. That vector is then used to notify the listener.
|
|
Resources->issueInstruction(D, UsedResources);
|
|
|
|
// Notify the instruction that it started executing.
|
|
// This updates the internal state of each write.
|
|
IS->execute();
|
|
|
|
if (IS->isExecuting())
|
|
IssuedSet.emplace_back(IR);
|
|
else if (IS->isExecuted())
|
|
LSU.onInstructionExecuted(IR);
|
|
}
|
|
|
|
// Release the buffered resources and issue the instruction.
|
|
void Scheduler::issueInstruction(
|
|
InstRef &IR,
|
|
SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &UsedResources,
|
|
SmallVectorImpl<InstRef> &ReadyInstructions) {
|
|
const Instruction &Inst = *IR.getInstruction();
|
|
bool HasDependentUsers = Inst.hasDependentUsers();
|
|
|
|
Resources->releaseBuffers(Inst.getDesc().Buffers);
|
|
issueInstructionImpl(IR, UsedResources);
|
|
// Instructions that have been issued during this cycle might have unblocked
|
|
// other dependent instructions. Dependent instructions may be issued during
|
|
// this same cycle if operands have ReadAdvance entries. Promote those
|
|
// instructions to the ReadySet and notify the caller that those are ready.
|
|
if (HasDependentUsers)
|
|
promoteToReadySet(ReadyInstructions);
|
|
}
|
|
|
|
void Scheduler::promoteToReadySet(SmallVectorImpl<InstRef> &Ready) {
|
|
// Scan the set of waiting instructions and promote them to the
|
|
// ready queue if operands are all ready.
|
|
unsigned RemovedElements = 0;
|
|
for (auto I = WaitSet.begin(), E = WaitSet.end(); I != E;) {
|
|
InstRef &IR = *I;
|
|
if (!IR)
|
|
break;
|
|
|
|
// Check if this instruction is now ready. In case, force
|
|
// a transition in state using method 'update()'.
|
|
Instruction &IS = *IR.getInstruction();
|
|
if (!IS.isReady())
|
|
IS.update();
|
|
|
|
// Check if there are still unsolved data dependencies.
|
|
if (!isReady(IR)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
Ready.emplace_back(IR);
|
|
ReadySet.emplace_back(IR);
|
|
|
|
IR.invalidate();
|
|
++RemovedElements;
|
|
std::iter_swap(I, E - RemovedElements);
|
|
}
|
|
|
|
WaitSet.resize(WaitSet.size() - RemovedElements);
|
|
}
|
|
|
|
InstRef Scheduler::select() {
|
|
unsigned QueueIndex = ReadySet.size();
|
|
for (unsigned I = 0, E = ReadySet.size(); I != E; ++I) {
|
|
const InstRef &IR = ReadySet[I];
|
|
if (QueueIndex == ReadySet.size() ||
|
|
Strategy->compare(IR, ReadySet[QueueIndex])) {
|
|
const InstrDesc &D = IR.getInstruction()->getDesc();
|
|
if (Resources->canBeIssued(D))
|
|
QueueIndex = I;
|
|
}
|
|
}
|
|
|
|
if (QueueIndex == ReadySet.size())
|
|
return InstRef();
|
|
|
|
// We found an instruction to issue.
|
|
InstRef IR = ReadySet[QueueIndex];
|
|
std::swap(ReadySet[QueueIndex], ReadySet[ReadySet.size() - 1]);
|
|
ReadySet.pop_back();
|
|
return IR;
|
|
}
|
|
|
|
void Scheduler::updateIssuedSet(SmallVectorImpl<InstRef> &Executed) {
|
|
unsigned RemovedElements = 0;
|
|
for (auto I = IssuedSet.begin(), E = IssuedSet.end(); I != E;) {
|
|
InstRef &IR = *I;
|
|
if (!IR)
|
|
break;
|
|
Instruction &IS = *IR.getInstruction();
|
|
if (!IS.isExecuted()) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
|
|
<< " is still executing.\n");
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Instruction IR has completed execution.
|
|
LSU.onInstructionExecuted(IR);
|
|
Executed.emplace_back(IR);
|
|
++RemovedElements;
|
|
IR.invalidate();
|
|
std::iter_swap(I, E - RemovedElements);
|
|
}
|
|
|
|
IssuedSet.resize(IssuedSet.size() - RemovedElements);
|
|
}
|
|
|
|
void Scheduler::cycleEvent(SmallVectorImpl<ResourceRef> &Freed,
|
|
SmallVectorImpl<InstRef> &Executed,
|
|
SmallVectorImpl<InstRef> &Ready) {
|
|
// Release consumed resources.
|
|
Resources->cycleEvent(Freed);
|
|
|
|
// Propagate the cycle event to the 'Issued' and 'Wait' sets.
|
|
for (InstRef &IR : IssuedSet)
|
|
IR.getInstruction()->cycleEvent();
|
|
|
|
updateIssuedSet(Executed);
|
|
|
|
for (InstRef &IR : WaitSet)
|
|
IR.getInstruction()->cycleEvent();
|
|
|
|
promoteToReadySet(Ready);
|
|
}
|
|
|
|
bool Scheduler::mustIssueImmediately(const InstRef &IR) const {
|
|
const InstrDesc &Desc = IR.getInstruction()->getDesc();
|
|
if (Desc.isZeroLatency())
|
|
return true;
|
|
// Instructions that use an in-order dispatch/issue processor resource must be
|
|
// issued immediately to the pipeline(s). Any other in-order buffered
|
|
// resources (i.e. BufferSize=1) is consumed.
|
|
return Desc.MustIssueImmediately;
|
|
}
|
|
|
|
void Scheduler::dispatch(const InstRef &IR) {
|
|
const InstrDesc &Desc = IR.getInstruction()->getDesc();
|
|
Resources->reserveBuffers(Desc.Buffers);
|
|
|
|
// If necessary, reserve queue entries in the load-store unit (LSU).
|
|
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
|
|
if (IsMemOp)
|
|
LSU.dispatch(IR);
|
|
|
|
if (!isReady(IR)) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the WaitSet\n");
|
|
WaitSet.push_back(IR);
|
|
return;
|
|
}
|
|
|
|
// Don't add a zero-latency instruction to the Ready queue.
|
|
// A zero-latency instruction doesn't consume any scheduler resources. That is
|
|
// because it doesn't need to be executed, and it is often removed at register
|
|
// renaming stage. For example, register-register moves are often optimized at
|
|
// register renaming stage by simply updating register aliases. On some
|
|
// targets, zero-idiom instructions (for example: a xor that clears the value
|
|
// of a register) are treated specially, and are often eliminated at register
|
|
// renaming stage.
|
|
if (!mustIssueImmediately(IR)) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the ReadySet\n");
|
|
ReadySet.push_back(IR);
|
|
}
|
|
}
|
|
|
|
bool Scheduler::isReady(const InstRef &IR) const {
|
|
const InstrDesc &Desc = IR.getInstruction()->getDesc();
|
|
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
|
|
return IR.getInstruction()->isReady() && (!IsMemOp || LSU.isReady(IR));
|
|
}
|
|
|
|
} // namespace mca
|
|
} // namespace llvm
|