1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 13:02:52 +02:00
llvm-mirror/lib/Transforms/Scalar/SimplifyCFGPass.cpp
Chandler Carruth c140bae640 [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

llvm-svn: 225131
2015-01-04 12:03:27 +00:00

213 lines
7.7 KiB
C++

//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements dead code elimination and basic block merging, along
// with a collection of other peephole control flow optimizations. For example:
//
// * Removes basic blocks with no predecessors.
// * Merges a basic block into its predecessor if there is only one and the
// predecessor only has one successor.
// * Eliminates PHI nodes for basic blocks with a single predecessor.
// * Eliminates a basic block that only contains an unconditional branch.
// * Changes invoke instructions to nounwind functions to be calls.
// * Change things like "if (x) if (y)" into "if (x&y)".
// * etc..
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "simplifycfg"
static cl::opt<unsigned>
UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1),
cl::desc("Control the number of bonus instructions (default = 1)"));
STATISTIC(NumSimpl, "Number of blocks simplified");
namespace {
struct CFGSimplifyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
unsigned BonusInstThreshold;
CFGSimplifyPass(int T = -1) : FunctionPass(ID) {
BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : unsigned(T);
initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfo>();
}
};
}
char CFGSimplifyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
// Public interface to the CFGSimplification pass
FunctionPass *llvm::createCFGSimplificationPass(int Threshold) {
return new CFGSimplifyPass(Threshold);
}
/// mergeEmptyReturnBlocks - If we have more than one empty (other than phi
/// node) return blocks, merge them together to promote recursive block merging.
static bool mergeEmptyReturnBlocks(Function &F) {
bool Changed = false;
BasicBlock *RetBlock = nullptr;
// Scan all the blocks in the function, looking for empty return blocks.
for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
BasicBlock &BB = *BBI++;
// Only look at return blocks.
ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
if (!Ret) continue;
// Only look at the block if it is empty or the only other thing in it is a
// single PHI node that is the operand to the return.
if (Ret != &BB.front()) {
// Check for something else in the block.
BasicBlock::iterator I = Ret;
--I;
// Skip over debug info.
while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
--I;
if (!isa<DbgInfoIntrinsic>(I) &&
(!isa<PHINode>(I) || I != BB.begin() ||
Ret->getNumOperands() == 0 ||
Ret->getOperand(0) != I))
continue;
}
// If this is the first returning block, remember it and keep going.
if (!RetBlock) {
RetBlock = &BB;
continue;
}
// Otherwise, we found a duplicate return block. Merge the two.
Changed = true;
// Case when there is no input to the return or when the returned values
// agree is trivial. Note that they can't agree if there are phis in the
// blocks.
if (Ret->getNumOperands() == 0 ||
Ret->getOperand(0) ==
cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
BB.replaceAllUsesWith(RetBlock);
BB.eraseFromParent();
continue;
}
// If the canonical return block has no PHI node, create one now.
PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
if (!RetBlockPHI) {
Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
std::distance(PB, PE), "merge",
&RetBlock->front());
for (pred_iterator PI = PB; PI != PE; ++PI)
RetBlockPHI->addIncoming(InVal, *PI);
RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
}
// Turn BB into a block that just unconditionally branches to the return
// block. This handles the case when the two return blocks have a common
// predecessor but that return different things.
RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
BB.getTerminator()->eraseFromParent();
BranchInst::Create(RetBlock, &BB);
}
return Changed;
}
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
const DataLayout *DL, AssumptionCache *AC,
unsigned BonusInstThreshold) {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
LocalChange = false;
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, DL, AC)) {
LocalChange = true;
++NumSimpl;
}
}
Changed |= LocalChange;
}
return Changed;
}
// It is possible that we may require multiple passes over the code to fully
// simplify the CFG.
//
bool CFGSimplifyPass::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
AssumptionCache *AC =
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
bool EverChanged = removeUnreachableBlocks(F);
EverChanged |= mergeEmptyReturnBlocks(F);
EverChanged |= iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
// iterativelySimplifyCFG can (rarely) make some loops dead. If this happens,
// removeUnreachableBlocks is needed to nuke them, which means we should
// iterate between the two optimizations. We structure the code like this to
// avoid reruning iterativelySimplifyCFG if the second pass of
// removeUnreachableBlocks doesn't do anything.
if (!removeUnreachableBlocks(F))
return true;
do {
EverChanged = iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
EverChanged |= removeUnreachableBlocks(F);
} while (EverChanged);
return true;
}