1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/IR/BasicBlock.cpp
Whitney Tsang 0ac56aa46f Ensure SplitEdge to return the new block between the two given blocks
This PR implements the function splitBasicBlockBefore to address an
issue
that occurred during SplitEdge(BB, Succ, ...), inside splitBlockBefore.
The issue occurs in SplitEdge when the Succ has a single predecessor
and the edge between the BB and Succ is not critical. This produces
the result ‘BB->Succ->New’. The new function splitBasicBlockBefore
was added to splitBlockBefore to handle the issue and now produces
the correct result ‘BB->New->Succ’.

Below is an example of splitting the block bb1 at its first instruction.

/// Original IR
bb0:
	br bb1
bb1:
        %0 = mul i32 1, 2
	br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlock
bb0:
	br bb1
bb1:
	br bb1.split
bb1.split:
        %0 = mul i32 1, 2
	br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlockBefore
bb0:
	br bb1.split
bb1.split
	br bb1
bb1:
        %0 = mul i32 1, 2
	br bb2
bb2:

Differential Revision: https://reviews.llvm.org/D92200
2020-12-18 17:37:17 +00:00

519 lines
16 KiB
C++

//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BasicBlock class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/BasicBlock.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include <algorithm>
using namespace llvm;
ValueSymbolTable *BasicBlock::getValueSymbolTable() {
if (Function *F = getParent())
return F->getValueSymbolTable();
return nullptr;
}
LLVMContext &BasicBlock::getContext() const {
return getType()->getContext();
}
template <> void llvm::invalidateParentIListOrdering(BasicBlock *BB) {
BB->invalidateOrders();
}
// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<Instruction>;
BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
BasicBlock *InsertBefore)
: Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
if (NewParent)
insertInto(NewParent, InsertBefore);
else
assert(!InsertBefore &&
"Cannot insert block before another block with no function!");
setName(Name);
}
void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
assert(NewParent && "Expected a parent");
assert(!Parent && "Already has a parent");
if (InsertBefore)
NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
else
NewParent->getBasicBlockList().push_back(this);
}
BasicBlock::~BasicBlock() {
validateInstrOrdering();
// If the address of the block is taken and it is being deleted (e.g. because
// it is dead), this means that there is either a dangling constant expr
// hanging off the block, or an undefined use of the block (source code
// expecting the address of a label to keep the block alive even though there
// is no indirect branch). Handle these cases by zapping the BlockAddress
// nodes. There are no other possible uses at this point.
if (hasAddressTaken()) {
assert(!use_empty() && "There should be at least one blockaddress!");
Constant *Replacement =
ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
while (!use_empty()) {
BlockAddress *BA = cast<BlockAddress>(user_back());
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
BA->getType()));
BA->destroyConstant();
}
}
assert(getParent() == nullptr && "BasicBlock still linked into the program!");
dropAllReferences();
InstList.clear();
}
void BasicBlock::setParent(Function *parent) {
// Set Parent=parent, updating instruction symtab entries as appropriate.
InstList.setSymTabObject(&Parent, parent);
}
iterator_range<filter_iterator<BasicBlock::const_iterator,
std::function<bool(const Instruction &)>>>
BasicBlock::instructionsWithoutDebug(bool SkipPseudoOp) const {
std::function<bool(const Instruction &)> Fn = [=](const Instruction &I) {
return !isa<DbgInfoIntrinsic>(I) &&
!(SkipPseudoOp && isa<PseudoProbeInst>(I));
};
return make_filter_range(*this, Fn);
}
iterator_range<
filter_iterator<BasicBlock::iterator, std::function<bool(Instruction &)>>>
BasicBlock::instructionsWithoutDebug(bool SkipPseudoOp) {
std::function<bool(Instruction &)> Fn = [=](Instruction &I) {
return !isa<DbgInfoIntrinsic>(I) &&
!(SkipPseudoOp && isa<PseudoProbeInst>(I));
};
return make_filter_range(*this, Fn);
}
filter_iterator<BasicBlock::const_iterator,
std::function<bool(const Instruction &)>>::difference_type
BasicBlock::sizeWithoutDebug() const {
return std::distance(instructionsWithoutDebug().begin(),
instructionsWithoutDebug().end());
}
void BasicBlock::removeFromParent() {
getParent()->getBasicBlockList().remove(getIterator());
}
iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
return getParent()->getBasicBlockList().erase(getIterator());
}
void BasicBlock::moveBefore(BasicBlock *MovePos) {
MovePos->getParent()->getBasicBlockList().splice(
MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
}
void BasicBlock::moveAfter(BasicBlock *MovePos) {
MovePos->getParent()->getBasicBlockList().splice(
++MovePos->getIterator(), getParent()->getBasicBlockList(),
getIterator());
}
const Module *BasicBlock::getModule() const {
return getParent()->getParent();
}
const Instruction *BasicBlock::getTerminator() const {
if (InstList.empty() || !InstList.back().isTerminator())
return nullptr;
return &InstList.back();
}
const CallInst *BasicBlock::getTerminatingMustTailCall() const {
if (InstList.empty())
return nullptr;
const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
if (!RI || RI == &InstList.front())
return nullptr;
const Instruction *Prev = RI->getPrevNode();
if (!Prev)
return nullptr;
if (Value *RV = RI->getReturnValue()) {
if (RV != Prev)
return nullptr;
// Look through the optional bitcast.
if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
RV = BI->getOperand(0);
Prev = BI->getPrevNode();
if (!Prev || RV != Prev)
return nullptr;
}
}
if (auto *CI = dyn_cast<CallInst>(Prev)) {
if (CI->isMustTailCall())
return CI;
}
return nullptr;
}
const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
if (InstList.empty())
return nullptr;
auto *RI = dyn_cast<ReturnInst>(&InstList.back());
if (!RI || RI == &InstList.front())
return nullptr;
if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
if (Function *F = CI->getCalledFunction())
if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
return CI;
return nullptr;
}
const CallInst *BasicBlock::getPostdominatingDeoptimizeCall() const {
const BasicBlock* BB = this;
SmallPtrSet<const BasicBlock *, 8> Visited;
Visited.insert(BB);
while (auto *Succ = BB->getUniqueSuccessor()) {
if (!Visited.insert(Succ).second)
return nullptr;
BB = Succ;
}
return BB->getTerminatingDeoptimizeCall();
}
const Instruction* BasicBlock::getFirstNonPHI() const {
for (const Instruction &I : *this)
if (!isa<PHINode>(I))
return &I;
return nullptr;
}
const Instruction *BasicBlock::getFirstNonPHIOrDbg(bool SkipPseudoOp) const {
for (const Instruction &I : *this) {
if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
continue;
if (SkipPseudoOp && isa<PseudoProbeInst>(I))
continue;
return &I;
}
return nullptr;
}
const Instruction *
BasicBlock::getFirstNonPHIOrDbgOrLifetime(bool SkipPseudoOp) const {
for (const Instruction &I : *this) {
if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
continue;
if (I.isLifetimeStartOrEnd())
continue;
if (SkipPseudoOp && isa<PseudoProbeInst>(I))
continue;
return &I;
}
return nullptr;
}
BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
const Instruction *FirstNonPHI = getFirstNonPHI();
if (!FirstNonPHI)
return end();
const_iterator InsertPt = FirstNonPHI->getIterator();
if (InsertPt->isEHPad()) ++InsertPt;
return InsertPt;
}
void BasicBlock::dropAllReferences() {
for (Instruction &I : *this)
I.dropAllReferences();
}
const BasicBlock *BasicBlock::getSinglePredecessor() const {
const_pred_iterator PI = pred_begin(this), E = pred_end(this);
if (PI == E) return nullptr; // No preds.
const BasicBlock *ThePred = *PI;
++PI;
return (PI == E) ? ThePred : nullptr /*multiple preds*/;
}
const BasicBlock *BasicBlock::getUniquePredecessor() const {
const_pred_iterator PI = pred_begin(this), E = pred_end(this);
if (PI == E) return nullptr; // No preds.
const BasicBlock *PredBB = *PI;
++PI;
for (;PI != E; ++PI) {
if (*PI != PredBB)
return nullptr;
// The same predecessor appears multiple times in the predecessor list.
// This is OK.
}
return PredBB;
}
bool BasicBlock::hasNPredecessors(unsigned N) const {
return hasNItems(pred_begin(this), pred_end(this), N);
}
bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
}
const BasicBlock *BasicBlock::getSingleSuccessor() const {
const_succ_iterator SI = succ_begin(this), E = succ_end(this);
if (SI == E) return nullptr; // no successors
const BasicBlock *TheSucc = *SI;
++SI;
return (SI == E) ? TheSucc : nullptr /* multiple successors */;
}
const BasicBlock *BasicBlock::getUniqueSuccessor() const {
const_succ_iterator SI = succ_begin(this), E = succ_end(this);
if (SI == E) return nullptr; // No successors
const BasicBlock *SuccBB = *SI;
++SI;
for (;SI != E; ++SI) {
if (*SI != SuccBB)
return nullptr;
// The same successor appears multiple times in the successor list.
// This is OK.
}
return SuccBB;
}
iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
return make_range<phi_iterator>(P, nullptr);
}
void BasicBlock::removePredecessor(BasicBlock *Pred,
bool KeepOneInputPHIs) {
// Use hasNUsesOrMore to bound the cost of this assertion for complex CFGs.
assert((hasNUsesOrMore(16) || llvm::is_contained(predecessors(this), Pred)) &&
"Pred is not a predecessor!");
// Return early if there are no PHI nodes to update.
if (!isa<PHINode>(begin()))
return;
unsigned NumPreds = cast<PHINode>(front()).getNumIncomingValues();
for (PHINode &Phi : make_early_inc_range(phis())) {
Phi.removeIncomingValue(Pred, !KeepOneInputPHIs);
if (KeepOneInputPHIs)
continue;
// If we have a single predecessor, removeIncomingValue may have erased the
// PHI node itself.
if (NumPreds == 1)
continue;
// Try to replace the PHI node with a constant value.
if (Value *PhiConstant = Phi.hasConstantValue()) {
Phi.replaceAllUsesWith(PhiConstant);
Phi.eraseFromParent();
}
}
}
bool BasicBlock::canSplitPredecessors() const {
const Instruction *FirstNonPHI = getFirstNonPHI();
if (isa<LandingPadInst>(FirstNonPHI))
return true;
// This is perhaps a little conservative because constructs like
// CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors
// cannot handle such things just yet.
if (FirstNonPHI->isEHPad())
return false;
return true;
}
bool BasicBlock::isLegalToHoistInto() const {
auto *Term = getTerminator();
// No terminator means the block is under construction.
if (!Term)
return true;
// If the block has no successors, there can be no instructions to hoist.
assert(Term->getNumSuccessors() > 0);
// Instructions should not be hoisted across exception handling boundaries.
return !Term->isExceptionalTerminator();
}
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName,
bool Before) {
if (Before)
return splitBasicBlockBefore(I, BBName);
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
assert(I != InstList.end() &&
"Trying to get me to create degenerate basic block!");
BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
this->getNextNode());
// Save DebugLoc of split point before invalidating iterator.
DebugLoc Loc = I->getDebugLoc();
// Move all of the specified instructions from the original basic block into
// the new basic block.
New->getInstList().splice(New->end(), this->getInstList(), I, end());
// Add a branch instruction to the newly formed basic block.
BranchInst *BI = BranchInst::Create(New, this);
BI->setDebugLoc(Loc);
// Now we must loop through all of the successors of the New block (which
// _were_ the successors of the 'this' block), and update any PHI nodes in
// successors. If there were PHI nodes in the successors, then they need to
// know that incoming branches will be from New, not from Old (this).
//
New->replaceSuccessorsPhiUsesWith(this, New);
return New;
}
BasicBlock *BasicBlock::splitBasicBlockBefore(iterator I, const Twine &BBName) {
assert(getTerminator() &&
"Can't use splitBasicBlockBefore on degenerate BB!");
assert(I != InstList.end() &&
"Trying to get me to create degenerate basic block!");
assert((!isa<PHINode>(*I) || getSinglePredecessor()) &&
"cannot split on multi incoming phis");
BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), this);
// Save DebugLoc of split point before invalidating iterator.
DebugLoc Loc = I->getDebugLoc();
// Move all of the specified instructions from the original basic block into
// the new basic block.
New->getInstList().splice(New->end(), this->getInstList(), begin(), I);
// Loop through all of the predecessors of the 'this' block (which will be the
// predecessors of the New block), replace the specified successor 'this'
// block to point at the New block and update any PHI nodes in 'this' block.
// If there were PHI nodes in 'this' block, the PHI nodes are updated
// to reflect that the incoming branches will be from the New block and not
// from predecessors of the 'this' block.
for (BasicBlock *Pred : predecessors(this)) {
Instruction *TI = Pred->getTerminator();
TI->replaceSuccessorWith(this, New);
this->replacePhiUsesWith(Pred, New);
}
// Add a branch instruction from "New" to "this" Block.
BranchInst *BI = BranchInst::Create(this, New);
BI->setDebugLoc(Loc);
return New;
}
void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
// N.B. This might not be a complete BasicBlock, so don't assume
// that it ends with a non-phi instruction.
for (iterator II = begin(), IE = end(); II != IE; ++II) {
PHINode *PN = dyn_cast<PHINode>(II);
if (!PN)
break;
PN->replaceIncomingBlockWith(Old, New);
}
}
void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
BasicBlock *New) {
Instruction *TI = getTerminator();
if (!TI)
// Cope with being called on a BasicBlock that doesn't have a terminator
// yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
return;
llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
Succ->replacePhiUsesWith(Old, New);
});
}
void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
this->replaceSuccessorsPhiUsesWith(this, New);
}
bool BasicBlock::isLandingPad() const {
return isa<LandingPadInst>(getFirstNonPHI());
}
const LandingPadInst *BasicBlock::getLandingPadInst() const {
return dyn_cast<LandingPadInst>(getFirstNonPHI());
}
Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
const Instruction *TI = getTerminator();
if (MDNode *MDIrrLoopHeader =
TI->getMetadata(LLVMContext::MD_irr_loop)) {
MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
if (MDName->getString().equals("loop_header_weight")) {
auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
return Optional<uint64_t>(CI->getValue().getZExtValue());
}
}
return Optional<uint64_t>();
}
BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
while (isa<DbgInfoIntrinsic>(It))
++It;
return It;
}
void BasicBlock::renumberInstructions() {
unsigned Order = 0;
for (Instruction &I : *this)
I.Order = Order++;
// Set the bit to indicate that the instruction order valid and cached.
BasicBlockBits Bits = getBasicBlockBits();
Bits.InstrOrderValid = true;
setBasicBlockBits(Bits);
}
#ifndef NDEBUG
/// In asserts builds, this checks the numbering. In non-asserts builds, it
/// is defined as a no-op inline function in BasicBlock.h.
void BasicBlock::validateInstrOrdering() const {
if (!isInstrOrderValid())
return;
const Instruction *Prev = nullptr;
for (const Instruction &I : *this) {
assert((!Prev || Prev->comesBefore(&I)) &&
"cached instruction ordering is incorrect");
Prev = &I;
}
}
#endif