1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 16:33:37 +01:00
llvm-mirror/include/llvm/Target/TargetRegisterInfo.h
Owen Anderson 48f2f0ae72 Split EVT into MVT and EVT, the former representing _just_ a primitive type, while
the latter is capable of representing either a primitive or an extended type.

llvm-svn: 78713
2009-08-11 20:47:22 +00:00

708 lines
28 KiB
C++

//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes an abstract interface used to get information about a
// target machines register file. This information is used for a variety of
// purposed, especially register allocation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
#define LLVM_TARGET_TARGETREGISTERINFO_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/ADT/DenseSet.h"
#include <cassert>
#include <functional>
namespace llvm {
class BitVector;
class MachineFunction;
class MachineMove;
class RegScavenger;
/// TargetRegisterDesc - This record contains all of the information known about
/// a particular register. The AliasSet field (if not null) contains a pointer
/// to a Zero terminated array of registers that this register aliases. This is
/// needed for architectures like X86 which have AL alias AX alias EAX.
/// Registers that this does not apply to simply should set this to null.
/// The SubRegs field is a zero terminated array of registers that are
/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
/// The SuperRegs field is a zero terminated array of registers that are
/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
/// of AX.
///
struct TargetRegisterDesc {
const char *AsmName; // Assembly language name for the register
const char *Name; // Printable name for the reg (for debugging)
const unsigned *AliasSet; // Register Alias Set, described above
const unsigned *SubRegs; // Sub-register set, described above
const unsigned *SuperRegs; // Super-register set, described above
};
class TargetRegisterClass {
public:
typedef const unsigned* iterator;
typedef const unsigned* const_iterator;
typedef const EVT* vt_iterator;
typedef const TargetRegisterClass* const * sc_iterator;
private:
unsigned ID;
const char *Name;
const vt_iterator VTs;
const sc_iterator SubClasses;
const sc_iterator SuperClasses;
const sc_iterator SubRegClasses;
const sc_iterator SuperRegClasses;
const unsigned RegSize, Alignment; // Size & Alignment of register in bytes
const int CopyCost;
const iterator RegsBegin, RegsEnd;
DenseSet<unsigned> RegSet;
public:
TargetRegisterClass(unsigned id,
const char *name,
const EVT *vts,
const TargetRegisterClass * const *subcs,
const TargetRegisterClass * const *supcs,
const TargetRegisterClass * const *subregcs,
const TargetRegisterClass * const *superregcs,
unsigned RS, unsigned Al, int CC,
iterator RB, iterator RE)
: ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
SubRegClasses(subregcs), SuperRegClasses(superregcs),
RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
RegSet.insert(*I);
}
virtual ~TargetRegisterClass() {} // Allow subclasses
/// getID() - Return the register class ID number.
///
unsigned getID() const { return ID; }
/// getName() - Return the register class name for debugging.
///
const char *getName() const { return Name; }
/// begin/end - Return all of the registers in this class.
///
iterator begin() const { return RegsBegin; }
iterator end() const { return RegsEnd; }
/// getNumRegs - Return the number of registers in this class.
///
unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
/// getRegister - Return the specified register in the class.
///
unsigned getRegister(unsigned i) const {
assert(i < getNumRegs() && "Register number out of range!");
return RegsBegin[i];
}
/// contains - Return true if the specified register is included in this
/// register class.
bool contains(unsigned Reg) const {
return RegSet.count(Reg);
}
/// hasType - return true if this TargetRegisterClass has the ValueType vt.
///
bool hasType(EVT vt) const {
for(int i = 0; VTs[i].getSimpleVT().SimpleTy != MVT::Other; ++i)
if (VTs[i] == vt)
return true;
return false;
}
/// vt_begin / vt_end - Loop over all of the value types that can be
/// represented by values in this register class.
vt_iterator vt_begin() const {
return VTs;
}
vt_iterator vt_end() const {
vt_iterator I = VTs;
while (I->getSimpleVT().SimpleTy != MVT::Other) ++I;
return I;
}
/// subregclasses_begin / subregclasses_end - Loop over all of
/// the subreg register classes of this register class.
sc_iterator subregclasses_begin() const {
return SubRegClasses;
}
sc_iterator subregclasses_end() const {
sc_iterator I = SubRegClasses;
while (*I != NULL) ++I;
return I;
}
/// getSubRegisterRegClass - Return the register class of subregisters with
/// index SubIdx, or NULL if no such class exists.
const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
assert(SubIdx>0 && "Invalid subregister index");
for (unsigned s = 0; s != SubIdx-1; ++s)
if (!SubRegClasses[s])
return NULL;
return SubRegClasses[SubIdx-1];
}
/// superregclasses_begin / superregclasses_end - Loop over all of
/// the superreg register classes of this register class.
sc_iterator superregclasses_begin() const {
return SuperRegClasses;
}
sc_iterator superregclasses_end() const {
sc_iterator I = SuperRegClasses;
while (*I != NULL) ++I;
return I;
}
/// hasSubClass - return true if the the specified TargetRegisterClass
/// is a proper subset of this TargetRegisterClass.
bool hasSubClass(const TargetRegisterClass *cs) const {
for (int i = 0; SubClasses[i] != NULL; ++i)
if (SubClasses[i] == cs)
return true;
return false;
}
/// subclasses_begin / subclasses_end - Loop over all of the classes
/// that are proper subsets of this register class.
sc_iterator subclasses_begin() const {
return SubClasses;
}
sc_iterator subclasses_end() const {
sc_iterator I = SubClasses;
while (*I != NULL) ++I;
return I;
}
/// hasSuperClass - return true if the specified TargetRegisterClass is a
/// proper superset of this TargetRegisterClass.
bool hasSuperClass(const TargetRegisterClass *cs) const {
for (int i = 0; SuperClasses[i] != NULL; ++i)
if (SuperClasses[i] == cs)
return true;
return false;
}
/// superclasses_begin / superclasses_end - Loop over all of the classes
/// that are proper supersets of this register class.
sc_iterator superclasses_begin() const {
return SuperClasses;
}
sc_iterator superclasses_end() const {
sc_iterator I = SuperClasses;
while (*I != NULL) ++I;
return I;
}
/// isASubClass - return true if this TargetRegisterClass is a subset
/// class of at least one other TargetRegisterClass.
bool isASubClass() const {
return SuperClasses[0] != 0;
}
/// allocation_order_begin/end - These methods define a range of registers
/// which specify the registers in this class that are valid to register
/// allocate, and the preferred order to allocate them in. For example,
/// callee saved registers should be at the end of the list, because it is
/// cheaper to allocate caller saved registers.
///
/// These methods take a MachineFunction argument, which can be used to tune
/// the allocatable registers based on the characteristics of the function.
/// One simple example is that the frame pointer register can be used if
/// frame-pointer-elimination is performed.
///
/// By default, these methods return all registers in the class.
///
virtual iterator allocation_order_begin(const MachineFunction &MF) const {
return begin();
}
virtual iterator allocation_order_end(const MachineFunction &MF) const {
return end();
}
/// getSize - Return the size of the register in bytes, which is also the size
/// of a stack slot allocated to hold a spilled copy of this register.
unsigned getSize() const { return RegSize; }
/// getAlignment - Return the minimum required alignment for a register of
/// this class.
unsigned getAlignment() const { return Alignment; }
/// getCopyCost - Return the cost of copying a value between two registers in
/// this class. A negative number means the register class is very expensive
/// to copy e.g. status flag register classes.
int getCopyCost() const { return CopyCost; }
};
/// TargetRegisterInfo base class - We assume that the target defines a static
/// array of TargetRegisterDesc objects that represent all of the machine
/// registers that the target has. As such, we simply have to track a pointer
/// to this array so that we can turn register number into a register
/// descriptor.
///
class TargetRegisterInfo {
protected:
const unsigned* SubregHash;
const unsigned SubregHashSize;
const unsigned* SuperregHash;
const unsigned SuperregHashSize;
const unsigned* AliasesHash;
const unsigned AliasesHashSize;
public:
typedef const TargetRegisterClass * const * regclass_iterator;
private:
const TargetRegisterDesc *Desc; // Pointer to the descriptor array
unsigned NumRegs; // Number of entries in the array
regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
int CallFrameSetupOpcode, CallFrameDestroyOpcode;
protected:
TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
regclass_iterator RegClassBegin,
regclass_iterator RegClassEnd,
int CallFrameSetupOpcode = -1,
int CallFrameDestroyOpcode = -1,
const unsigned* subregs = 0,
const unsigned subregsize = 0,
const unsigned* superregs = 0,
const unsigned superregsize = 0,
const unsigned* aliases = 0,
const unsigned aliasessize = 0);
virtual ~TargetRegisterInfo();
public:
enum { // Define some target independent constants
/// NoRegister - This physical register is not a real target register. It
/// is useful as a sentinal.
NoRegister = 0,
/// FirstVirtualRegister - This is the first register number that is
/// considered to be a 'virtual' register, which is part of the SSA
/// namespace. This must be the same for all targets, which means that each
/// target is limited to 1024 registers.
FirstVirtualRegister = 1024
};
/// isPhysicalRegister - Return true if the specified register number is in
/// the physical register namespace.
static bool isPhysicalRegister(unsigned Reg) {
assert(Reg && "this is not a register!");
return Reg < FirstVirtualRegister;
}
/// isVirtualRegister - Return true if the specified register number is in
/// the virtual register namespace.
static bool isVirtualRegister(unsigned Reg) {
assert(Reg && "this is not a register!");
return Reg >= FirstVirtualRegister;
}
/// getPhysicalRegisterRegClass - Returns the Register Class of a physical
/// register of the given type. If type is EVT::Other, then just return any
/// register class the register belongs to.
virtual const TargetRegisterClass *
getPhysicalRegisterRegClass(unsigned Reg, EVT VT = MVT::Other) const;
/// getAllocatableSet - Returns a bitset indexed by register number
/// indicating if a register is allocatable or not. If a register class is
/// specified, returns the subset for the class.
BitVector getAllocatableSet(MachineFunction &MF,
const TargetRegisterClass *RC = NULL) const;
const TargetRegisterDesc &operator[](unsigned RegNo) const {
assert(RegNo < NumRegs &&
"Attempting to access record for invalid register number!");
return Desc[RegNo];
}
/// Provide a get method, equivalent to [], but more useful if we have a
/// pointer to this object.
///
const TargetRegisterDesc &get(unsigned RegNo) const {
return operator[](RegNo);
}
/// getAliasSet - Return the set of registers aliased by the specified
/// register, or a null list of there are none. The list returned is zero
/// terminated.
///
const unsigned *getAliasSet(unsigned RegNo) const {
return get(RegNo).AliasSet;
}
/// getSubRegisters - Return the list of registers that are sub-registers of
/// the specified register, or a null list of there are none. The list
/// returned is zero terminated and sorted according to super-sub register
/// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
///
const unsigned *getSubRegisters(unsigned RegNo) const {
return get(RegNo).SubRegs;
}
/// getSuperRegisters - Return the list of registers that are super-registers
/// of the specified register, or a null list of there are none. The list
/// returned is zero terminated and sorted according to super-sub register
/// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
///
const unsigned *getSuperRegisters(unsigned RegNo) const {
return get(RegNo).SuperRegs;
}
/// getAsmName - Return the symbolic target-specific name for the
/// specified physical register.
const char *getAsmName(unsigned RegNo) const {
return get(RegNo).AsmName;
}
/// getName - Return the human-readable symbolic target-specific name for the
/// specified physical register.
const char *getName(unsigned RegNo) const {
return get(RegNo).Name;
}
/// getNumRegs - Return the number of registers this target has (useful for
/// sizing arrays holding per register information)
unsigned getNumRegs() const {
return NumRegs;
}
/// areAliases - Returns true if the two registers alias each other, false
/// otherwise
bool areAliases(unsigned regA, unsigned regB) const {
size_t index = (regA + regB * 37) & (AliasesHashSize-1);
unsigned ProbeAmt = 0;
while (AliasesHash[index*2] != 0 &&
AliasesHash[index*2+1] != 0) {
if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
return true;
index = (index + ProbeAmt) & (AliasesHashSize-1);
ProbeAmt += 2;
}
return false;
}
/// regsOverlap - Returns true if the two registers are equal or alias each
/// other. The registers may be virtual register.
bool regsOverlap(unsigned regA, unsigned regB) const {
if (regA == regB)
return true;
if (isVirtualRegister(regA) || isVirtualRegister(regB))
return false;
return areAliases(regA, regB);
}
/// isSubRegister - Returns true if regB is a sub-register of regA.
///
bool isSubRegister(unsigned regA, unsigned regB) const {
// SubregHash is a simple quadratically probed hash table.
size_t index = (regA + regB * 37) & (SubregHashSize-1);
unsigned ProbeAmt = 2;
while (SubregHash[index*2] != 0 &&
SubregHash[index*2+1] != 0) {
if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
return true;
index = (index + ProbeAmt) & (SubregHashSize-1);
ProbeAmt += 2;
}
return false;
}
/// isSuperRegister - Returns true if regB is a super-register of regA.
///
bool isSuperRegister(unsigned regA, unsigned regB) const {
// SuperregHash is a simple quadratically probed hash table.
size_t index = (regA + regB * 37) & (SuperregHashSize-1);
unsigned ProbeAmt = 2;
while (SuperregHash[index*2] != 0 &&
SuperregHash[index*2+1] != 0) {
if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
return true;
index = (index + ProbeAmt) & (SuperregHashSize-1);
ProbeAmt += 2;
}
return false;
}
/// getCalleeSavedRegs - Return a null-terminated list of all of the
/// callee saved registers on this target. The register should be in the
/// order of desired callee-save stack frame offset. The first register is
/// closed to the incoming stack pointer if stack grows down, and vice versa.
virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
const = 0;
/// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
/// register classes to spill each callee saved register with. The order and
/// length of this list match the getCalleeSaveRegs() list.
virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
const MachineFunction *MF) const =0;
/// getReservedRegs - Returns a bitset indexed by physical register number
/// indicating if a register is a special register that has particular uses
/// and should be considered unavailable at all times, e.g. SP, RA. This is
/// used by register scavenger to determine what registers are free.
virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
/// getSubReg - Returns the physical register number of sub-register "Index"
/// for physical register RegNo. Return zero if the sub-register does not
/// exist.
virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
/// getMatchingSuperReg - Return a super-register of the specified register
/// Reg so its sub-register of index SubIdx is Reg.
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
const TargetRegisterClass *RC) const {
for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
return SR;
return 0;
}
/// getMatchingSuperRegClass - Return a subclass of the specified register
/// class A so that each register in it has a sub-register of the
/// specified sub-register index which is in the specified register class B.
virtual const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B, unsigned Idx) const {
return 0;
}
//===--------------------------------------------------------------------===//
// Register Class Information
//
/// Register class iterators
///
regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_iterator regclass_end() const { return RegClassEnd; }
unsigned getNumRegClasses() const {
return (unsigned)(regclass_end()-regclass_begin());
}
/// getRegClass - Returns the register class associated with the enumeration
/// value. See class TargetOperandInfo.
const TargetRegisterClass *getRegClass(unsigned i) const {
assert(i <= getNumRegClasses() && "Register Class ID out of range");
return i ? RegClassBegin[i - 1] : NULL;
}
/// getPointerRegClass - Returns a TargetRegisterClass used for pointer
/// values. If a target supports multiple different pointer register classes,
/// kind specifies which one is indicated.
virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
assert(0 && "Target didn't implement getPointerRegClass!");
return 0; // Must return a value in order to compile with VS 2005
}
/// getCrossCopyRegClass - Returns a legal register class to copy a register
/// in the specified class to or from. Returns NULL if it is possible to copy
/// between a two registers of the specified class.
virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass *RC) const {
return NULL;
}
/// getAllocationOrder - Returns the register allocation order for a specified
/// register class in the form of a pair of TargetRegisterClass iterators.
virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
getAllocationOrder(const TargetRegisterClass *RC,
unsigned HintType, unsigned HintReg,
const MachineFunction &MF) const {
return std::make_pair(RC->allocation_order_begin(MF),
RC->allocation_order_end(MF));
}
/// ResolveRegAllocHint - Resolves the specified register allocation hint
/// to a physical register. Returns the physical register if it is successful.
virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
const MachineFunction &MF) const {
if (Type == 0 && Reg && isPhysicalRegister(Reg))
return Reg;
return 0;
}
/// UpdateRegAllocHint - A callback to allow target a chance to update
/// register allocation hints when a register is "changed" (e.g. coalesced)
/// to another register. e.g. On ARM, some virtual registers should target
/// register pairs, if one of pair is coalesced to another register, the
/// allocation hint of the other half of the pair should be changed to point
/// to the new register.
virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
MachineFunction &MF) const {
// Do nothing.
}
/// targetHandlesStackFrameRounding - Returns true if the target is
/// responsible for rounding up the stack frame (probably at emitPrologue
/// time).
virtual bool targetHandlesStackFrameRounding() const {
return false;
}
/// requiresRegisterScavenging - returns true if the target requires (and can
/// make use of) the register scavenger.
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
return false;
}
/// hasFP - Return true if the specified function should have a dedicated
/// frame pointer register. For most targets this is true only if the function
/// has variable sized allocas or if frame pointer elimination is disabled.
virtual bool hasFP(const MachineFunction &MF) const = 0;
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
/// not required, we reserve argument space for call sites in the function
/// immediately on entry to the current function. This eliminates the need for
/// add/sub sp brackets around call sites. Returns true if the call frame is
/// included as part of the stack frame.
virtual bool hasReservedCallFrame(MachineFunction &MF) const {
return !hasFP(MF);
}
/// hasReservedSpillSlot - Return true if target has reserved a spill slot in
/// the stack frame of the given function for the specified register. e.g. On
/// x86, if the frame register is required, the first fixed stack object is
/// reserved as its spill slot. This tells PEI not to create a new stack frame
/// object for the given register. It should be called only after
/// processFunctionBeforeCalleeSavedScan().
virtual bool hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
int &FrameIdx) const {
return false;
}
/// needsStackRealignment - true if storage within the function requires the
/// stack pointer to be aligned more than the normal calling convention calls
/// for.
virtual bool needsStackRealignment(const MachineFunction &MF) const {
return false;
}
/// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
/// frame setup/destroy instructions if they exist (-1 otherwise). Some
/// targets use pseudo instructions in order to abstract away the difference
/// between operating with a frame pointer and operating without, through the
/// use of these two instructions.
///
int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
/// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
/// code insertion to eliminate call frame setup and destroy pseudo
/// instructions (but only if the Target is using them). It is responsible
/// for eliminating these instructions, replacing them with concrete
/// instructions. This method need only be implemented if using call frame
/// setup/destroy pseudo instructions.
///
virtual void
eliminateCallFramePseudoInstr(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
"eliminateCallFramePseudoInstr must be implemented if using"
" call frame setup/destroy pseudo instructions!");
assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
}
/// processFunctionBeforeCalleeSavedScan - This method is called immediately
/// before PrologEpilogInserter scans the physical registers used to determine
/// what callee saved registers should be spilled. This method is optional.
virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS = NULL) const {
}
/// processFunctionBeforeFrameFinalized - This method is called immediately
/// before the specified functions frame layout (MF.getFrameInfo()) is
/// finalized. Once the frame is finalized, MO_FrameIndex operands are
/// replaced with direct constants. This method is optional.
///
virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
}
/// eliminateFrameIndex - This method must be overriden to eliminate abstract
/// frame indices from instructions which may use them. The instruction
/// referenced by the iterator contains an MO_FrameIndex operand which must be
/// eliminated by this method. This method may modify or replace the
/// specified instruction, as long as it keeps the iterator pointing the the
/// finished product. SPAdj is the SP adjustment due to call frame setup
/// instruction.
virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, RegScavenger *RS=NULL) const = 0;
/// emitProlog/emitEpilog - These methods insert prolog and epilog code into
/// the function.
virtual void emitPrologue(MachineFunction &MF) const = 0;
virtual void emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const = 0;
//===--------------------------------------------------------------------===//
/// Debug information queries.
/// getDwarfRegNum - Map a target register to an equivalent dwarf register
/// number. Returns -1 if there is no equivalent value. The second
/// parameter allows targets to use different numberings for EH info and
/// debugging info.
virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
/// getFrameRegister - This method should return the register used as a base
/// for values allocated in the current stack frame.
virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
/// getFrameIndexOffset - Returns the displacement from the frame register to
/// the stack frame of the specified index.
virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
/// getRARegister - This method should return the register where the return
/// address can be found.
virtual unsigned getRARegister() const = 0;
/// getInitialFrameState - Returns a list of machine moves that are assumed
/// on entry to all functions. Note that LabelID is ignored (assumed to be
/// the beginning of the function.)
virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
};
// This is useful when building IndexedMaps keyed on virtual registers
struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
unsigned operator()(unsigned Reg) const {
return Reg - TargetRegisterInfo::FirstVirtualRegister;
}
};
/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
/// if there is no common subclass.
const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
const TargetRegisterClass *B);
} // End llvm namespace
#endif