mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 16:33:37 +01:00
48f2f0ae72
the latter is capable of representing either a primitive or an extended type. llvm-svn: 78713
708 lines
28 KiB
C++
708 lines
28 KiB
C++
//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes an abstract interface used to get information about a
|
|
// target machines register file. This information is used for a variety of
|
|
// purposed, especially register allocation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
|
|
#define LLVM_TARGET_TARGETREGISTERINFO_H
|
|
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include <cassert>
|
|
#include <functional>
|
|
|
|
namespace llvm {
|
|
|
|
class BitVector;
|
|
class MachineFunction;
|
|
class MachineMove;
|
|
class RegScavenger;
|
|
|
|
/// TargetRegisterDesc - This record contains all of the information known about
|
|
/// a particular register. The AliasSet field (if not null) contains a pointer
|
|
/// to a Zero terminated array of registers that this register aliases. This is
|
|
/// needed for architectures like X86 which have AL alias AX alias EAX.
|
|
/// Registers that this does not apply to simply should set this to null.
|
|
/// The SubRegs field is a zero terminated array of registers that are
|
|
/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
|
|
/// The SuperRegs field is a zero terminated array of registers that are
|
|
/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
|
|
/// of AX.
|
|
///
|
|
struct TargetRegisterDesc {
|
|
const char *AsmName; // Assembly language name for the register
|
|
const char *Name; // Printable name for the reg (for debugging)
|
|
const unsigned *AliasSet; // Register Alias Set, described above
|
|
const unsigned *SubRegs; // Sub-register set, described above
|
|
const unsigned *SuperRegs; // Super-register set, described above
|
|
};
|
|
|
|
class TargetRegisterClass {
|
|
public:
|
|
typedef const unsigned* iterator;
|
|
typedef const unsigned* const_iterator;
|
|
|
|
typedef const EVT* vt_iterator;
|
|
typedef const TargetRegisterClass* const * sc_iterator;
|
|
private:
|
|
unsigned ID;
|
|
const char *Name;
|
|
const vt_iterator VTs;
|
|
const sc_iterator SubClasses;
|
|
const sc_iterator SuperClasses;
|
|
const sc_iterator SubRegClasses;
|
|
const sc_iterator SuperRegClasses;
|
|
const unsigned RegSize, Alignment; // Size & Alignment of register in bytes
|
|
const int CopyCost;
|
|
const iterator RegsBegin, RegsEnd;
|
|
DenseSet<unsigned> RegSet;
|
|
public:
|
|
TargetRegisterClass(unsigned id,
|
|
const char *name,
|
|
const EVT *vts,
|
|
const TargetRegisterClass * const *subcs,
|
|
const TargetRegisterClass * const *supcs,
|
|
const TargetRegisterClass * const *subregcs,
|
|
const TargetRegisterClass * const *superregcs,
|
|
unsigned RS, unsigned Al, int CC,
|
|
iterator RB, iterator RE)
|
|
: ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
|
|
SubRegClasses(subregcs), SuperRegClasses(superregcs),
|
|
RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
|
|
for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
|
|
RegSet.insert(*I);
|
|
}
|
|
virtual ~TargetRegisterClass() {} // Allow subclasses
|
|
|
|
/// getID() - Return the register class ID number.
|
|
///
|
|
unsigned getID() const { return ID; }
|
|
|
|
/// getName() - Return the register class name for debugging.
|
|
///
|
|
const char *getName() const { return Name; }
|
|
|
|
/// begin/end - Return all of the registers in this class.
|
|
///
|
|
iterator begin() const { return RegsBegin; }
|
|
iterator end() const { return RegsEnd; }
|
|
|
|
/// getNumRegs - Return the number of registers in this class.
|
|
///
|
|
unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
|
|
|
|
/// getRegister - Return the specified register in the class.
|
|
///
|
|
unsigned getRegister(unsigned i) const {
|
|
assert(i < getNumRegs() && "Register number out of range!");
|
|
return RegsBegin[i];
|
|
}
|
|
|
|
/// contains - Return true if the specified register is included in this
|
|
/// register class.
|
|
bool contains(unsigned Reg) const {
|
|
return RegSet.count(Reg);
|
|
}
|
|
|
|
/// hasType - return true if this TargetRegisterClass has the ValueType vt.
|
|
///
|
|
bool hasType(EVT vt) const {
|
|
for(int i = 0; VTs[i].getSimpleVT().SimpleTy != MVT::Other; ++i)
|
|
if (VTs[i] == vt)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// vt_begin / vt_end - Loop over all of the value types that can be
|
|
/// represented by values in this register class.
|
|
vt_iterator vt_begin() const {
|
|
return VTs;
|
|
}
|
|
|
|
vt_iterator vt_end() const {
|
|
vt_iterator I = VTs;
|
|
while (I->getSimpleVT().SimpleTy != MVT::Other) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// subregclasses_begin / subregclasses_end - Loop over all of
|
|
/// the subreg register classes of this register class.
|
|
sc_iterator subregclasses_begin() const {
|
|
return SubRegClasses;
|
|
}
|
|
|
|
sc_iterator subregclasses_end() const {
|
|
sc_iterator I = SubRegClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// getSubRegisterRegClass - Return the register class of subregisters with
|
|
/// index SubIdx, or NULL if no such class exists.
|
|
const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
|
|
assert(SubIdx>0 && "Invalid subregister index");
|
|
for (unsigned s = 0; s != SubIdx-1; ++s)
|
|
if (!SubRegClasses[s])
|
|
return NULL;
|
|
return SubRegClasses[SubIdx-1];
|
|
}
|
|
|
|
/// superregclasses_begin / superregclasses_end - Loop over all of
|
|
/// the superreg register classes of this register class.
|
|
sc_iterator superregclasses_begin() const {
|
|
return SuperRegClasses;
|
|
}
|
|
|
|
sc_iterator superregclasses_end() const {
|
|
sc_iterator I = SuperRegClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// hasSubClass - return true if the the specified TargetRegisterClass
|
|
/// is a proper subset of this TargetRegisterClass.
|
|
bool hasSubClass(const TargetRegisterClass *cs) const {
|
|
for (int i = 0; SubClasses[i] != NULL; ++i)
|
|
if (SubClasses[i] == cs)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// subclasses_begin / subclasses_end - Loop over all of the classes
|
|
/// that are proper subsets of this register class.
|
|
sc_iterator subclasses_begin() const {
|
|
return SubClasses;
|
|
}
|
|
|
|
sc_iterator subclasses_end() const {
|
|
sc_iterator I = SubClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// hasSuperClass - return true if the specified TargetRegisterClass is a
|
|
/// proper superset of this TargetRegisterClass.
|
|
bool hasSuperClass(const TargetRegisterClass *cs) const {
|
|
for (int i = 0; SuperClasses[i] != NULL; ++i)
|
|
if (SuperClasses[i] == cs)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// superclasses_begin / superclasses_end - Loop over all of the classes
|
|
/// that are proper supersets of this register class.
|
|
sc_iterator superclasses_begin() const {
|
|
return SuperClasses;
|
|
}
|
|
|
|
sc_iterator superclasses_end() const {
|
|
sc_iterator I = SuperClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// isASubClass - return true if this TargetRegisterClass is a subset
|
|
/// class of at least one other TargetRegisterClass.
|
|
bool isASubClass() const {
|
|
return SuperClasses[0] != 0;
|
|
}
|
|
|
|
/// allocation_order_begin/end - These methods define a range of registers
|
|
/// which specify the registers in this class that are valid to register
|
|
/// allocate, and the preferred order to allocate them in. For example,
|
|
/// callee saved registers should be at the end of the list, because it is
|
|
/// cheaper to allocate caller saved registers.
|
|
///
|
|
/// These methods take a MachineFunction argument, which can be used to tune
|
|
/// the allocatable registers based on the characteristics of the function.
|
|
/// One simple example is that the frame pointer register can be used if
|
|
/// frame-pointer-elimination is performed.
|
|
///
|
|
/// By default, these methods return all registers in the class.
|
|
///
|
|
virtual iterator allocation_order_begin(const MachineFunction &MF) const {
|
|
return begin();
|
|
}
|
|
virtual iterator allocation_order_end(const MachineFunction &MF) const {
|
|
return end();
|
|
}
|
|
|
|
/// getSize - Return the size of the register in bytes, which is also the size
|
|
/// of a stack slot allocated to hold a spilled copy of this register.
|
|
unsigned getSize() const { return RegSize; }
|
|
|
|
/// getAlignment - Return the minimum required alignment for a register of
|
|
/// this class.
|
|
unsigned getAlignment() const { return Alignment; }
|
|
|
|
/// getCopyCost - Return the cost of copying a value between two registers in
|
|
/// this class. A negative number means the register class is very expensive
|
|
/// to copy e.g. status flag register classes.
|
|
int getCopyCost() const { return CopyCost; }
|
|
};
|
|
|
|
|
|
/// TargetRegisterInfo base class - We assume that the target defines a static
|
|
/// array of TargetRegisterDesc objects that represent all of the machine
|
|
/// registers that the target has. As such, we simply have to track a pointer
|
|
/// to this array so that we can turn register number into a register
|
|
/// descriptor.
|
|
///
|
|
class TargetRegisterInfo {
|
|
protected:
|
|
const unsigned* SubregHash;
|
|
const unsigned SubregHashSize;
|
|
const unsigned* SuperregHash;
|
|
const unsigned SuperregHashSize;
|
|
const unsigned* AliasesHash;
|
|
const unsigned AliasesHashSize;
|
|
public:
|
|
typedef const TargetRegisterClass * const * regclass_iterator;
|
|
private:
|
|
const TargetRegisterDesc *Desc; // Pointer to the descriptor array
|
|
unsigned NumRegs; // Number of entries in the array
|
|
|
|
regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
|
|
|
|
int CallFrameSetupOpcode, CallFrameDestroyOpcode;
|
|
protected:
|
|
TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
|
|
regclass_iterator RegClassBegin,
|
|
regclass_iterator RegClassEnd,
|
|
int CallFrameSetupOpcode = -1,
|
|
int CallFrameDestroyOpcode = -1,
|
|
const unsigned* subregs = 0,
|
|
const unsigned subregsize = 0,
|
|
const unsigned* superregs = 0,
|
|
const unsigned superregsize = 0,
|
|
const unsigned* aliases = 0,
|
|
const unsigned aliasessize = 0);
|
|
virtual ~TargetRegisterInfo();
|
|
public:
|
|
|
|
enum { // Define some target independent constants
|
|
/// NoRegister - This physical register is not a real target register. It
|
|
/// is useful as a sentinal.
|
|
NoRegister = 0,
|
|
|
|
/// FirstVirtualRegister - This is the first register number that is
|
|
/// considered to be a 'virtual' register, which is part of the SSA
|
|
/// namespace. This must be the same for all targets, which means that each
|
|
/// target is limited to 1024 registers.
|
|
FirstVirtualRegister = 1024
|
|
};
|
|
|
|
/// isPhysicalRegister - Return true if the specified register number is in
|
|
/// the physical register namespace.
|
|
static bool isPhysicalRegister(unsigned Reg) {
|
|
assert(Reg && "this is not a register!");
|
|
return Reg < FirstVirtualRegister;
|
|
}
|
|
|
|
/// isVirtualRegister - Return true if the specified register number is in
|
|
/// the virtual register namespace.
|
|
static bool isVirtualRegister(unsigned Reg) {
|
|
assert(Reg && "this is not a register!");
|
|
return Reg >= FirstVirtualRegister;
|
|
}
|
|
|
|
/// getPhysicalRegisterRegClass - Returns the Register Class of a physical
|
|
/// register of the given type. If type is EVT::Other, then just return any
|
|
/// register class the register belongs to.
|
|
virtual const TargetRegisterClass *
|
|
getPhysicalRegisterRegClass(unsigned Reg, EVT VT = MVT::Other) const;
|
|
|
|
/// getAllocatableSet - Returns a bitset indexed by register number
|
|
/// indicating if a register is allocatable or not. If a register class is
|
|
/// specified, returns the subset for the class.
|
|
BitVector getAllocatableSet(MachineFunction &MF,
|
|
const TargetRegisterClass *RC = NULL) const;
|
|
|
|
const TargetRegisterDesc &operator[](unsigned RegNo) const {
|
|
assert(RegNo < NumRegs &&
|
|
"Attempting to access record for invalid register number!");
|
|
return Desc[RegNo];
|
|
}
|
|
|
|
/// Provide a get method, equivalent to [], but more useful if we have a
|
|
/// pointer to this object.
|
|
///
|
|
const TargetRegisterDesc &get(unsigned RegNo) const {
|
|
return operator[](RegNo);
|
|
}
|
|
|
|
/// getAliasSet - Return the set of registers aliased by the specified
|
|
/// register, or a null list of there are none. The list returned is zero
|
|
/// terminated.
|
|
///
|
|
const unsigned *getAliasSet(unsigned RegNo) const {
|
|
return get(RegNo).AliasSet;
|
|
}
|
|
|
|
/// getSubRegisters - Return the list of registers that are sub-registers of
|
|
/// the specified register, or a null list of there are none. The list
|
|
/// returned is zero terminated and sorted according to super-sub register
|
|
/// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
|
|
///
|
|
const unsigned *getSubRegisters(unsigned RegNo) const {
|
|
return get(RegNo).SubRegs;
|
|
}
|
|
|
|
/// getSuperRegisters - Return the list of registers that are super-registers
|
|
/// of the specified register, or a null list of there are none. The list
|
|
/// returned is zero terminated and sorted according to super-sub register
|
|
/// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
|
|
///
|
|
const unsigned *getSuperRegisters(unsigned RegNo) const {
|
|
return get(RegNo).SuperRegs;
|
|
}
|
|
|
|
/// getAsmName - Return the symbolic target-specific name for the
|
|
/// specified physical register.
|
|
const char *getAsmName(unsigned RegNo) const {
|
|
return get(RegNo).AsmName;
|
|
}
|
|
|
|
/// getName - Return the human-readable symbolic target-specific name for the
|
|
/// specified physical register.
|
|
const char *getName(unsigned RegNo) const {
|
|
return get(RegNo).Name;
|
|
}
|
|
|
|
/// getNumRegs - Return the number of registers this target has (useful for
|
|
/// sizing arrays holding per register information)
|
|
unsigned getNumRegs() const {
|
|
return NumRegs;
|
|
}
|
|
|
|
/// areAliases - Returns true if the two registers alias each other, false
|
|
/// otherwise
|
|
bool areAliases(unsigned regA, unsigned regB) const {
|
|
size_t index = (regA + regB * 37) & (AliasesHashSize-1);
|
|
unsigned ProbeAmt = 0;
|
|
while (AliasesHash[index*2] != 0 &&
|
|
AliasesHash[index*2+1] != 0) {
|
|
if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
|
|
return true;
|
|
|
|
index = (index + ProbeAmt) & (AliasesHashSize-1);
|
|
ProbeAmt += 2;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// regsOverlap - Returns true if the two registers are equal or alias each
|
|
/// other. The registers may be virtual register.
|
|
bool regsOverlap(unsigned regA, unsigned regB) const {
|
|
if (regA == regB)
|
|
return true;
|
|
|
|
if (isVirtualRegister(regA) || isVirtualRegister(regB))
|
|
return false;
|
|
return areAliases(regA, regB);
|
|
}
|
|
|
|
/// isSubRegister - Returns true if regB is a sub-register of regA.
|
|
///
|
|
bool isSubRegister(unsigned regA, unsigned regB) const {
|
|
// SubregHash is a simple quadratically probed hash table.
|
|
size_t index = (regA + regB * 37) & (SubregHashSize-1);
|
|
unsigned ProbeAmt = 2;
|
|
while (SubregHash[index*2] != 0 &&
|
|
SubregHash[index*2+1] != 0) {
|
|
if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
|
|
return true;
|
|
|
|
index = (index + ProbeAmt) & (SubregHashSize-1);
|
|
ProbeAmt += 2;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isSuperRegister - Returns true if regB is a super-register of regA.
|
|
///
|
|
bool isSuperRegister(unsigned regA, unsigned regB) const {
|
|
// SuperregHash is a simple quadratically probed hash table.
|
|
size_t index = (regA + regB * 37) & (SuperregHashSize-1);
|
|
unsigned ProbeAmt = 2;
|
|
while (SuperregHash[index*2] != 0 &&
|
|
SuperregHash[index*2+1] != 0) {
|
|
if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
|
|
return true;
|
|
|
|
index = (index + ProbeAmt) & (SuperregHashSize-1);
|
|
ProbeAmt += 2;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getCalleeSavedRegs - Return a null-terminated list of all of the
|
|
/// callee saved registers on this target. The register should be in the
|
|
/// order of desired callee-save stack frame offset. The first register is
|
|
/// closed to the incoming stack pointer if stack grows down, and vice versa.
|
|
virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
|
|
const = 0;
|
|
|
|
/// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
|
|
/// register classes to spill each callee saved register with. The order and
|
|
/// length of this list match the getCalleeSaveRegs() list.
|
|
virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
|
|
const MachineFunction *MF) const =0;
|
|
|
|
/// getReservedRegs - Returns a bitset indexed by physical register number
|
|
/// indicating if a register is a special register that has particular uses
|
|
/// and should be considered unavailable at all times, e.g. SP, RA. This is
|
|
/// used by register scavenger to determine what registers are free.
|
|
virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
|
|
|
|
/// getSubReg - Returns the physical register number of sub-register "Index"
|
|
/// for physical register RegNo. Return zero if the sub-register does not
|
|
/// exist.
|
|
virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
|
|
|
|
/// getMatchingSuperReg - Return a super-register of the specified register
|
|
/// Reg so its sub-register of index SubIdx is Reg.
|
|
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
|
|
const TargetRegisterClass *RC) const {
|
|
for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
|
|
if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
|
|
return SR;
|
|
return 0;
|
|
}
|
|
|
|
/// getMatchingSuperRegClass - Return a subclass of the specified register
|
|
/// class A so that each register in it has a sub-register of the
|
|
/// specified sub-register index which is in the specified register class B.
|
|
virtual const TargetRegisterClass *
|
|
getMatchingSuperRegClass(const TargetRegisterClass *A,
|
|
const TargetRegisterClass *B, unsigned Idx) const {
|
|
return 0;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Register Class Information
|
|
//
|
|
|
|
/// Register class iterators
|
|
///
|
|
regclass_iterator regclass_begin() const { return RegClassBegin; }
|
|
regclass_iterator regclass_end() const { return RegClassEnd; }
|
|
|
|
unsigned getNumRegClasses() const {
|
|
return (unsigned)(regclass_end()-regclass_begin());
|
|
}
|
|
|
|
/// getRegClass - Returns the register class associated with the enumeration
|
|
/// value. See class TargetOperandInfo.
|
|
const TargetRegisterClass *getRegClass(unsigned i) const {
|
|
assert(i <= getNumRegClasses() && "Register Class ID out of range");
|
|
return i ? RegClassBegin[i - 1] : NULL;
|
|
}
|
|
|
|
/// getPointerRegClass - Returns a TargetRegisterClass used for pointer
|
|
/// values. If a target supports multiple different pointer register classes,
|
|
/// kind specifies which one is indicated.
|
|
virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
|
|
assert(0 && "Target didn't implement getPointerRegClass!");
|
|
return 0; // Must return a value in order to compile with VS 2005
|
|
}
|
|
|
|
/// getCrossCopyRegClass - Returns a legal register class to copy a register
|
|
/// in the specified class to or from. Returns NULL if it is possible to copy
|
|
/// between a two registers of the specified class.
|
|
virtual const TargetRegisterClass *
|
|
getCrossCopyRegClass(const TargetRegisterClass *RC) const {
|
|
return NULL;
|
|
}
|
|
|
|
/// getAllocationOrder - Returns the register allocation order for a specified
|
|
/// register class in the form of a pair of TargetRegisterClass iterators.
|
|
virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
|
|
getAllocationOrder(const TargetRegisterClass *RC,
|
|
unsigned HintType, unsigned HintReg,
|
|
const MachineFunction &MF) const {
|
|
return std::make_pair(RC->allocation_order_begin(MF),
|
|
RC->allocation_order_end(MF));
|
|
}
|
|
|
|
/// ResolveRegAllocHint - Resolves the specified register allocation hint
|
|
/// to a physical register. Returns the physical register if it is successful.
|
|
virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
|
|
const MachineFunction &MF) const {
|
|
if (Type == 0 && Reg && isPhysicalRegister(Reg))
|
|
return Reg;
|
|
return 0;
|
|
}
|
|
|
|
/// UpdateRegAllocHint - A callback to allow target a chance to update
|
|
/// register allocation hints when a register is "changed" (e.g. coalesced)
|
|
/// to another register. e.g. On ARM, some virtual registers should target
|
|
/// register pairs, if one of pair is coalesced to another register, the
|
|
/// allocation hint of the other half of the pair should be changed to point
|
|
/// to the new register.
|
|
virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
|
|
MachineFunction &MF) const {
|
|
// Do nothing.
|
|
}
|
|
|
|
/// targetHandlesStackFrameRounding - Returns true if the target is
|
|
/// responsible for rounding up the stack frame (probably at emitPrologue
|
|
/// time).
|
|
virtual bool targetHandlesStackFrameRounding() const {
|
|
return false;
|
|
}
|
|
|
|
/// requiresRegisterScavenging - returns true if the target requires (and can
|
|
/// make use of) the register scavenger.
|
|
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
|
|
return false;
|
|
}
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated
|
|
/// frame pointer register. For most targets this is true only if the function
|
|
/// has variable sized allocas or if frame pointer elimination is disabled.
|
|
virtual bool hasFP(const MachineFunction &MF) const = 0;
|
|
|
|
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
|
|
/// not required, we reserve argument space for call sites in the function
|
|
/// immediately on entry to the current function. This eliminates the need for
|
|
/// add/sub sp brackets around call sites. Returns true if the call frame is
|
|
/// included as part of the stack frame.
|
|
virtual bool hasReservedCallFrame(MachineFunction &MF) const {
|
|
return !hasFP(MF);
|
|
}
|
|
|
|
/// hasReservedSpillSlot - Return true if target has reserved a spill slot in
|
|
/// the stack frame of the given function for the specified register. e.g. On
|
|
/// x86, if the frame register is required, the first fixed stack object is
|
|
/// reserved as its spill slot. This tells PEI not to create a new stack frame
|
|
/// object for the given register. It should be called only after
|
|
/// processFunctionBeforeCalleeSavedScan().
|
|
virtual bool hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
|
|
int &FrameIdx) const {
|
|
return false;
|
|
}
|
|
|
|
/// needsStackRealignment - true if storage within the function requires the
|
|
/// stack pointer to be aligned more than the normal calling convention calls
|
|
/// for.
|
|
virtual bool needsStackRealignment(const MachineFunction &MF) const {
|
|
return false;
|
|
}
|
|
|
|
/// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
|
|
/// frame setup/destroy instructions if they exist (-1 otherwise). Some
|
|
/// targets use pseudo instructions in order to abstract away the difference
|
|
/// between operating with a frame pointer and operating without, through the
|
|
/// use of these two instructions.
|
|
///
|
|
int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
|
|
int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
|
|
|
|
/// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
|
|
/// code insertion to eliminate call frame setup and destroy pseudo
|
|
/// instructions (but only if the Target is using them). It is responsible
|
|
/// for eliminating these instructions, replacing them with concrete
|
|
/// instructions. This method need only be implemented if using call frame
|
|
/// setup/destroy pseudo instructions.
|
|
///
|
|
virtual void
|
|
eliminateCallFramePseudoInstr(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
|
|
"eliminateCallFramePseudoInstr must be implemented if using"
|
|
" call frame setup/destroy pseudo instructions!");
|
|
assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
|
|
}
|
|
|
|
/// processFunctionBeforeCalleeSavedScan - This method is called immediately
|
|
/// before PrologEpilogInserter scans the physical registers used to determine
|
|
/// what callee saved registers should be spilled. This method is optional.
|
|
virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
|
|
RegScavenger *RS = NULL) const {
|
|
|
|
}
|
|
|
|
/// processFunctionBeforeFrameFinalized - This method is called immediately
|
|
/// before the specified functions frame layout (MF.getFrameInfo()) is
|
|
/// finalized. Once the frame is finalized, MO_FrameIndex operands are
|
|
/// replaced with direct constants. This method is optional.
|
|
///
|
|
virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
|
|
}
|
|
|
|
/// eliminateFrameIndex - This method must be overriden to eliminate abstract
|
|
/// frame indices from instructions which may use them. The instruction
|
|
/// referenced by the iterator contains an MO_FrameIndex operand which must be
|
|
/// eliminated by this method. This method may modify or replace the
|
|
/// specified instruction, as long as it keeps the iterator pointing the the
|
|
/// finished product. SPAdj is the SP adjustment due to call frame setup
|
|
/// instruction.
|
|
virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
|
|
int SPAdj, RegScavenger *RS=NULL) const = 0;
|
|
|
|
/// emitProlog/emitEpilog - These methods insert prolog and epilog code into
|
|
/// the function.
|
|
virtual void emitPrologue(MachineFunction &MF) const = 0;
|
|
virtual void emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const = 0;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// Debug information queries.
|
|
|
|
/// getDwarfRegNum - Map a target register to an equivalent dwarf register
|
|
/// number. Returns -1 if there is no equivalent value. The second
|
|
/// parameter allows targets to use different numberings for EH info and
|
|
/// debugging info.
|
|
virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
|
|
|
|
/// getFrameRegister - This method should return the register used as a base
|
|
/// for values allocated in the current stack frame.
|
|
virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
|
|
|
|
/// getFrameIndexOffset - Returns the displacement from the frame register to
|
|
/// the stack frame of the specified index.
|
|
virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
|
|
|
|
/// getRARegister - This method should return the register where the return
|
|
/// address can be found.
|
|
virtual unsigned getRARegister() const = 0;
|
|
|
|
/// getInitialFrameState - Returns a list of machine moves that are assumed
|
|
/// on entry to all functions. Note that LabelID is ignored (assumed to be
|
|
/// the beginning of the function.)
|
|
virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
|
|
};
|
|
|
|
|
|
// This is useful when building IndexedMaps keyed on virtual registers
|
|
struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
|
|
unsigned operator()(unsigned Reg) const {
|
|
return Reg - TargetRegisterInfo::FirstVirtualRegister;
|
|
}
|
|
};
|
|
|
|
/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
|
|
/// if there is no common subclass.
|
|
const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
|
|
const TargetRegisterClass *B);
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|