1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/test/CodeGen/X86/add.ll
Andrew Trick e3e67d4a0a Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

llvm-svn: 192750
2013-10-15 23:33:07 +00:00

151 lines
3.4 KiB
LLVM

; RUN: llc < %s -mcpu=generic -march=x86 | FileCheck %s -check-prefix=X32
; RUN: llc < %s -mcpu=generic -mtriple=x86_64-linux | FileCheck %s -check-prefix=X64
; RUN: llc < %s -mcpu=generic -mtriple=x86_64-win32 | FileCheck %s -check-prefix=X64
; The immediate can be encoded in a smaller way if the
; instruction is a sub instead of an add.
define i32 @test1(i32 inreg %a) nounwind {
%b = add i32 %a, 128
ret i32 %b
; X32: subl $-128, %eax
; X64: subl $-128,
}
define i64 @test2(i64 inreg %a) nounwind {
%b = add i64 %a, 2147483648
ret i64 %b
; X32: addl $-2147483648, %eax
; X64: subq $-2147483648,
}
define i64 @test3(i64 inreg %a) nounwind {
%b = add i64 %a, 128
ret i64 %b
; X32: addl $128, %eax
; X64: subq $-128,
}
define i1 @test4(i32 %v1, i32 %v2, i32* %X) nounwind {
entry:
%t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
%sum = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
br i1 %obit, label %overflow, label %normal
normal:
store i32 0, i32* %X
br label %overflow
overflow:
ret i1 false
; X32-LABEL: test4:
; X32: addl
; X32-NEXT: jo
; X64-LABEL: test4:
; X64: addl %e[[A1:si|dx]], %e[[A0:di|cx]]
; X64-NEXT: jo
}
define i1 @test5(i32 %v1, i32 %v2, i32* %X) nounwind {
entry:
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %v1, i32 %v2)
%sum = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
br i1 %obit, label %carry, label %normal
normal:
store i32 0, i32* %X
br label %carry
carry:
ret i1 false
; X32-LABEL: test5:
; X32: addl
; X32-NEXT: jb
; X64-LABEL: test5:
; X64: addl %e[[A1]], %e[[A0]]
; X64-NEXT: jb
}
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
declare {i32, i1} @llvm.uadd.with.overflow.i32(i32, i32)
define i64 @test6(i64 %A, i32 %B) nounwind {
%tmp12 = zext i32 %B to i64 ; <i64> [#uses=1]
%tmp3 = shl i64 %tmp12, 32 ; <i64> [#uses=1]
%tmp5 = add i64 %tmp3, %A ; <i64> [#uses=1]
ret i64 %tmp5
; X32-LABEL: test6:
; X32: movl 4(%esp), %eax
; X32-NEXT: movl 12(%esp), %edx
; X32-NEXT: addl 8(%esp), %edx
; X32-NEXT: ret
; X64-LABEL: test6:
; X64: shlq $32, %r[[A1]]
; X64: leaq (%r[[A1]],%r[[A0]]), %rax
; X64: ret
}
define {i32, i1} @test7(i32 %v1, i32 %v2) nounwind {
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %v1, i32 %v2)
ret {i32, i1} %t
}
; X64-LABEL: test7:
; X64: addl %e[[A1]], %e
; X64-NEXT: setb %dl
; X64: ret
; PR5443
define {i64, i1} @test8(i64 %left, i64 %right) nounwind {
entry:
%extleft = zext i64 %left to i65
%extright = zext i64 %right to i65
%sum = add i65 %extleft, %extright
%res.0 = trunc i65 %sum to i64
%overflow = and i65 %sum, -18446744073709551616
%res.1 = icmp ne i65 %overflow, 0
%final0 = insertvalue {i64, i1} undef, i64 %res.0, 0
%final1 = insertvalue {i64, i1} %final0, i1 %res.1, 1
ret {i64, i1} %final1
}
; X64-LABEL: test8:
; X64: addq
; X64-NEXT: setb
; X64: ret
define i32 @test9(i32 %x, i32 %y) nounwind readnone {
%cmp = icmp eq i32 %x, 10
%sub = sext i1 %cmp to i32
%cond = add i32 %sub, %y
ret i32 %cond
; X64-LABEL: test9:
; X64: cmpl $10
; X64: sete
; X64: subl
; X64: ret
}
define i1 @test10(i32 %x) nounwind {
entry:
%t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %x, i32 1)
%obit = extractvalue {i32, i1} %t, 1
ret i1 %obit
; X32-LABEL: test10:
; X32: incl
; X32-NEXT: seto
; X64-LABEL: test10:
; X64: incl
; X64-NEXT: seto
}