1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 05:23:45 +02:00
llvm-mirror/lib/Target/PowerPC/PPCAsmPrinter.cpp
Chandler Carruth e9fb7ce8cd Sink all of the code relying on the MachO MachineModuleInfo to live
behind the test that the MachineModuleInfo analysis was
actually available and can be used.

While the MachO bits may well be reasonable to assume in the darwin
assembly printer, the analysis isn't constructively guaranteed anywhere
I could find so it seems safest to avoid crashing here.

This issue was found with PVS-Studio. Pretty sure the Clang Static
Anaylzer flags similar issues but we've probably never pointed it at
this code effectively.

llvm-svn: 285972
2016-11-03 23:33:46 +00:00

1461 lines
56 KiB
C++

//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
// the output mechanism used by `llc'.
//
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "InstPrinter/PPCInstPrinter.h"
#include "MCTargetDesc/PPCMCExpr.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "PPCTargetStreamer.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "asmprinter"
namespace {
class PPCAsmPrinter : public AsmPrinter {
protected:
MapVector<MCSymbol *, MCSymbol *> TOC;
const PPCSubtarget *Subtarget;
StackMaps SM;
public:
explicit PPCAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym);
virtual bool doInitialization(Module &M) override {
if (!TOC.empty())
TOC.clear();
return AsmPrinter::doInitialization(M);
}
void EmitInstruction(const MachineInstr *MI) override;
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) override;
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) override;
void EmitEndOfAsmFile(Module &M) override;
void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<PPCSubtarget>();
return AsmPrinter::runOnMachineFunction(MF);
}
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCLinuxAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
StringRef getPassName() const override {
return "Linux PPC Assembly Printer";
}
bool doFinalization(Module &M) override;
void EmitStartOfAsmFile(Module &M) override;
void EmitFunctionEntryLabel() override;
void EmitFunctionBodyStart() override;
void EmitFunctionBodyEnd() override;
};
/// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
/// OS X
class PPCDarwinAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCDarwinAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
StringRef getPassName() const override {
return "Darwin PPC Assembly Printer";
}
bool doFinalization(Module &M) override;
void EmitStartOfAsmFile(Module &M) override;
};
} // end of anonymous namespace
/// stripRegisterPrefix - This method strips the character prefix from a
/// register name so that only the number is left. Used by for linux asm.
static const char *stripRegisterPrefix(const char *RegName) {
switch (RegName[0]) {
case 'r':
case 'f':
case 'q': // for QPX
case 'v':
if (RegName[1] == 's')
return RegName + 2;
return RegName + 1;
case 'c': if (RegName[1] == 'r') return RegName + 2;
}
return RegName;
}
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
// There are VSX instructions that use VSX register numbering (vs0 - vs63)
// as well as those that use VMX register numbering (v0 - v31 which
// correspond to vs32 - vs63). If we have an instruction that uses VSX
// numbering, we need to convert the VMX registers to VSX registers.
// Namely, we print 32-63 when the instruction operates on one of the
// VMX registers.
// (Please synchronize with PPCInstPrinter::printOperand)
if (MI->getDesc().TSFlags & PPCII::UseVSXReg) {
if (PPCInstrInfo::isVRRegister(Reg))
Reg = PPC::VSX32 + (Reg - PPC::V0);
else if (PPCInstrInfo::isVFRegister(Reg))
Reg = PPC::VSX32 + (Reg - PPC::VF0);
}
const char *RegName = PPCInstPrinter::getRegisterName(Reg);
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
if (!Subtarget->isDarwin())
RegName = stripRegisterPrefix(RegName);
O << RegName;
return;
}
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
case MachineOperand::MO_ConstantPoolIndex:
O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
return;
case MachineOperand::MO_BlockAddress:
GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
const GlobalValue *GV = MO.getGlobal();
MCSymbol *SymToPrint;
// External or weakly linked global variables need non-lazily-resolved stubs
if (Subtarget->hasLazyResolverStub(GV)) {
SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(
SymToPrint);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
!GV->hasInternalLinkage());
} else {
SymToPrint = getSymbol(GV);
}
SymToPrint->print(O, MAI);
printOffset(MO.getOffset(), O);
return;
}
default:
O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
return;
}
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'c': // Don't print "$" before a global var name or constant.
break; // PPC never has a prefix.
case 'L': // Write second word of DImode reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isReg() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isReg())
return true;
++OpNo; // Return the high-part.
break;
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
}
}
printOperand(MI, OpNo, O);
return false;
}
// At the moment, all inline asm memory operands are a single register.
// In any case, the output of this routine should always be just one
// assembler operand.
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'y': // A memory reference for an X-form instruction
{
const char *RegName = "r0";
if (!Subtarget->isDarwin())
RegName = stripRegisterPrefix(RegName);
O << RegName << ", ";
printOperand(MI, OpNo, O);
return false;
}
case 'U': // Print 'u' for update form.
case 'X': // Print 'x' for indexed form.
{
// FIXME: Currently for PowerPC memory operands are always loaded
// into a register, so we never get an update or indexed form.
// This is bad even for offset forms, since even if we know we
// have a value in -16(r1), we will generate a load into r<n>
// and then load from 0(r<n>). Until that issue is fixed,
// tolerate 'U' and 'X' but don't output anything.
assert(MI->getOperand(OpNo).isReg());
return false;
}
}
}
assert(MI->getOperand(OpNo).isReg());
O << "0(";
printOperand(MI, OpNo, O);
O << ")";
return false;
}
/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
/// exists for it. If not, create one. Then return a symbol that references
/// the TOC entry.
MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
MCSymbol *&TOCEntry = TOC[Sym];
if (!TOCEntry)
TOCEntry = createTempSymbol("C");
return TOCEntry;
}
void PPCAsmPrinter::EmitEndOfAsmFile(Module &M) {
SM.serializeToStackMapSection();
}
void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
unsigned NumNOPBytes = MI.getOperand(1).getImm();
SM.recordStackMap(MI);
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
// Scan ahead to trim the shadow.
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator MII(MI);
++MII;
while (NumNOPBytes > 0) {
if (MII == MBB.end() || MII->isCall() ||
MII->getOpcode() == PPC::DBG_VALUE ||
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
MII->getOpcode() == TargetOpcode::STACKMAP)
break;
++MII;
NumNOPBytes -= 4;
}
// Emit nops.
for (unsigned i = 0; i < NumNOPBytes; i += 4)
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>
void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
SM.recordPatchPoint(MI);
PatchPointOpers Opers(&MI);
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = Opers.getCallTarget();
if (CalleeMO.isImm()) {
int64_t CallTarget = CalleeMO.getImm();
if (CallTarget) {
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
"High 16 bits of call target should be zero.");
unsigned ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
EncodedBytes = 0;
// Materialize the jump address:
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
.addReg(ScratchReg)
.addImm((CallTarget >> 32) & 0xFFFF));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(32).addImm(16));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm((CallTarget >> 16) & 0xFFFF));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(CallTarget & 0xFFFF));
// Save the current TOC pointer before the remote call.
int TOCSaveOffset = Subtarget->isELFv2ABI() ? 24 : 40;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
.addReg(PPC::X1));
++EncodedBytes;
// If we're on ELFv1, then we need to load the actual function pointer
// from the function descriptor.
if (!Subtarget->isELFv2ABI()) {
// Load the new TOC pointer and the function address, but not r11
// (needing this is rare, and loading it here would prevent passing it
// via a 'nest' parameter.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addImm(8)
.addReg(ScratchReg));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(ScratchReg)
.addImm(0)
.addReg(ScratchReg));
++EncodedBytes;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
.addReg(ScratchReg));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
++EncodedBytes;
// Restore the TOC pointer after the call.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
.addReg(PPC::X1));
++EncodedBytes;
}
} else if (CalleeMO.isGlobal()) {
const GlobalValue *GValue = CalleeMO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
.addExpr(SymVar));
EncodedBytes += 2;
}
// Each instruction is 4 bytes.
EncodedBytes *= 4;
// Emit padding.
unsigned NumBytes = Opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 4 == 0 &&
"Invalid number of NOP bytes requested!");
for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
}
/// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
/// call to __tls_get_addr to the current output stream.
void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
MCSymbolRefExpr::VariantKind VK) {
StringRef Name = "__tls_get_addr";
MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name);
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
assert(MI->getOperand(0).isReg() &&
((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
(!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
"GETtls[ld]ADDR[32] must define GPR3");
assert(MI->getOperand(1).isReg() &&
((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
(!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
"GETtls[ld]ADDR[32] must read GPR3");
if (!Subtarget->isPPC64() && !Subtarget->isDarwin() &&
isPositionIndependent())
Kind = MCSymbolRefExpr::VK_PLT;
const MCSymbolRefExpr *TlsRef =
MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ?
PPC::BL8_NOP_TLS : PPC::BL_TLS)
.addExpr(TlsRef)
.addExpr(SymVar));
}
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MCInst TmpInst;
bool isPPC64 = Subtarget->isPPC64();
bool isDarwin = TM.getTargetTriple().isOSDarwin();
const Module *M = MF->getFunction()->getParent();
PICLevel::Level PL = M->getPICLevel();
// Lower multi-instruction pseudo operations.
switch (MI->getOpcode()) {
default: break;
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
case TargetOpcode::STACKMAP:
return LowerSTACKMAP(SM, *MI);
case TargetOpcode::PATCHPOINT:
return LowerPATCHPOINT(SM, *MI);
case PPC::MoveGOTtoLR: {
// Transform %LR = MoveGOTtoLR
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
// _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
// _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
// blrl
// This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
MCSymbol *GOTSymbol =
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
MCSymbolRefExpr::VK_PPC_LOCAL,
OutContext),
MCConstantExpr::create(4, OutContext),
OutContext);
// Emit the 'bl'.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
return;
}
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8: {
// Transform %LR = MovePCtoLR
// Into this, where the label is the PIC base:
// bl L1$pb
// L1$pb:
MCSymbol *PICBase = MF->getPICBaseSymbol();
// Emit the 'bl'.
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BL)
// FIXME: We would like an efficient form for this, so we
// don't have to do a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
// Emit the label.
OutStreamer->EmitLabel(PICBase);
return;
}
case PPC::UpdateGBR: {
// Transform %Rd = UpdateGBR(%Rt, %Ri)
// Into: lwz %Rt, .L0$poff - .L0$pb(%Ri)
// add %Rd, %Rt, %Ri
// Get the offset from the GOT Base Register to the GOT
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
MCSymbol *PICOffset =
MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol();
TmpInst.setOpcode(PPC::LWZ);
const MCExpr *Exp =
MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
const MCExpr *PB =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
MCSymbolRefExpr::VK_None,
OutContext);
const MCOperand TR = TmpInst.getOperand(1);
const MCOperand PICR = TmpInst.getOperand(0);
// Step 1: lwz %Rt, .L$poff - .L$pb(%Ri)
TmpInst.getOperand(1) =
MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
TmpInst.getOperand(0) = TR;
TmpInst.getOperand(2) = PICR;
EmitToStreamer(*OutStreamer, TmpInst);
TmpInst.setOpcode(PPC::ADD4);
TmpInst.getOperand(0) = PICR;
TmpInst.getOperand(1) = TR;
TmpInst.getOperand(2) = PICR;
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LWZtoc: {
// Transform %R3 = LWZtoc <ga:@min1>, %R2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LWZ, and the global address operand to be a
// reference to the GOT entry we will synthesize later.
TmpInst.setOpcode(PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
// Map symbol -> label of TOC entry
assert(MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress());
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal())
MOSymbol = getSymbol(MO.getGlobal());
else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = GetJTISymbol(MO.getIndex());
else if (MO.isBlockAddress())
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
if (PL == PICLevel::SmallPIC) {
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
} else {
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None,
OutContext);
const MCExpr *PB =
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
OutContext);
Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
}
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocJTI:
case PPC::LDtocCPT:
case PPC::LDtocBA:
case PPC::LDtoc: {
// Transform %X3 = LDtoc <ga:@min1>, %X2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD, and the global address operand to be a
// reference to the TOC entry we will synthesize later.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
// Map symbol -> label of TOC entry
assert(MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress());
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal())
MOSymbol = getSymbol(MO.getGlobal());
else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = GetJTISymbol(MO.getIndex());
else if (MO.isBlockAddress())
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDIStocHA: {
// Transform %Xd = ADDIStocHA %X2, <ga:@sym>
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to ADDIS8. If the global address is external, has
// common linkage, is a non-local function address, or is a jump table
// address, then generate a TOC entry and reference that. Otherwise
// reference the symbol directly.
TmpInst.setOpcode(PPC::ADDIS8);
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
MO.isBlockAddress()) &&
"Invalid operand for ADDIStocHA!");
MCSymbol *MOSymbol = nullptr;
bool GlobalToc = false;
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
MOSymbol = getSymbol(GV);
unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
GlobalToc = (GVFlags & PPCII::MO_NLP_FLAG);
} else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
} else if (MO.isJTI()) {
MOSymbol = GetJTISymbol(MO.getIndex());
} else if (MO.isBlockAddress()) {
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
}
if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
TM.getCodeModel() == CodeModel::Large)
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
OutContext);
if (!MO.isJTI() && MO.getOffset())
Exp = MCBinaryExpr::createAdd(Exp,
MCConstantExpr::create(MO.getOffset(),
OutContext),
OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocL: {
// Transform %Xd = LDtocL <ga:@sym>, %Xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD. If the global address is external, has
// common linkage, or is a jump table address, then reference the
// associated TOC entry. Otherwise reference the symbol directly.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
MO.isBlockAddress()) &&
"Invalid operand for LDtocL!");
MCSymbol *MOSymbol = nullptr;
if (MO.isJTI())
MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
else if (MO.isBlockAddress()) {
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
if (TM.getCodeModel() == CodeModel::Large)
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
else if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
MOSymbol = getSymbol(GV);
DEBUG(
unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
assert((GVFlags & PPCII::MO_NLP_FLAG) &&
"LDtocL used on symbol that could be accessed directly is "
"invalid. Must match ADDIStocHA."));
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDItocL: {
// Transform %Xd = ADDItocL %Xs, <ga:@sym>
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to ADDI8. If the global address is external, then
// generate a TOC entry and reference that. Otherwise reference the
// symbol directly.
TmpInst.setOpcode(PPC::ADDI8);
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
DEBUG(
unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
assert (
!(GVFlags & PPCII::MO_NLP_FLAG) &&
"Interposable definitions must use indirect access."));
MOSymbol = getSymbol(GV);
} else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
}
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDISgotTprelHA: {
// Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
// Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTprel =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTprel));
return;
}
case PPC::LDgotTprelL:
case PPC::LDgotTprelL32: {
// Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD.
TmpInst.setOpcode(isPPC64 ? PPC::LD : PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::PPC32PICGOT: {
MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
MCSymbol *GOTRef = OutContext.createTempSymbol();
MCSymbol *NextInstr = OutContext.createTempSymbol();
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
// FIXME: We would like an efficient form for this, so we don't have to do
// a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
MCSymbolRefExpr::create(GOTRef, OutContext),
OutContext);
OutStreamer->EmitLabel(GOTRef);
OutStreamer->EmitValue(OffsExpr, 4);
OutStreamer->EmitLabel(NextInstr);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
.addReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
.addReg(MI->getOperand(1).getReg())
.addImm(0)
.addReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(MI->getOperand(0).getReg()));
return;
}
case PPC::PPC32GOT: {
MCSymbol *GOTSymbol =
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsL));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsHA));
return;
}
case PPC::ADDIStlsgdHA: {
// Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
// Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsGD =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::ADDItlsgdL:
// Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
// Into: %Xd = ADDI8 %Xs, sym@got@tlsgd@l
case PPC::ADDItlsgdL32: {
// Transform: %Rd = ADDItlsgdL32 %Rs, <ga:@sym>
// Into: %Rd = ADDI %Rs, sym@got@tlsgd
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
MOSymbol, Subtarget->isPPC64() ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
: MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::GETtlsADDR:
// Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
case PPC::GETtlsADDR32: {
// Transform: %R3 = GETtlsADDR32 %R3, <ga:@sym>
// Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
return;
}
case PPC::ADDIStlsldHA: {
// Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
// Into: %Xd = ADDIS8 %X2, sym@got@tlsld@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::ADDItlsldL:
// Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
// Into: %Xd = ADDI8 %Xs, sym@got@tlsld@l
case PPC::ADDItlsldL32: {
// Transform: %Rd = ADDItlsldL32 %Rs, <ga:@sym>
// Into: %Rd = ADDI %Rs, sym@got@tlsld
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
MOSymbol, Subtarget->isPPC64() ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
: MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::GETtlsldADDR:
// Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
case PPC::GETtlsldADDR32: {
// Transform: %R3 = GETtlsldADDR32 %R3, <ga:@sym>
// Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
return;
}
case PPC::ADDISdtprelHA:
// Transform: %Xd = ADDISdtprelHA %Xs, <ga:@sym>
// Into: %Xd = ADDIS8 %Xs, sym@dtprel@ha
case PPC::ADDISdtprelHA32: {
// Transform: %Rd = ADDISdtprelHA32 %Rs, <ga:@sym>
// Into: %Rd = ADDIS %Rs, sym@dtprel@ha
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
OutContext);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDIS8 : PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::ADDIdtprelL:
// Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
// Into: %Xd = ADDI8 %Xs, sym@dtprel@l
case PPC::ADDIdtprelL32: {
// Transform: %Rd = ADDIdtprelL32 %Rs, <ga:@sym>
// Into: %Rd = ADDI %Rs, sym@dtprel@l
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::MFOCRF:
case PPC::MFOCRF8:
if (!Subtarget->hasMFOCRF()) {
// Transform: %R3 = MFOCRF %CR7
// Into: %R3 = MFCR ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
OutStreamer->AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(1).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
.addReg(MI->getOperand(0).getReg()));
return;
}
break;
case PPC::MTOCRF:
case PPC::MTOCRF8:
if (!Subtarget->hasMFOCRF()) {
// Transform: %CR7 = MTOCRF %R3
// Into: MTCRF mask, %R3 ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
->getEncodingValue(MI->getOperand(0).getReg());
OutStreamer->AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
.addImm(Mask)
.addReg(MI->getOperand(1).getReg()));
return;
}
break;
case PPC::LD:
case PPC::STD:
case PPC::LWA_32:
case PPC::LWA: {
// Verify alignment is legal, so we don't create relocations
// that can't be supported.
// FIXME: This test is currently disabled for Darwin. The test
// suite shows a handful of test cases that fail this check for
// Darwin. Those need to be investigated before this sanity test
// can be enabled for those subtargets.
if (!Subtarget->isDarwin()) {
unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
const MachineOperand &MO = MI->getOperand(OpNum);
if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
}
// Now process the instruction normally.
break;
}
}
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
EmitToStreamer(*OutStreamer, TmpInst);
}
void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
if (TS)
TS->emitAbiVersion(2);
}
if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
!isPositionIndependent())
return AsmPrinter::EmitStartOfAsmFile(M);
if (M.getPICLevel() == PICLevel::SmallPIC)
return AsmPrinter::EmitStartOfAsmFile(M);
OutStreamer->SwitchSection(OutContext.getELFSection(
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
MCSymbol *CurrentPos = OutContext.createTempSymbol();
OutStreamer->EmitLabel(CurrentPos);
// The GOT pointer points to the middle of the GOT, in order to reference the
// entire 64kB range. 0x8000 is the midpoint.
const MCExpr *tocExpr =
MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
MCConstantExpr::create(0x8000, OutContext),
OutContext);
OutStreamer->EmitAssignment(TOCSym, tocExpr);
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
}
void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
// linux/ppc32 - Normal entry label.
if (!Subtarget->isPPC64() &&
(!isPositionIndependent() ||
MF->getFunction()->getParent()->getPICLevel() == PICLevel::SmallPIC))
return AsmPrinter::EmitFunctionEntryLabel();
if (!Subtarget->isPPC64()) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
if (PPCFI->usesPICBase()) {
MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol();
MCSymbol *PICBase = MF->getPICBaseSymbol();
OutStreamer->EmitLabel(RelocSymbol);
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
OutContext),
MCSymbolRefExpr::create(PICBase, OutContext),
OutContext);
OutStreamer->EmitValue(OffsExpr, 4);
OutStreamer->EmitLabel(CurrentFnSym);
return;
} else
return AsmPrinter::EmitFunctionEntryLabel();
}
// ELFv2 ABI - Normal entry label.
if (Subtarget->isELFv2ABI()) {
// In the Large code model, we allow arbitrary displacements between
// the text section and its associated TOC section. We place the
// full 8-byte offset to the TOC in memory immediatedly preceding
// the function global entry point.
if (TM.getCodeModel() == CodeModel::Large
&& !MF->getRegInfo().use_empty(PPC::X2)) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol();
const MCExpr *TOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
MCSymbolRefExpr::create(GlobalEPSymbol,
OutContext),
OutContext);
OutStreamer->EmitLabel(PPCFI->getTOCOffsetSymbol());
OutStreamer->EmitValue(TOCDeltaExpr, 8);
}
return AsmPrinter::EmitFunctionEntryLabel();
}
// Emit an official procedure descriptor.
MCSectionSubPair Current = OutStreamer->getCurrentSection();
MCSectionELF *Section = OutStreamer->getContext().getELFSection(
".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer->SwitchSection(Section);
OutStreamer->EmitLabel(CurrentFnSym);
OutStreamer->EmitValueToAlignment(8);
MCSymbol *Symbol1 = CurrentFnSymForSize;
// Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
// entry point.
OutStreamer->EmitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
8 /*size*/);
MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
// Generates a R_PPC64_TOC relocation for TOC base insertion.
OutStreamer->EmitValue(
MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
8/*size*/);
// Emit a null environment pointer.
OutStreamer->EmitIntValue(0, 8 /* size */);
OutStreamer->SwitchSection(Current.first, Current.second);
}
bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
const DataLayout &DL = getDataLayout();
bool isPPC64 = DL.getPointerSizeInBits() == 64;
PPCTargetStreamer &TS =
static_cast<PPCTargetStreamer &>(*OutStreamer->getTargetStreamer());
if (!TOC.empty()) {
MCSectionELF *Section;
if (isPPC64)
Section = OutStreamer->getContext().getELFSection(
".toc", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
else
Section = OutStreamer->getContext().getELFSection(
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer->SwitchSection(Section);
for (MapVector<MCSymbol*, MCSymbol*>::iterator I = TOC.begin(),
E = TOC.end(); I != E; ++I) {
OutStreamer->EmitLabel(I->second);
MCSymbol *S = I->first;
if (isPPC64) {
TS.emitTCEntry(*S);
} else {
OutStreamer->EmitValueToAlignment(4);
OutStreamer->EmitSymbolValue(S, 4);
}
}
}
return AsmPrinter::doFinalization(M);
}
/// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
void PPCLinuxAsmPrinter::EmitFunctionBodyStart() {
// In the ELFv2 ABI, in functions that use the TOC register, we need to
// provide two entry points. The ABI guarantees that when calling the
// local entry point, r2 is set up by the caller to contain the TOC base
// for this function, and when calling the global entry point, r12 is set
// up by the caller to hold the address of the global entry point. We
// thus emit a prefix sequence along the following lines:
//
// func:
// .Lfunc_gepNN:
// # global entry point
// addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
// addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
// .Lfunc_lepNN:
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
// # local entry point, followed by function body
//
// For the Large code model, we create
//
// .Lfunc_tocNN:
// .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
// func:
// .Lfunc_gepNN:
// # global entry point
// ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
// add r2,r2,r12
// .Lfunc_lepNN:
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
// # local entry point, followed by function body
//
// This ensures we have r2 set up correctly while executing the function
// body, no matter which entry point is called.
if (Subtarget->isELFv2ABI()
// Only do all that if the function uses r2 in the first place.
&& !MF->getRegInfo().use_empty(PPC::X2)) {
// Note: The logic here must be synchronized with the code in the
// branch-selection pass which sets the offset of the first block in the
// function. This matters because it affects the alignment.
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol();
OutStreamer->EmitLabel(GlobalEntryLabel);
const MCSymbolRefExpr *GlobalEntryLabelExp =
MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
if (TM.getCodeModel() != CodeModel::Large) {
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
const MCExpr *TOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
GlobalEntryLabelExp, OutContext);
const MCExpr *TOCDeltaHi =
PPCMCExpr::createHa(TOCDeltaExpr, false, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(PPC::X2)
.addReg(PPC::X12)
.addExpr(TOCDeltaHi));
const MCExpr *TOCDeltaLo =
PPCMCExpr::createLo(TOCDeltaExpr, false, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
.addReg(PPC::X2)
.addReg(PPC::X2)
.addExpr(TOCDeltaLo));
} else {
MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol();
const MCExpr *TOCOffsetDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
GlobalEntryLabelExp, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addExpr(TOCOffsetDeltaExpr)
.addReg(PPC::X12));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
.addReg(PPC::X2)
.addReg(PPC::X2)
.addReg(PPC::X12));
}
MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol();
OutStreamer->EmitLabel(LocalEntryLabel);
const MCSymbolRefExpr *LocalEntryLabelExp =
MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
const MCExpr *LocalOffsetExp =
MCBinaryExpr::createSub(LocalEntryLabelExp,
GlobalEntryLabelExp, OutContext);
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
if (TS)
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
}
}
/// EmitFunctionBodyEnd - Print the traceback table before the .size
/// directive.
///
void PPCLinuxAsmPrinter::EmitFunctionBodyEnd() {
// Only the 64-bit target requires a traceback table. For now,
// we only emit the word of zeroes that GDB requires to find
// the end of the function, and zeroes for the eight-byte
// mandatory fields.
// FIXME: We should fill in the eight-byte mandatory fields as described in
// the PPC64 ELF ABI (this is a low-priority item because GDB does not
// currently make use of these fields).
if (Subtarget->isPPC64()) {
OutStreamer->EmitIntValue(0, 4/*size*/);
OutStreamer->EmitIntValue(0, 8/*size*/);
}
}
void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
static const char *const CPUDirectives[] = {
"",
"ppc",
"ppc440",
"ppc601",
"ppc602",
"ppc603",
"ppc7400",
"ppc750",
"ppc970",
"ppcA2",
"ppce500mc",
"ppce5500",
"power3",
"power4",
"power5",
"power5x",
"power6",
"power6x",
"power7",
// FIXME: why is power8 missing here?
"ppc64",
"ppc64le",
"power9"
};
// Get the numerically largest directive.
// FIXME: How should we merge darwin directives?
unsigned Directive = PPC::DIR_NONE;
for (const Function &F : M) {
const PPCSubtarget &STI = TM.getSubtarget<PPCSubtarget>(F);
unsigned FDir = STI.getDarwinDirective();
Directive = Directive > FDir ? FDir : STI.getDarwinDirective();
if (STI.hasMFOCRF() && Directive < PPC::DIR_970)
Directive = PPC::DIR_970;
if (STI.hasAltivec() && Directive < PPC::DIR_7400)
Directive = PPC::DIR_7400;
if (STI.isPPC64() && Directive < PPC::DIR_64)
Directive = PPC::DIR_64;
}
assert(Directive <= PPC::DIR_64 && "Directive out of range.");
assert(Directive < array_lengthof(CPUDirectives) &&
"CPUDirectives[] might not be up-to-date!");
PPCTargetStreamer &TStreamer =
*static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
TStreamer.emitMachine(CPUDirectives[Directive]);
// Prime text sections so they are adjacent. This reduces the likelihood a
// large data or debug section causes a branch to exceed 16M limit.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
OutStreamer->SwitchSection(TLOFMacho.getTextCoalSection());
if (TM.getRelocationModel() == Reloc::PIC_) {
OutStreamer->SwitchSection(
OutContext.getMachOSection("__TEXT", "__picsymbolstub1",
MachO::S_SYMBOL_STUBS |
MachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText()));
} else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) {
OutStreamer->SwitchSection(
OutContext.getMachOSection("__TEXT","__symbol_stub1",
MachO::S_SYMBOL_STUBS |
MachO::S_ATTR_PURE_INSTRUCTIONS,
16, SectionKind::getText()));
}
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
}
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
bool isPPC64 = getDataLayout().getPointerSizeInBits() == 64;
// Darwin/PPC always uses mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
if (MMI) {
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
if (MAI->doesSupportExceptionHandling()) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
for (const Function *Personality : MMI->getPersonalities()) {
if (Personality) {
MCSymbol *NLPSym =
getSymbolWithGlobalValueBase(Personality, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMIMacho.getGVStubEntry(NLPSym);
StubSym =
MachineModuleInfoImpl::StubValueTy(getSymbol(Personality), true);
}
}
}
// Output stubs for dynamically-linked functions.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
// Output macho stubs for external and common global variables.
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(isPPC64 ? 3 : 2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer->EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer->EmitSymbolAttribute(MCSym.getPointer(),
MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer->EmitIntValue(0, isPPC64 ? 8 : 4 /*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers
// need to be indirect and pc-rel. We accomplish this by using NLPs.
// However, sometimes the types are local to the file. So we need to
// fill in the value for the NLP in those cases.
OutStreamer->EmitValue(
MCSymbolRefExpr::create(MCSym.getPointer(), OutContext),
isPPC64 ? 8 : 4 /*size*/);
}
Stubs.clear();
OutStreamer->AddBlankLine();
}
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never generates
// code that does this, it is always safe to set.
OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
return AsmPrinter::doFinalization(M);
}
/// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code
/// for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
static AsmPrinter *
createPPCAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
if (tm.getTargetTriple().isMacOSX())
return new PPCDarwinAsmPrinter(tm, std::move(Streamer));
return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
}
// Force static initialization.
extern "C" void LLVMInitializePowerPCAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
createPPCAsmPrinterPass);
}