1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/include/llvm/CodeGen/MachineInstr.h
Bill Wendling e2833a21c2 Rename DBG_LABEL PROLOG_LABEL, because it's only used during prolog emission and
thus is a much more meaningful name.

llvm-svn: 108563
2010-07-16 22:20:36 +00:00

517 lines
21 KiB
C++

//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependent machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/DebugLoc.h"
#include <vector>
namespace llvm {
template <typename T> class SmallVectorImpl;
class AliasAnalysis;
class TargetInstrDesc;
class TargetInstrInfo;
class TargetRegisterInfo;
class MachineFunction;
class MachineMemOperand;
//===----------------------------------------------------------------------===//
/// MachineInstr - Representation of each machine instruction.
///
class MachineInstr : public ilist_node<MachineInstr> {
public:
typedef MachineMemOperand **mmo_iterator;
/// Flags to specify different kinds of comments to output in
/// assembly code. These flags carry semantic information not
/// otherwise easily derivable from the IR text.
///
enum CommentFlag {
ReloadReuse = 0x1
};
private:
const TargetInstrDesc *TID; // Instruction descriptor.
unsigned short NumImplicitOps; // Number of implicit operands (which
// are determined at construction time).
unsigned short AsmPrinterFlags; // Various bits of information used by
// the AsmPrinter to emit helpful
// comments. This is *not* semantic
// information. Do not use this for
// anything other than to convey comment
// information to AsmPrinter.
std::vector<MachineOperand> Operands; // the operands
mmo_iterator MemRefs; // information on memory references
mmo_iterator MemRefsEnd;
MachineBasicBlock *Parent; // Pointer to the owning basic block.
DebugLoc debugLoc; // Source line information.
// OperandComplete - Return true if it's illegal to add a new operand
bool OperandsComplete() const;
MachineInstr(const MachineInstr&); // DO NOT IMPLEMENT
void operator=(const MachineInstr&); // DO NOT IMPLEMENT
// Intrusive list support
friend struct ilist_traits<MachineInstr>;
friend struct ilist_traits<MachineBasicBlock>;
void setParent(MachineBasicBlock *P) { Parent = P; }
/// MachineInstr ctor - This constructor creates a copy of the given
/// MachineInstr in the given MachineFunction.
MachineInstr(MachineFunction &, const MachineInstr &);
/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
/// TID NULL and no operands.
MachineInstr();
// The next two constructors have DebugLoc and non-DebugLoc versions;
// over time, the non-DebugLoc versions should be phased out and eventually
// removed.
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
/// implicit operands. It reserves space for the number of operands specified
/// by the TargetInstrDesc. The version with a DebugLoc should be preferred.
explicit MachineInstr(const TargetInstrDesc &TID, bool NoImp = false);
/// MachineInstr ctor - Work exactly the same as the ctor above, except that
/// the MachineInstr is created and added to the end of the specified basic
/// block. The version with a DebugLoc should be preferred.
MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &TID);
/// MachineInstr ctor - This constructor create a MachineInstr and add the
/// implicit operands. It reserves space for number of operands specified by
/// TargetInstrDesc. An explicit DebugLoc is supplied.
explicit MachineInstr(const TargetInstrDesc &TID, const DebugLoc dl,
bool NoImp = false);
/// MachineInstr ctor - Work exactly the same as the ctor above, except that
/// the MachineInstr is created and added to the end of the specified basic
/// block.
MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
const TargetInstrDesc &TID);
~MachineInstr();
// MachineInstrs are pool-allocated and owned by MachineFunction.
friend class MachineFunction;
public:
const MachineBasicBlock* getParent() const { return Parent; }
MachineBasicBlock* getParent() { return Parent; }
/// getAsmPrinterFlags - Return the asm printer flags bitvector.
///
unsigned short getAsmPrinterFlags() const { return AsmPrinterFlags; }
/// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
///
bool getAsmPrinterFlag(CommentFlag Flag) const {
return AsmPrinterFlags & Flag;
}
/// setAsmPrinterFlag - Set a flag for the AsmPrinter.
///
void setAsmPrinterFlag(CommentFlag Flag) {
AsmPrinterFlags |= (unsigned short)Flag;
}
/// getDebugLoc - Returns the debug location id of this MachineInstr.
///
DebugLoc getDebugLoc() const { return debugLoc; }
/// getDesc - Returns the target instruction descriptor of this
/// MachineInstr.
const TargetInstrDesc &getDesc() const { return *TID; }
/// getOpcode - Returns the opcode of this MachineInstr.
///
int getOpcode() const { return TID->Opcode; }
/// Access to explicit operands of the instruction.
///
unsigned getNumOperands() const { return (unsigned)Operands.size(); }
const MachineOperand& getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
/// getNumExplicitOperands - Returns the number of non-implicit operands.
///
unsigned getNumExplicitOperands() const;
/// Access to memory operands of the instruction
mmo_iterator memoperands_begin() const { return MemRefs; }
mmo_iterator memoperands_end() const { return MemRefsEnd; }
bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
/// hasOneMemOperand - Return true if this instruction has exactly one
/// MachineMemOperand.
bool hasOneMemOperand() const {
return MemRefsEnd - MemRefs == 1;
}
enum MICheckType {
CheckDefs, // Check all operands for equality
IgnoreDefs, // Ignore all definitions
IgnoreVRegDefs // Ignore virtual register definitions
};
/// isIdenticalTo - Return true if this instruction is identical to (same
/// opcode and same operands as) the specified instruction.
bool isIdenticalTo(const MachineInstr *Other,
MICheckType Check = CheckDefs) const;
/// removeFromParent - This method unlinks 'this' from the containing basic
/// block, and returns it, but does not delete it.
MachineInstr *removeFromParent();
/// eraseFromParent - This method unlinks 'this' from the containing basic
/// block and deletes it.
void eraseFromParent();
/// isLabel - Returns true if the MachineInstr represents a label.
///
bool isLabel() const {
return getOpcode() == TargetOpcode::PROLOG_LABEL ||
getOpcode() == TargetOpcode::EH_LABEL ||
getOpcode() == TargetOpcode::GC_LABEL;
}
bool isPrologLabel() const {
return getOpcode() == TargetOpcode::PROLOG_LABEL;
}
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
bool isInsertSubreg() const {
return getOpcode() == TargetOpcode::INSERT_SUBREG;
}
bool isSubregToReg() const {
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
}
bool isRegSequence() const {
return getOpcode() == TargetOpcode::REG_SEQUENCE;
}
bool isCopy() const {
return getOpcode() == TargetOpcode::COPY;
}
/// isCopyLike - Return true if the instruction behaves like a copy.
/// This does not include native copy instructions.
bool isCopyLike() const {
return isCopy() || isSubregToReg();
}
/// isIdentityCopy - Return true is the instruction is an identity copy.
bool isIdentityCopy() const {
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
getOperand(0).getSubReg() == getOperand(1).getSubReg();
}
/// readsRegister - Return true if the MachineInstr reads the specified
/// register. If TargetRegisterInfo is passed, then it also checks if there
/// is a read of a super-register.
/// This does not count partial redefines of virtual registers as reads:
/// %reg1024:6 = OP.
bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
}
/// readsVirtualRegister - Return true if the MachineInstr reads the specified
/// virtual register. Take into account that a partial define is a
/// read-modify-write operation.
bool readsVirtualRegister(unsigned Reg) const {
return readsWritesVirtualRegister(Reg).first;
}
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
/// indicating if this instruction reads or writes Reg. This also considers
/// partial defines.
/// If Ops is not null, all operand indices for Reg are added.
std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
SmallVectorImpl<unsigned> *Ops = 0) const;
/// killsRegister - Return true if the MachineInstr kills the specified
/// register. If TargetRegisterInfo is passed, then it also checks if there is
/// a kill of a super-register.
bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
}
/// definesRegister - Return true if the MachineInstr fully defines the
/// specified register. If TargetRegisterInfo is passed, then it also checks
/// if there is a def of a super-register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
}
/// modifiesRegister - Return true if the MachineInstr modifies (fully define
/// or partially define) the specified register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
}
/// registerDefIsDead - Returns true if the register is dead in this machine
/// instruction. If TargetRegisterInfo is passed, then it also checks
/// if there is a dead def of a super-register.
bool registerDefIsDead(unsigned Reg,
const TargetRegisterInfo *TRI = NULL) const {
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
}
/// findRegisterUseOperandIdx() - Returns the operand index that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = NULL) const;
/// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = NULL) {
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
return (Idx == -1) ? NULL : &getOperand(Idx);
}
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
/// the specified register or -1 if it is not found. If isDead is true, defs
/// that are not dead are skipped. If Overlap is true, then it also looks for
/// defs that merely overlap the specified register. If TargetRegisterInfo is
/// non-null, then it also checks if there is a def of a super-register.
int findRegisterDefOperandIdx(unsigned Reg,
bool isDead = false, bool Overlap = false,
const TargetRegisterInfo *TRI = NULL) const;
/// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
const TargetRegisterInfo *TRI = NULL) {
int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
return (Idx == -1) ? NULL : &getOperand(Idx);
}
/// findFirstPredOperandIdx() - Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int findFirstPredOperandIdx() const;
/// isRegTiedToUseOperand - Given the index of a register def operand,
/// check if the register def is tied to a source operand, due to either
/// two-address elimination or inline assembly constraints. Returns the
/// first tied use operand index by reference is UseOpIdx is not null.
bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const;
/// isRegTiedToDefOperand - Return true if the use operand of the specified
/// index is tied to an def operand. It also returns the def operand index by
/// reference if DefOpIdx is not null.
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const;
/// clearKillInfo - Clears kill flags on all operands.
///
void clearKillInfo();
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
///
void copyKillDeadInfo(const MachineInstr *MI);
/// copyPredicates - Copies predicate operand(s) from MI.
void copyPredicates(const MachineInstr *MI);
/// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
/// properly composing subreg indices where necessary.
void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
const TargetRegisterInfo &RegInfo);
/// addRegisterKilled - We have determined MI kills a register. Look for the
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
/// add a implicit operand if it's not found. Returns true if the operand
/// exists / is added.
bool addRegisterKilled(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// addRegisterDead - We have determined MI defined a register without a use.
/// Look for the operand that defines it and mark it as IsDead. If
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
/// true if the operand exists / is added.
bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// addRegisterDefined - We have determined MI defines a register. Make sure
/// there is an operand defining Reg.
void addRegisterDefined(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo = 0);
/// setPhysRegsDeadExcept - Mark every physreg used by this instruction as dead
/// except those in the UsedRegs list.
void setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
const TargetRegisterInfo &TRI);
/// isSafeToMove - Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
bool &SawStore) const;
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
/// instruction which defined the specified register instead of copying it.
bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
unsigned DstReg) const;
/// hasVolatileMemoryRef - Return true if this instruction may have a
/// volatile memory reference, or if the information describing the
/// memory reference is not available. Return false if it is known to
/// have no volatile memory references.
bool hasVolatileMemoryRef() const;
/// isInvariantLoad - Return true if this instruction is loading from a
/// location whose value is invariant across the function. For example,
/// loading a value from the constant pool or from the argument area of
/// a function if it does not change. This should only return true of *all*
/// loads the instruction does are invariant (if it does multiple loads).
bool isInvariantLoad(AliasAnalysis *AA) const;
/// isConstantValuePHI - If the specified instruction is a PHI that always
/// merges together the same virtual register, return the register, otherwise
/// return 0.
unsigned isConstantValuePHI() const;
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
///
bool allDefsAreDead() const;
//
// Debugging support
//
void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
void dump() const;
//===--------------------------------------------------------------------===//
// Accessors used to build up machine instructions.
/// addOperand - Add the specified operand to the instruction. If it is an
/// implicit operand, it is added to the end of the operand list. If it is
/// an explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
void addOperand(const MachineOperand &Op);
/// setDesc - Replace the instruction descriptor (thus opcode) of
/// the current instruction with a new one.
///
void setDesc(const TargetInstrDesc &tid) { TID = &tid; }
/// setDebugLoc - Replace current source information with new such.
/// Avoid using this, the constructor argument is preferable.
///
void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
///
void RemoveOperand(unsigned i);
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
/// This function should be used only occasionally. The setMemRefs function
/// is the primary method for setting up a MachineInstr's MemRefs list.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
/// setMemRefs - Assign this MachineInstr's memory reference descriptor
/// list. This does not transfer ownership.
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
MemRefs = NewMemRefs;
MemRefsEnd = NewMemRefsEnd;
}
private:
/// getRegInfo - If this instruction is embedded into a MachineFunction,
/// return the MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *getRegInfo();
/// addImplicitDefUseOperands - Add all implicit def and use operands to
/// this instruction.
void addImplicitDefUseOperands();
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands already be on their use lists.
void RemoveRegOperandsFromUseLists();
/// AddRegOperandsToUseLists - Add all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands not be on their use lists yet.
void AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo);
};
/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
/// MachineInstr* by *value* of the instruction rather than by pointer value.
/// The hashing and equality testing functions ignore definitions so this is
/// useful for CSE, etc.
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
static inline MachineInstr *getEmptyKey() {
return 0;
}
static inline MachineInstr *getTombstoneKey() {
return reinterpret_cast<MachineInstr*>(-1);
}
static unsigned getHashValue(const MachineInstr* const &MI);
static bool isEqual(const MachineInstr* const &LHS,
const MachineInstr* const &RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || LHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
}
};
//===----------------------------------------------------------------------===//
// Debugging Support
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
MI.print(OS);
return OS;
}
} // End llvm namespace
#endif