mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
cac831b368
This is the forth patch in the coroutine series. CoroEaly pass now lowers coro.resume and coro.destroy intrinsics by replacing them with an indirect call to an address returned by coro.subfn.addr intrinsic. This is done so that CGPassManager recognizes devirtualization when CoroElide replaces a call to coro.subfn.addr with an appropriate function address. Patch by Gor Nishanov! Differential Revision: https://reviews.llvm.org/D22998 llvm-svn: 277765
647 lines
22 KiB
C++
647 lines
22 KiB
C++
//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the CallSite class, which is a handy wrapper for code that
|
|
// wants to treat Call and Invoke instructions in a generic way. When in non-
|
|
// mutation context (e.g. an analysis) ImmutableCallSite should be used.
|
|
// Finally, when some degree of customization is necessary between these two
|
|
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
|
|
//
|
|
// NOTE: These classes are supposed to have "value semantics". So they should be
|
|
// passed by value, not by reference; they should not be "new"ed or "delete"d.
|
|
// They are efficiently copyable, assignable and constructable, with cost
|
|
// equivalent to copying a pointer (notice that they have only a single data
|
|
// member). The internal representation carries a flag which indicates which of
|
|
// the two variants is enclosed. This allows for cheaper checks when various
|
|
// accessors of CallSite are employed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_CALLSITE_H
|
|
#define LLVM_IR_CALLSITE_H
|
|
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
namespace llvm {
|
|
|
|
class CallInst;
|
|
class InvokeInst;
|
|
|
|
template <typename FunTy = const Function,
|
|
typename BBTy = const BasicBlock,
|
|
typename ValTy = const Value,
|
|
typename UserTy = const User,
|
|
typename UseTy = const Use,
|
|
typename InstrTy = const Instruction,
|
|
typename CallTy = const CallInst,
|
|
typename InvokeTy = const InvokeInst,
|
|
typename IterTy = User::const_op_iterator>
|
|
class CallSiteBase {
|
|
protected:
|
|
PointerIntPair<InstrTy*, 1, bool> I;
|
|
|
|
CallSiteBase() : I(nullptr, false) {}
|
|
CallSiteBase(CallTy *CI) : I(CI, true) { assert(CI); }
|
|
CallSiteBase(InvokeTy *II) : I(II, false) { assert(II); }
|
|
explicit CallSiteBase(ValTy *II) { *this = get(II); }
|
|
|
|
private:
|
|
/// CallSiteBase::get - This static method is sort of like a constructor. It
|
|
/// will create an appropriate call site for a Call or Invoke instruction, but
|
|
/// it can also create a null initialized CallSiteBase object for something
|
|
/// which is NOT a call site.
|
|
///
|
|
static CallSiteBase get(ValTy *V) {
|
|
if (InstrTy *II = dyn_cast<InstrTy>(V)) {
|
|
if (II->getOpcode() == Instruction::Call)
|
|
return CallSiteBase(static_cast<CallTy*>(II));
|
|
else if (II->getOpcode() == Instruction::Invoke)
|
|
return CallSiteBase(static_cast<InvokeTy*>(II));
|
|
}
|
|
return CallSiteBase();
|
|
}
|
|
|
|
public:
|
|
/// isCall - true if a CallInst is enclosed.
|
|
/// Note that !isCall() does not mean it is an InvokeInst enclosed,
|
|
/// it also could signify a NULL Instruction pointer.
|
|
bool isCall() const { return I.getInt(); }
|
|
|
|
/// isInvoke - true if a InvokeInst is enclosed.
|
|
///
|
|
bool isInvoke() const { return getInstruction() && !I.getInt(); }
|
|
|
|
InstrTy *getInstruction() const { return I.getPointer(); }
|
|
InstrTy *operator->() const { return I.getPointer(); }
|
|
explicit operator bool() const { return I.getPointer(); }
|
|
|
|
/// Get the basic block containing the call site
|
|
BBTy* getParent() const { return getInstruction()->getParent(); }
|
|
|
|
/// getCalledValue - Return the pointer to function that is being called.
|
|
///
|
|
ValTy *getCalledValue() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return *getCallee();
|
|
}
|
|
|
|
/// getCalledFunction - Return the function being called if this is a direct
|
|
/// call, otherwise return null (if it's an indirect call).
|
|
///
|
|
FunTy *getCalledFunction() const {
|
|
return dyn_cast<FunTy>(getCalledValue());
|
|
}
|
|
|
|
/// setCalledFunction - Set the callee to the specified value.
|
|
///
|
|
void setCalledFunction(Value *V) {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
*getCallee() = V;
|
|
}
|
|
|
|
/// Return the intrinsic ID of the intrinsic called by this CallSite,
|
|
/// or Intrinsic::not_intrinsic if the called function is not an
|
|
/// intrinsic, or if this CallSite is an indirect call.
|
|
Intrinsic::ID getIntrinsicID() const {
|
|
if (auto *F = getCalledFunction())
|
|
return F->getIntrinsicID();
|
|
// Don't use Intrinsic::not_intrinsic, as it will require pulling
|
|
// Intrinsics.h into every header that uses CallSite.
|
|
return static_cast<Intrinsic::ID>(0);
|
|
}
|
|
|
|
/// isCallee - Determine whether the passed iterator points to the
|
|
/// callee operand's Use.
|
|
bool isCallee(Value::const_user_iterator UI) const {
|
|
return isCallee(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether this Use is the callee operand's Use.
|
|
bool isCallee(const Use *U) const { return getCallee() == U; }
|
|
|
|
/// \brief Determine whether the passed iterator points to an argument
|
|
/// operand.
|
|
bool isArgOperand(Value::const_user_iterator UI) const {
|
|
return isArgOperand(&UI.getUse());
|
|
}
|
|
|
|
/// \brief Determine whether the passed use points to an argument operand.
|
|
bool isArgOperand(const Use *U) const {
|
|
assert(getInstruction() == U->getUser());
|
|
return arg_begin() <= U && U < arg_end();
|
|
}
|
|
|
|
/// \brief Determine whether the passed iterator points to a bundle operand.
|
|
bool isBundleOperand(Value::const_user_iterator UI) const {
|
|
return isBundleOperand(&UI.getUse());
|
|
}
|
|
|
|
/// \brief Determine whether the passed use points to a bundle operand.
|
|
bool isBundleOperand(const Use *U) const {
|
|
assert(getInstruction() == U->getUser());
|
|
if (!hasOperandBundles())
|
|
return false;
|
|
unsigned OperandNo = U - (*this)->op_begin();
|
|
return getBundleOperandsStartIndex() <= OperandNo &&
|
|
OperandNo < getBundleOperandsEndIndex();
|
|
}
|
|
|
|
/// \brief Determine whether the passed iterator points to a data operand.
|
|
bool isDataOperand(Value::const_user_iterator UI) const {
|
|
return isDataOperand(&UI.getUse());
|
|
}
|
|
|
|
/// \brief Determine whether the passed use points to a data operand.
|
|
bool isDataOperand(const Use *U) const {
|
|
return data_operands_begin() <= U && U < data_operands_end();
|
|
}
|
|
|
|
ValTy *getArgument(unsigned ArgNo) const {
|
|
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
|
|
return *(arg_begin() + ArgNo);
|
|
}
|
|
|
|
void setArgument(unsigned ArgNo, Value* newVal) {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
|
|
getInstruction()->setOperand(ArgNo, newVal);
|
|
}
|
|
|
|
/// Given a value use iterator, returns the argument that corresponds to it.
|
|
/// Iterator must actually correspond to an argument.
|
|
unsigned getArgumentNo(Value::const_user_iterator I) const {
|
|
return getArgumentNo(&I.getUse());
|
|
}
|
|
|
|
/// Given a use for an argument, get the argument number that corresponds to
|
|
/// it.
|
|
unsigned getArgumentNo(const Use *U) const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(isArgOperand(U) && "Argument # out of range!");
|
|
return U - arg_begin();
|
|
}
|
|
|
|
/// arg_iterator - The type of iterator to use when looping over actual
|
|
/// arguments at this call site.
|
|
typedef IterTy arg_iterator;
|
|
|
|
iterator_range<IterTy> args() const {
|
|
return make_range(arg_begin(), arg_end());
|
|
}
|
|
bool arg_empty() const { return arg_end() == arg_begin(); }
|
|
unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
|
|
|
|
/// Given a value use iterator, returns the data operand that corresponds to
|
|
/// it.
|
|
/// Iterator must actually correspond to a data operand.
|
|
unsigned getDataOperandNo(Value::const_user_iterator UI) const {
|
|
return getDataOperandNo(&UI.getUse());
|
|
}
|
|
|
|
/// Given a use for a data operand, get the data operand number that
|
|
/// corresponds to it.
|
|
unsigned getDataOperandNo(const Use *U) const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(isDataOperand(U) && "Data operand # out of range!");
|
|
return U - data_operands_begin();
|
|
}
|
|
|
|
/// Type of iterator to use when looping over data operands at this call site
|
|
/// (see below).
|
|
typedef IterTy data_operand_iterator;
|
|
|
|
/// data_operands_begin/data_operands_end - Return iterators iterating over
|
|
/// the call / invoke argument list and bundle operands. For invokes, this is
|
|
/// the set of instruction operands except the invoke target and the two
|
|
/// successor blocks; and for calls this is the set of instruction operands
|
|
/// except the call target.
|
|
|
|
IterTy data_operands_begin() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return (*this)->op_begin();
|
|
}
|
|
IterTy data_operands_end() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return (*this)->op_end() - (isCall() ? 1 : 3);
|
|
}
|
|
iterator_range<IterTy> data_ops() const {
|
|
return make_range(data_operands_begin(), data_operands_end());
|
|
}
|
|
bool data_operands_empty() const {
|
|
return data_operands_end() == data_operands_begin();
|
|
}
|
|
unsigned data_operands_size() const {
|
|
return std::distance(data_operands_begin(), data_operands_end());
|
|
}
|
|
|
|
/// getType - Return the type of the instruction that generated this call site
|
|
///
|
|
Type *getType() const { return (*this)->getType(); }
|
|
|
|
/// getCaller - Return the caller function for this call site
|
|
///
|
|
FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
|
|
|
|
/// \brief Tests if this call site must be tail call optimized. Only a
|
|
/// CallInst can be tail call optimized.
|
|
bool isMustTailCall() const {
|
|
return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
|
|
}
|
|
|
|
/// \brief Tests if this call site is marked as a tail call.
|
|
bool isTailCall() const {
|
|
return isCall() && cast<CallInst>(getInstruction())->isTailCall();
|
|
}
|
|
|
|
#define CALLSITE_DELEGATE_GETTER(METHOD) \
|
|
InstrTy *II = getInstruction(); \
|
|
return isCall() \
|
|
? cast<CallInst>(II)->METHOD \
|
|
: cast<InvokeInst>(II)->METHOD
|
|
|
|
#define CALLSITE_DELEGATE_SETTER(METHOD) \
|
|
InstrTy *II = getInstruction(); \
|
|
if (isCall()) \
|
|
cast<CallInst>(II)->METHOD; \
|
|
else \
|
|
cast<InvokeInst>(II)->METHOD
|
|
|
|
unsigned getNumArgOperands() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumArgOperands());
|
|
}
|
|
|
|
ValTy *getArgOperand(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getArgOperand(i));
|
|
}
|
|
|
|
ValTy *getReturnedArgOperand() const {
|
|
CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
|
|
}
|
|
|
|
bool isInlineAsm() const {
|
|
if (isCall())
|
|
return cast<CallInst>(getInstruction())->isInlineAsm();
|
|
return false;
|
|
}
|
|
|
|
/// getCallingConv/setCallingConv - get or set the calling convention of the
|
|
/// call.
|
|
CallingConv::ID getCallingConv() const {
|
|
CALLSITE_DELEGATE_GETTER(getCallingConv());
|
|
}
|
|
void setCallingConv(CallingConv::ID CC) {
|
|
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
|
|
}
|
|
|
|
FunctionType *getFunctionType() const {
|
|
CALLSITE_DELEGATE_GETTER(getFunctionType());
|
|
}
|
|
|
|
void mutateFunctionType(FunctionType *Ty) const {
|
|
CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
|
|
}
|
|
|
|
/// getAttributes/setAttributes - get or set the parameter attributes of
|
|
/// the call.
|
|
const AttributeSet &getAttributes() const {
|
|
CALLSITE_DELEGATE_GETTER(getAttributes());
|
|
}
|
|
void setAttributes(const AttributeSet &PAL) {
|
|
CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
|
|
}
|
|
|
|
void addAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
|
|
}
|
|
|
|
void addAttribute(unsigned i, StringRef Kind, StringRef Value) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind, Value));
|
|
}
|
|
|
|
void addAttribute(unsigned i, Attribute Attr) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, StringRef Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, Attribute Attr) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Attr));
|
|
}
|
|
|
|
/// \brief Return true if this function has the given attribute.
|
|
bool hasFnAttr(Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
|
|
}
|
|
|
|
/// \brief Return true if this function has the given attribute.
|
|
bool hasFnAttr(StringRef Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
|
|
}
|
|
|
|
/// \brief Return true if the call or the callee has the given attribute.
|
|
bool paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(paramHasAttr(i, Kind));
|
|
}
|
|
|
|
Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
|
|
}
|
|
|
|
Attribute getAttribute(unsigned i, StringRef Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
|
|
}
|
|
|
|
/// \brief Return true if the data operand at index \p i directly or
|
|
/// indirectly has the attribute \p A.
|
|
///
|
|
/// Normal call or invoke arguments have per operand attributes, as specified
|
|
/// in the attribute set attached to this instruction, while operand bundle
|
|
/// operands may have some attributes implied by the type of its containing
|
|
/// operand bundle.
|
|
bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
|
|
}
|
|
|
|
/// @brief Extract the alignment for a call or parameter (0=unknown).
|
|
uint16_t getParamAlignment(uint16_t i) const {
|
|
CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
|
|
}
|
|
|
|
/// @brief Extract the number of dereferenceable bytes for a call or
|
|
/// parameter (0=unknown).
|
|
uint64_t getDereferenceableBytes(uint16_t i) const {
|
|
CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
|
|
}
|
|
|
|
/// @brief Extract the number of dereferenceable_or_null bytes for a call or
|
|
/// parameter (0=unknown).
|
|
uint64_t getDereferenceableOrNullBytes(uint16_t i) const {
|
|
CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
|
|
}
|
|
|
|
/// @brief Determine if the parameter or return value is marked with NoAlias
|
|
/// attribute.
|
|
/// @param n The parameter to check. 1 is the first parameter, 0 is the return
|
|
bool doesNotAlias(unsigned n) const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotAlias(n));
|
|
}
|
|
|
|
/// \brief Return true if the call should not be treated as a call to a
|
|
/// builtin.
|
|
bool isNoBuiltin() const {
|
|
CALLSITE_DELEGATE_GETTER(isNoBuiltin());
|
|
}
|
|
|
|
/// @brief Return true if the call should not be inlined.
|
|
bool isNoInline() const {
|
|
CALLSITE_DELEGATE_GETTER(isNoInline());
|
|
}
|
|
void setIsNoInline(bool Value = true) {
|
|
CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
|
|
}
|
|
|
|
/// @brief Determine if the call does not access memory.
|
|
bool doesNotAccessMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
|
|
}
|
|
void setDoesNotAccessMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
|
|
}
|
|
|
|
/// @brief Determine if the call does not access or only reads memory.
|
|
bool onlyReadsMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
|
|
}
|
|
void setOnlyReadsMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
|
|
}
|
|
|
|
/// @brief Determine if the call does not access or only writes memory.
|
|
bool doesNotReadMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
|
|
}
|
|
void setDoesNotReadMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
|
|
}
|
|
|
|
/// @brief Determine if the call can access memmory only using pointers based
|
|
/// on its arguments.
|
|
bool onlyAccessesArgMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
|
|
}
|
|
void setOnlyAccessesArgMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
|
|
}
|
|
|
|
/// @brief Determine if the call cannot return.
|
|
bool doesNotReturn() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReturn());
|
|
}
|
|
void setDoesNotReturn() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
|
|
}
|
|
|
|
/// @brief Determine if the call cannot unwind.
|
|
bool doesNotThrow() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotThrow());
|
|
}
|
|
void setDoesNotThrow() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
|
|
}
|
|
|
|
/// @brief Determine if the call can be duplicated.
|
|
bool cannotDuplicate() const {
|
|
CALLSITE_DELEGATE_GETTER(cannotDuplicate());
|
|
}
|
|
void setCannotDuplicate() {
|
|
CALLSITE_DELEGATE_GETTER(setCannotDuplicate());
|
|
}
|
|
|
|
/// @brief Determine if the call is convergent.
|
|
bool isConvergent() const {
|
|
CALLSITE_DELEGATE_GETTER(isConvergent());
|
|
}
|
|
void setConvergent() {
|
|
CALLSITE_DELEGATE_SETTER(setConvergent());
|
|
}
|
|
void setNotConvergent() {
|
|
CALLSITE_DELEGATE_SETTER(setNotConvergent());
|
|
}
|
|
|
|
unsigned getNumOperandBundles() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
|
|
}
|
|
|
|
bool hasOperandBundles() const {
|
|
CALLSITE_DELEGATE_GETTER(hasOperandBundles());
|
|
}
|
|
|
|
unsigned getBundleOperandsStartIndex() const {
|
|
CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
|
|
}
|
|
|
|
unsigned getBundleOperandsEndIndex() const {
|
|
CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
|
|
}
|
|
|
|
unsigned getNumTotalBundleOperands() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
|
|
}
|
|
|
|
OperandBundleUse getOperandBundleAt(unsigned Index) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
|
|
}
|
|
|
|
Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
|
|
}
|
|
|
|
Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
|
|
}
|
|
|
|
unsigned countOperandBundlesOfType(uint32_t ID) const {
|
|
CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
|
|
}
|
|
|
|
IterTy arg_begin() const {
|
|
CALLSITE_DELEGATE_GETTER(arg_begin());
|
|
}
|
|
|
|
IterTy arg_end() const {
|
|
CALLSITE_DELEGATE_GETTER(arg_end());
|
|
}
|
|
|
|
#undef CALLSITE_DELEGATE_GETTER
|
|
#undef CALLSITE_DELEGATE_SETTER
|
|
|
|
void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
|
|
const Instruction *II = getInstruction();
|
|
// Since this is actually a getter that "looks like" a setter, don't use the
|
|
// above macros to avoid confusion.
|
|
if (isCall())
|
|
cast<CallInst>(II)->getOperandBundlesAsDefs(Defs);
|
|
else
|
|
cast<InvokeInst>(II)->getOperandBundlesAsDefs(Defs);
|
|
}
|
|
|
|
/// @brief Determine whether this data operand is not captured.
|
|
bool doesNotCapture(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
|
|
}
|
|
|
|
/// @brief Determine whether this argument is passed by value.
|
|
bool isByValArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo + 1, Attribute::ByVal);
|
|
}
|
|
|
|
/// @brief Determine whether this argument is passed in an alloca.
|
|
bool isInAllocaArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo + 1, Attribute::InAlloca);
|
|
}
|
|
|
|
/// @brief Determine whether this argument is passed by value or in an alloca.
|
|
bool isByValOrInAllocaArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo + 1, Attribute::ByVal) ||
|
|
paramHasAttr(ArgNo + 1, Attribute::InAlloca);
|
|
}
|
|
|
|
/// @brief Determine if there are is an inalloca argument. Only the last
|
|
/// argument can have the inalloca attribute.
|
|
bool hasInAllocaArgument() const {
|
|
return paramHasAttr(arg_size(), Attribute::InAlloca);
|
|
}
|
|
|
|
bool doesNotAccessMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
bool onlyReadsMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
|
|
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
/// @brief Return true if the return value is known to be not null.
|
|
/// This may be because it has the nonnull attribute, or because at least
|
|
/// one byte is dereferenceable and the pointer is in addrspace(0).
|
|
bool isReturnNonNull() const {
|
|
if (paramHasAttr(0, Attribute::NonNull))
|
|
return true;
|
|
else if (getDereferenceableBytes(0) > 0 &&
|
|
getType()->getPointerAddressSpace() == 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasArgument - Returns true if this CallSite passes the given Value* as an
|
|
/// argument to the called function.
|
|
bool hasArgument(const Value *Arg) const {
|
|
for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
|
|
++AI)
|
|
if (AI->get() == Arg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
IterTy getCallee() const {
|
|
if (isCall()) // Skip Callee
|
|
return cast<CallInst>(getInstruction())->op_end() - 1;
|
|
else // Skip BB, BB, Callee
|
|
return cast<InvokeInst>(getInstruction())->op_end() - 3;
|
|
}
|
|
};
|
|
|
|
class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
|
|
Instruction, CallInst, InvokeInst,
|
|
User::op_iterator> {
|
|
public:
|
|
CallSite() {}
|
|
CallSite(CallSiteBase B) : CallSiteBase(B) {}
|
|
CallSite(CallInst *CI) : CallSiteBase(CI) {}
|
|
CallSite(InvokeInst *II) : CallSiteBase(II) {}
|
|
explicit CallSite(Instruction *II) : CallSiteBase(II) {}
|
|
explicit CallSite(Value *V) : CallSiteBase(V) {}
|
|
|
|
bool operator==(const CallSite &CS) const { return I == CS.I; }
|
|
bool operator!=(const CallSite &CS) const { return I != CS.I; }
|
|
bool operator<(const CallSite &CS) const {
|
|
return getInstruction() < CS.getInstruction();
|
|
}
|
|
|
|
private:
|
|
User::op_iterator getCallee() const;
|
|
};
|
|
|
|
/// ImmutableCallSite - establish a view to a call site for examination
|
|
class ImmutableCallSite : public CallSiteBase<> {
|
|
public:
|
|
ImmutableCallSite() {}
|
|
ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
|
|
ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
|
|
explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
|
|
explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
|
|
ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|