1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
llvm-mirror/test/CodeGen/Generic/MachineBranchProb.ll
Cong Hou 5d51a489ae Replace all weight-based interfaces in MBB with probability-based interfaces, and update all uses of old interfaces.
(This is the second attempt to submit this patch. The first caused two assertion
 failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)

The patch in http://reviews.llvm.org/D13745 is broken into four parts:

1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.

This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.

All uses of weight-based interfaces are now updated to use probability-based
ones.


Differential revision: http://reviews.llvm.org/D14973

llvm-svn: 254377
2015-12-01 05:29:22 +00:00

75 lines
2.3 KiB
LLVM

; RUN: llc < %s -print-machineinstrs=expand-isel-pseudos -o /dev/null 2>&1 | FileCheck %s
; ARM & AArch64 run an extra SimplifyCFG which disrupts this test.
; Hexagon crashes (PR23377)
; XFAIL: arm,aarch64,hexagon
; Make sure we have the correct weight attached to each successor.
define i32 @test2(i32 %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: Machine code for function test2:
entry:
%conv = sext i32 %x to i64
switch i64 %conv, label %return [
i64 0, label %sw.bb
i64 1, label %sw.bb
i64 4, label %sw.bb
i64 5, label %sw.bb1
], !prof !0
; CHECK: BB#0: derived from LLVM BB %entry
; CHECK: Successors according to CFG: BB#2({{[0-9a-fx/= ]+}}75.29%) BB#4({{[0-9a-fx/= ]+}}24.71%)
; CHECK: BB#4: derived from LLVM BB %entry
; CHECK: Successors according to CFG: BB#1({{[0-9a-fx/= ]+}}47.62%) BB#5({{[0-9a-fx/= ]+}}52.38%)
; CHECK: BB#5: derived from LLVM BB %entry
; CHECK: Successors according to CFG: BB#1({{[0-9a-fx/= ]+}}36.36%) BB#3({{[0-9a-fx/= ]+}}63.64%)
sw.bb:
br label %return
sw.bb1:
br label %return
return:
%retval.0 = phi i32 [ 5, %sw.bb1 ], [ 1, %sw.bb ], [ 0, %entry ]
ret i32 %retval.0
}
!0 = !{!"branch_weights", i32 7, i32 6, i32 4, i32 4, i32 64}
declare void @g(i32)
define void @left_leaning_weight_balanced_tree(i32 %x) {
entry:
switch i32 %x, label %return [
i32 0, label %bb0
i32 10, label %bb1
i32 20, label %bb2
i32 30, label %bb3
i32 40, label %bb4
i32 50, label %bb5
], !prof !1
bb0: tail call void @g(i32 0) br label %return
bb1: tail call void @g(i32 1) br label %return
bb2: tail call void @g(i32 2) br label %return
bb3: tail call void @g(i32 3) br label %return
bb4: tail call void @g(i32 4) br label %return
bb5: tail call void @g(i32 5) br label %return
return: ret void
; Check that we set branch weights on the pivot cmp instruction correctly.
; Cases {0,10,20,30} go on the left with weight 13; cases {40,50} go on the
; right with weight 20.
;
; CHECK-LABEL: Machine code for function left_leaning_weight_balanced_tree:
; CHECK: BB#0: derived from LLVM BB %entry
; CHECK-NOT: Successors
; CHECK: Successors according to CFG: BB#8({{[0-9a-fx/= ]+}}39.71%) BB#9({{[0-9a-fx/= ]+}}60.29%)
}
!1 = !{!"branch_weights",
; Default:
i32 1,
; Case 0, 10, 20:
i32 10, i32 1, i32 1,
; Case 30, 40, 50:
i32 1, i32 10, i32 10}