1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
Dan Gohman a0f855157e Use const qualifiers with TargetLowering. This eliminates several
const_casts, and it reinforces the design of the Target classes being
immutable.

SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.

And PIC16's AsmPrinter no longer uses TargetLowering.

llvm-svn: 101635
2010-04-17 15:26:15 +00:00

291 lines
9.7 KiB
C++

//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeVectors method.
//
// The vector legalizer looks for vector operations which might need to be
// scalarized and legalizes them. This is a separate step from Legalize because
// scalarizing can introduce illegal types. For example, suppose we have an
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
// operation, which introduces nodes with the illegal type i64 which must be
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
// the operation must be unrolled, which introduces nodes with the illegal
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
// or operations that happen to take a vector which are custom-lowered;
// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
namespace {
class VectorLegalizer {
SelectionDAG& DAG;
const TargetLowering &TLI;
bool Changed; // Keep track of whether anything changed
/// LegalizedNodes - For nodes that are of legal width, and that have more
/// than one use, this map indicates what regularized operand to use. This
/// allows us to avoid legalizing the same thing more than once.
DenseMap<SDValue, SDValue> LegalizedNodes;
// Adds a node to the translation cache
void AddLegalizedOperand(SDValue From, SDValue To) {
LegalizedNodes.insert(std::make_pair(From, To));
// If someone requests legalization of the new node, return itself.
if (From != To)
LegalizedNodes.insert(std::make_pair(To, To));
}
// Legalizes the given node
SDValue LegalizeOp(SDValue Op);
// Assuming the node is legal, "legalize" the results
SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
// Implements unrolling a VSETCC.
SDValue UnrollVSETCC(SDValue Op);
// Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB
// isn't legal.
SDValue ExpandFNEG(SDValue Op);
// Implements vector promotion; this is essentially just bitcasting the
// operands to a different type and bitcasting the result back to the
// original type.
SDValue PromoteVectorOp(SDValue Op);
public:
bool Run();
VectorLegalizer(SelectionDAG& dag) :
DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
};
bool VectorLegalizer::Run() {
// The legalize process is inherently a bottom-up recursive process (users
// legalize their uses before themselves). Given infinite stack space, we
// could just start legalizing on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, compute an ordering of the nodes where each
// node is only legalized after all of its operands are legalized.
DAG.AssignTopologicalOrder();
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
LegalizeOp(SDValue(I, 0));
// Finally, it's possible the root changed. Get the new root.
SDValue OldRoot = DAG.getRoot();
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
DAG.setRoot(LegalizedNodes[OldRoot]);
LegalizedNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes();
return Changed;
}
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
// Generic legalization: just pass the operand through.
for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
return Result.getValue(Op.getResNo());
}
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
SDNode* Node = Op.getNode();
// Legalize the operands
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
SDValue Result =
DAG.UpdateNodeOperands(Op.getValue(0), Ops.data(), Ops.size());
bool HasVectorValue = false;
for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
J != E;
++J)
HasVectorValue |= J->isVector();
if (!HasVectorValue)
return TranslateLegalizeResults(Op, Result);
EVT QueryType;
switch (Op.getOpcode()) {
default:
return TranslateLegalizeResults(Op, Result);
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::SELECT:
case ISD::SELECT_CC:
case ISD::VSETCC:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FPOWI:
case ISD::FPOW:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FFLOOR:
QueryType = Node->getValueType(0);
break;
case ISD::SIGN_EXTEND_INREG:
case ISD::FP_ROUND_INREG:
QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
QueryType = Node->getOperand(0).getValueType();
break;
}
switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
case TargetLowering::Promote:
// "Promote" the operation by bitcasting
Result = PromoteVectorOp(Op);
Changed = true;
break;
case TargetLowering::Legal: break;
case TargetLowering::Custom: {
SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.getNode()) {
Result = Tmp1;
break;
}
// FALL THROUGH
}
case TargetLowering::Expand:
if (Node->getOpcode() == ISD::FNEG)
Result = ExpandFNEG(Op);
else if (Node->getOpcode() == ISD::VSETCC)
Result = UnrollVSETCC(Op);
else
Result = DAG.UnrollVectorOp(Op.getNode());
break;
}
// Make sure that the generated code is itself legal.
if (Result != Op) {
Result = LegalizeOp(Result);
Changed = true;
}
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
AddLegalizedOperand(Op, Result);
return Result;
}
SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) {
// Vector "promotion" is basically just bitcasting and doing the operation
// in a different type. For example, x86 promotes ISD::AND on v2i32 to
// v1i64.
EVT VT = Op.getValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
EVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
Operands[j] = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op);
}
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
Zero, Op.getOperand(0));
}
return DAG.UnrollVectorOp(Op.getNode());
}
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
EVT VT = Op.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
DAG.getIntPtrConstant(i));
SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
DAG.getIntPtrConstant(i));
Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT),
LHSElem, RHSElem, CC);
Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i],
DAG.getConstant(APInt::getAllOnesValue
(EltVT.getSizeInBits()), EltVT),
DAG.getConstant(0, EltVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems);
}
}
bool SelectionDAG::LegalizeVectors() {
return VectorLegalizer(*this).Run();
}