1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-31 07:52:55 +01:00
llvm-mirror/utils/yaml2obj/yaml2obj.cpp
Michael J. Spencer 8e9968e6f2 [Support][Endian] Add support for specifying the alignment and native unaligned types.
* Add support for specifying the alignment to use.
* Add the concept of native endianness. Used for unaligned native types.

The native alignment and read/write simplification is based on a patch by Richard Smith.

llvm-svn: 171406
2013-01-02 20:14:11 +00:00

880 lines
35 KiB
C++

//===- yaml2obj - Convert YAML to a binary object file --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This program takes a YAML description of an object file and outputs the
// binary equivalent.
//
// This is used for writing tests that require binary files.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <vector>
using namespace llvm;
static cl::opt<std::string>
Input(cl::Positional, cl::desc("<input>"), cl::init("-"));
template<class T>
typename llvm::enable_if_c<std::numeric_limits<T>::is_integer, bool>::type
getAs(const llvm::yaml::ScalarNode *SN, T &Result) {
SmallString<4> Storage;
StringRef Value = SN->getValue(Storage);
if (Value.getAsInteger(0, Result))
return false;
return true;
}
// Given a container with begin and end with ::value_type of a character type.
// Iterate through pairs of characters in the the set of [a-fA-F0-9] ignoring
// all other characters.
struct hex_pair_iterator {
StringRef::const_iterator Current, End;
typedef SmallVector<char, 2> value_type;
value_type Pair;
bool IsDone;
hex_pair_iterator(StringRef C)
: Current(C.begin()), End(C.end()), IsDone(false) {
// Initalize Pair.
++*this;
}
// End iterator.
hex_pair_iterator() : Current(), End(), IsDone(true) {}
value_type operator *() const {
return Pair;
}
hex_pair_iterator operator ++() {
// We're at the end of the input.
if (Current == End) {
IsDone = true;
return *this;
}
Pair = value_type();
for (; Current != End && Pair.size() != 2; ++Current) {
// Is a valid hex digit.
if ((*Current >= '0' && *Current <= '9') ||
(*Current >= 'a' && *Current <= 'f') ||
(*Current >= 'A' && *Current <= 'F'))
Pair.push_back(*Current);
}
// Hit the end without getting 2 hex digits. Pair is invalid.
if (Pair.size() != 2)
IsDone = true;
return *this;
}
bool operator ==(const hex_pair_iterator Other) {
return (IsDone == Other.IsDone) ||
(Current == Other.Current && End == Other.End);
}
bool operator !=(const hex_pair_iterator Other) {
return !(*this == Other);
}
};
template <class ContainerOut>
static bool hexStringToByteArray(StringRef Str, ContainerOut &Out) {
for (hex_pair_iterator I(Str), E; I != E; ++I) {
typename hex_pair_iterator::value_type Pair = *I;
typename ContainerOut::value_type Byte;
if (StringRef(Pair.data(), 2).getAsInteger(16, Byte))
return false;
Out.push_back(Byte);
}
return true;
}
/// This parses a yaml stream that represents a COFF object file.
/// See docs/yaml2obj for the yaml scheema.
struct COFFParser {
COFFParser(yaml::Stream &Input) : YS(Input) {
std::memset(&Header, 0, sizeof(Header));
// A COFF string table always starts with a 4 byte size field. Offsets into
// it include this size, so allocate it now.
StringTable.append(4, 0);
}
bool parseHeader(yaml::Node *HeaderN) {
yaml::MappingNode *MN = dyn_cast<yaml::MappingNode>(HeaderN);
if (!MN) {
YS.printError(HeaderN, "header's value must be a mapping node");
return false;
}
for (yaml::MappingNode::iterator i = MN->begin(), e = MN->end();
i != e; ++i) {
yaml::ScalarNode *Key = dyn_cast<yaml::ScalarNode>(i->getKey());
if (!Key) {
YS.printError(i->getKey(), "Keys must be scalar values");
return false;
}
SmallString<32> Storage;
StringRef KeyValue = Key->getValue(Storage);
if (KeyValue == "Characteristics") {
if (!parseHeaderCharacteristics(i->getValue()))
return false;
} else {
yaml::ScalarNode *Value = dyn_cast<yaml::ScalarNode>(i->getValue());
if (!Value) {
YS.printError(Value,
Twine(KeyValue) + " must be a scalar value");
return false;
}
if (KeyValue == "Machine") {
uint16_t Machine = COFF::MT_Invalid;
if (!getAs(Value, Machine)) {
// It's not a raw number, try matching the string.
StringRef ValueValue = Value->getValue(Storage);
Machine = StringSwitch<COFF::MachineTypes>(ValueValue)
.Case( "IMAGE_FILE_MACHINE_UNKNOWN"
, COFF::IMAGE_FILE_MACHINE_UNKNOWN)
.Case( "IMAGE_FILE_MACHINE_AM33"
, COFF::IMAGE_FILE_MACHINE_AM33)
.Case( "IMAGE_FILE_MACHINE_AMD64"
, COFF::IMAGE_FILE_MACHINE_AMD64)
.Case( "IMAGE_FILE_MACHINE_ARM"
, COFF::IMAGE_FILE_MACHINE_ARM)
.Case( "IMAGE_FILE_MACHINE_ARMV7"
, COFF::IMAGE_FILE_MACHINE_ARMV7)
.Case( "IMAGE_FILE_MACHINE_EBC"
, COFF::IMAGE_FILE_MACHINE_EBC)
.Case( "IMAGE_FILE_MACHINE_I386"
, COFF::IMAGE_FILE_MACHINE_I386)
.Case( "IMAGE_FILE_MACHINE_IA64"
, COFF::IMAGE_FILE_MACHINE_IA64)
.Case( "IMAGE_FILE_MACHINE_M32R"
, COFF::IMAGE_FILE_MACHINE_M32R)
.Case( "IMAGE_FILE_MACHINE_MIPS16"
, COFF::IMAGE_FILE_MACHINE_MIPS16)
.Case( "IMAGE_FILE_MACHINE_MIPSFPU"
, COFF::IMAGE_FILE_MACHINE_MIPSFPU)
.Case( "IMAGE_FILE_MACHINE_MIPSFPU16"
, COFF::IMAGE_FILE_MACHINE_MIPSFPU16)
.Case( "IMAGE_FILE_MACHINE_POWERPC"
, COFF::IMAGE_FILE_MACHINE_POWERPC)
.Case( "IMAGE_FILE_MACHINE_POWERPCFP"
, COFF::IMAGE_FILE_MACHINE_POWERPCFP)
.Case( "IMAGE_FILE_MACHINE_R4000"
, COFF::IMAGE_FILE_MACHINE_R4000)
.Case( "IMAGE_FILE_MACHINE_SH3"
, COFF::IMAGE_FILE_MACHINE_SH3)
.Case( "IMAGE_FILE_MACHINE_SH3DSP"
, COFF::IMAGE_FILE_MACHINE_SH3DSP)
.Case( "IMAGE_FILE_MACHINE_SH4"
, COFF::IMAGE_FILE_MACHINE_SH4)
.Case( "IMAGE_FILE_MACHINE_SH5"
, COFF::IMAGE_FILE_MACHINE_SH5)
.Case( "IMAGE_FILE_MACHINE_THUMB"
, COFF::IMAGE_FILE_MACHINE_THUMB)
.Case( "IMAGE_FILE_MACHINE_WCEMIPSV2"
, COFF::IMAGE_FILE_MACHINE_WCEMIPSV2)
.Default(COFF::MT_Invalid);
if (Machine == COFF::MT_Invalid) {
YS.printError(Value, "Invalid value for Machine");
return false;
}
}
Header.Machine = Machine;
} else if (KeyValue == "NumberOfSections") {
if (!getAs(Value, Header.NumberOfSections)) {
YS.printError(Value, "Invalid value for NumberOfSections");
return false;
}
} else if (KeyValue == "TimeDateStamp") {
if (!getAs(Value, Header.TimeDateStamp)) {
YS.printError(Value, "Invalid value for TimeDateStamp");
return false;
}
} else if (KeyValue == "PointerToSymbolTable") {
if (!getAs(Value, Header.PointerToSymbolTable)) {
YS.printError(Value, "Invalid value for PointerToSymbolTable");
return false;
}
} else if (KeyValue == "NumberOfSymbols") {
if (!getAs(Value, Header.NumberOfSymbols)) {
YS.printError(Value, "Invalid value for NumberOfSymbols");
return false;
}
} else if (KeyValue == "SizeOfOptionalHeader") {
if (!getAs(Value, Header.SizeOfOptionalHeader)) {
YS.printError(Value, "Invalid value for SizeOfOptionalHeader");
return false;
}
} else {
YS.printError(Key, "Unrecognized key in header");
return false;
}
}
}
return true;
}
bool parseHeaderCharacteristics(yaml::Node *Characteristics) {
yaml::ScalarNode *Value = dyn_cast<yaml::ScalarNode>(Characteristics);
yaml::SequenceNode *SeqValue
= dyn_cast<yaml::SequenceNode>(Characteristics);
if (!Value && !SeqValue) {
YS.printError(Characteristics,
"Characteristics must either be a number or sequence");
return false;
}
if (Value) {
if (!getAs(Value, Header.Characteristics)) {
YS.printError(Value, "Invalid value for Characteristics");
return false;
}
} else {
for (yaml::SequenceNode::iterator ci = SeqValue->begin(),
ce = SeqValue->end();
ci != ce; ++ci) {
yaml::ScalarNode *CharValue = dyn_cast<yaml::ScalarNode>(&*ci);
if (!CharValue) {
YS.printError(CharValue,
"Characteristics must be scalar values");
return false;
}
SmallString<32> Storage;
StringRef Char = CharValue->getValue(Storage);
uint16_t Characteristic = StringSwitch<COFF::Characteristics>(Char)
.Case( "IMAGE_FILE_RELOCS_STRIPPED"
, COFF::IMAGE_FILE_RELOCS_STRIPPED)
.Case( "IMAGE_FILE_EXECUTABLE_IMAGE"
, COFF::IMAGE_FILE_EXECUTABLE_IMAGE)
.Case( "IMAGE_FILE_LINE_NUMS_STRIPPED"
, COFF::IMAGE_FILE_LINE_NUMS_STRIPPED)
.Case( "IMAGE_FILE_LOCAL_SYMS_STRIPPED"
, COFF::IMAGE_FILE_LOCAL_SYMS_STRIPPED)
.Case( "IMAGE_FILE_AGGRESSIVE_WS_TRIM"
, COFF::IMAGE_FILE_AGGRESSIVE_WS_TRIM)
.Case( "IMAGE_FILE_LARGE_ADDRESS_AWARE"
, COFF::IMAGE_FILE_LARGE_ADDRESS_AWARE)
.Case( "IMAGE_FILE_BYTES_REVERSED_LO"
, COFF::IMAGE_FILE_BYTES_REVERSED_LO)
.Case( "IMAGE_FILE_32BIT_MACHINE"
, COFF::IMAGE_FILE_32BIT_MACHINE)
.Case( "IMAGE_FILE_DEBUG_STRIPPED"
, COFF::IMAGE_FILE_DEBUG_STRIPPED)
.Case( "IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP"
, COFF::IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP)
.Case( "IMAGE_FILE_SYSTEM"
, COFF::IMAGE_FILE_SYSTEM)
.Case( "IMAGE_FILE_DLL"
, COFF::IMAGE_FILE_DLL)
.Case( "IMAGE_FILE_UP_SYSTEM_ONLY"
, COFF::IMAGE_FILE_UP_SYSTEM_ONLY)
.Default(COFF::C_Invalid);
if (Characteristic == COFF::C_Invalid) {
// TODO: Typo-correct.
YS.printError(CharValue,
"Invalid value for Characteristic");
return false;
}
Header.Characteristics |= Characteristic;
}
}
return true;
}
bool parseSections(yaml::Node *SectionsN) {
yaml::SequenceNode *SN = dyn_cast<yaml::SequenceNode>(SectionsN);
if (!SN) {
YS.printError(SectionsN, "Sections must be a sequence");
return false;
}
for (yaml::SequenceNode::iterator i = SN->begin(), e = SN->end();
i != e; ++i) {
Section Sec;
std::memset(&Sec.Header, 0, sizeof(Sec.Header));
yaml::MappingNode *SecMap = dyn_cast<yaml::MappingNode>(&*i);
if (!SecMap) {
YS.printError(&*i, "Section entry must be a map");
return false;
}
for (yaml::MappingNode::iterator si = SecMap->begin(), se = SecMap->end();
si != se; ++si) {
yaml::ScalarNode *Key = dyn_cast<yaml::ScalarNode>(si->getKey());
if (!Key) {
YS.printError(si->getKey(), "Keys must be scalar values");
return false;
}
SmallString<32> Storage;
StringRef KeyValue = Key->getValue(Storage);
yaml::ScalarNode *Value = dyn_cast<yaml::ScalarNode>(si->getValue());
if (KeyValue == "Name") {
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = Value->getValue(Storage);
std::fill_n(Sec.Header.Name, unsigned(COFF::NameSize), 0);
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sec.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
std::string str = utostr(Index);
if (str.size() > 7) {
YS.printError(Value, "String table got too large");
return false;
}
Sec.Header.Name[0] = '/';
std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
}
} else if (KeyValue == "VirtualSize") {
if (!getAs(Value, Sec.Header.VirtualSize)) {
YS.printError(Value, "Invalid value for VirtualSize");
return false;
}
} else if (KeyValue == "VirtualAddress") {
if (!getAs(Value, Sec.Header.VirtualAddress)) {
YS.printError(Value, "Invalid value for VirtualAddress");
return false;
}
} else if (KeyValue == "SizeOfRawData") {
if (!getAs(Value, Sec.Header.SizeOfRawData)) {
YS.printError(Value, "Invalid value for SizeOfRawData");
return false;
}
} else if (KeyValue == "PointerToRawData") {
if (!getAs(Value, Sec.Header.PointerToRawData)) {
YS.printError(Value, "Invalid value for PointerToRawData");
return false;
}
} else if (KeyValue == "PointerToRelocations") {
if (!getAs(Value, Sec.Header.PointerToRelocations)) {
YS.printError(Value, "Invalid value for PointerToRelocations");
return false;
}
} else if (KeyValue == "PointerToLineNumbers") {
if (!getAs(Value, Sec.Header.PointerToLineNumbers)) {
YS.printError(Value, "Invalid value for PointerToLineNumbers");
return false;
}
} else if (KeyValue == "NumberOfRelocations") {
if (!getAs(Value, Sec.Header.NumberOfRelocations)) {
YS.printError(Value, "Invalid value for NumberOfRelocations");
return false;
}
} else if (KeyValue == "NumberOfLineNumbers") {
if (!getAs(Value, Sec.Header.NumberOfLineNumbers)) {
YS.printError(Value, "Invalid value for NumberOfLineNumbers");
return false;
}
} else if (KeyValue == "Characteristics") {
yaml::SequenceNode *SeqValue
= dyn_cast<yaml::SequenceNode>(si->getValue());
if (!Value && !SeqValue) {
YS.printError(si->getValue(),
"Characteristics must either be a number or sequence");
return false;
}
if (Value) {
if (!getAs(Value, Sec.Header.Characteristics)) {
YS.printError(Value, "Invalid value for Characteristics");
return false;
}
} else {
for (yaml::SequenceNode::iterator ci = SeqValue->begin(),
ce = SeqValue->end();
ci != ce; ++ci) {
yaml::ScalarNode *CharValue = dyn_cast<yaml::ScalarNode>(&*ci);
if (!CharValue) {
YS.printError(CharValue, "Invalid value for Characteristics");
return false;
}
StringRef Char = CharValue->getValue(Storage);
uint32_t Characteristic =
StringSwitch<COFF::SectionCharacteristics>(Char)
.Case( "IMAGE_SCN_TYPE_NO_PAD"
, COFF::IMAGE_SCN_TYPE_NO_PAD)
.Case( "IMAGE_SCN_CNT_CODE"
, COFF::IMAGE_SCN_CNT_CODE)
.Case( "IMAGE_SCN_CNT_INITIALIZED_DATA"
, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
.Case( "IMAGE_SCN_CNT_UNINITIALIZED_DATA"
, COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
.Case( "IMAGE_SCN_LNK_OTHER"
, COFF::IMAGE_SCN_LNK_OTHER)
.Case( "IMAGE_SCN_LNK_INFO"
, COFF::IMAGE_SCN_LNK_INFO)
.Case( "IMAGE_SCN_LNK_REMOVE"
, COFF::IMAGE_SCN_LNK_REMOVE)
.Case( "IMAGE_SCN_LNK_COMDAT"
, COFF::IMAGE_SCN_LNK_COMDAT)
.Case( "IMAGE_SCN_GPREL"
, COFF::IMAGE_SCN_GPREL)
.Case( "IMAGE_SCN_MEM_PURGEABLE"
, COFF::IMAGE_SCN_MEM_PURGEABLE)
.Case( "IMAGE_SCN_MEM_16BIT"
, COFF::IMAGE_SCN_MEM_16BIT)
.Case( "IMAGE_SCN_MEM_LOCKED"
, COFF::IMAGE_SCN_MEM_LOCKED)
.Case( "IMAGE_SCN_MEM_PRELOAD"
, COFF::IMAGE_SCN_MEM_PRELOAD)
.Case( "IMAGE_SCN_ALIGN_1BYTES"
, COFF::IMAGE_SCN_ALIGN_1BYTES)
.Case( "IMAGE_SCN_ALIGN_2BYTES"
, COFF::IMAGE_SCN_ALIGN_2BYTES)
.Case( "IMAGE_SCN_ALIGN_4BYTES"
, COFF::IMAGE_SCN_ALIGN_4BYTES)
.Case( "IMAGE_SCN_ALIGN_8BYTES"
, COFF::IMAGE_SCN_ALIGN_8BYTES)
.Case( "IMAGE_SCN_ALIGN_16BYTES"
, COFF::IMAGE_SCN_ALIGN_16BYTES)
.Case( "IMAGE_SCN_ALIGN_32BYTES"
, COFF::IMAGE_SCN_ALIGN_32BYTES)
.Case( "IMAGE_SCN_ALIGN_64BYTES"
, COFF::IMAGE_SCN_ALIGN_64BYTES)
.Case( "IMAGE_SCN_ALIGN_128BYTES"
, COFF::IMAGE_SCN_ALIGN_128BYTES)
.Case( "IMAGE_SCN_ALIGN_256BYTES"
, COFF::IMAGE_SCN_ALIGN_256BYTES)
.Case( "IMAGE_SCN_ALIGN_512BYTES"
, COFF::IMAGE_SCN_ALIGN_512BYTES)
.Case( "IMAGE_SCN_ALIGN_1024BYTES"
, COFF::IMAGE_SCN_ALIGN_1024BYTES)
.Case( "IMAGE_SCN_ALIGN_2048BYTES"
, COFF::IMAGE_SCN_ALIGN_2048BYTES)
.Case( "IMAGE_SCN_ALIGN_4096BYTES"
, COFF::IMAGE_SCN_ALIGN_4096BYTES)
.Case( "IMAGE_SCN_ALIGN_8192BYTES"
, COFF::IMAGE_SCN_ALIGN_8192BYTES)
.Case( "IMAGE_SCN_LNK_NRELOC_OVFL"
, COFF::IMAGE_SCN_LNK_NRELOC_OVFL)
.Case( "IMAGE_SCN_MEM_DISCARDABLE"
, COFF::IMAGE_SCN_MEM_DISCARDABLE)
.Case( "IMAGE_SCN_MEM_NOT_CACHED"
, COFF::IMAGE_SCN_MEM_NOT_CACHED)
.Case( "IMAGE_SCN_MEM_NOT_PAGED"
, COFF::IMAGE_SCN_MEM_NOT_PAGED)
.Case( "IMAGE_SCN_MEM_SHARED"
, COFF::IMAGE_SCN_MEM_SHARED)
.Case( "IMAGE_SCN_MEM_EXECUTE"
, COFF::IMAGE_SCN_MEM_EXECUTE)
.Case( "IMAGE_SCN_MEM_READ"
, COFF::IMAGE_SCN_MEM_READ)
.Case( "IMAGE_SCN_MEM_WRITE"
, COFF::IMAGE_SCN_MEM_WRITE)
.Default(COFF::SC_Invalid);
if (Characteristic == COFF::SC_Invalid) {
YS.printError(CharValue, "Invalid value for Characteristic");
return false;
}
Sec.Header.Characteristics |= Characteristic;
}
}
} else if (KeyValue == "SectionData") {
yaml::ScalarNode *Value = dyn_cast<yaml::ScalarNode>(si->getValue());
SmallString<32> Storage;
StringRef Data = Value->getValue(Storage);
if (!hexStringToByteArray(Data, Sec.Data)) {
YS.printError(Value, "SectionData must be a collection of pairs of"
"hex bytes");
return false;
}
} else
si->skip();
}
Sections.push_back(Sec);
}
return true;
}
bool parseSymbols(yaml::Node *SymbolsN) {
yaml::SequenceNode *SN = dyn_cast<yaml::SequenceNode>(SymbolsN);
if (!SN) {
YS.printError(SymbolsN, "Symbols must be a sequence");
return false;
}
for (yaml::SequenceNode::iterator i = SN->begin(), e = SN->end();
i != e; ++i) {
Symbol Sym;
std::memset(&Sym.Header, 0, sizeof(Sym.Header));
yaml::MappingNode *SymMap = dyn_cast<yaml::MappingNode>(&*i);
if (!SymMap) {
YS.printError(&*i, "Symbol must be a map");
return false;
}
for (yaml::MappingNode::iterator si = SymMap->begin(), se = SymMap->end();
si != se; ++si) {
yaml::ScalarNode *Key = dyn_cast<yaml::ScalarNode>(si->getKey());
if (!Key) {
YS.printError(si->getKey(), "Keys must be scalar values");
return false;
}
SmallString<32> Storage;
StringRef KeyValue = Key->getValue(Storage);
yaml::ScalarNode *Value = dyn_cast<yaml::ScalarNode>(si->getValue());
if (!Value) {
YS.printError(si->getValue(), "Must be a scalar value");
return false;
}
if (KeyValue == "Name") {
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = Value->getValue(Storage);
std::fill_n(Sym.Header.Name, unsigned(COFF::NameSize), 0);
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sym.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
*reinterpret_cast<support::aligned_ulittle32_t*>(
Sym.Header.Name + 4) = Index;
}
} else if (KeyValue == "Value") {
if (!getAs(Value, Sym.Header.Value)) {
YS.printError(Value, "Invalid value for Value");
return false;
}
} else if (KeyValue == "SimpleType") {
Sym.Header.Type |= StringSwitch<COFF::SymbolBaseType>(
Value->getValue(Storage))
.Case("IMAGE_SYM_TYPE_NULL", COFF::IMAGE_SYM_TYPE_NULL)
.Case("IMAGE_SYM_TYPE_VOID", COFF::IMAGE_SYM_TYPE_VOID)
.Case("IMAGE_SYM_TYPE_CHAR", COFF::IMAGE_SYM_TYPE_CHAR)
.Case("IMAGE_SYM_TYPE_SHORT", COFF::IMAGE_SYM_TYPE_SHORT)
.Case("IMAGE_SYM_TYPE_INT", COFF::IMAGE_SYM_TYPE_INT)
.Case("IMAGE_SYM_TYPE_LONG", COFF::IMAGE_SYM_TYPE_LONG)
.Case("IMAGE_SYM_TYPE_FLOAT", COFF::IMAGE_SYM_TYPE_FLOAT)
.Case("IMAGE_SYM_TYPE_DOUBLE", COFF::IMAGE_SYM_TYPE_DOUBLE)
.Case("IMAGE_SYM_TYPE_STRUCT", COFF::IMAGE_SYM_TYPE_STRUCT)
.Case("IMAGE_SYM_TYPE_UNION", COFF::IMAGE_SYM_TYPE_UNION)
.Case("IMAGE_SYM_TYPE_ENUM", COFF::IMAGE_SYM_TYPE_ENUM)
.Case("IMAGE_SYM_TYPE_MOE", COFF::IMAGE_SYM_TYPE_MOE)
.Case("IMAGE_SYM_TYPE_BYTE", COFF::IMAGE_SYM_TYPE_BYTE)
.Case("IMAGE_SYM_TYPE_WORD", COFF::IMAGE_SYM_TYPE_WORD)
.Case("IMAGE_SYM_TYPE_UINT", COFF::IMAGE_SYM_TYPE_UINT)
.Case("IMAGE_SYM_TYPE_DWORD", COFF::IMAGE_SYM_TYPE_DWORD)
.Default(COFF::IMAGE_SYM_TYPE_NULL);
} else if (KeyValue == "ComplexType") {
Sym.Header.Type |= StringSwitch<COFF::SymbolComplexType>(
Value->getValue(Storage))
.Case("IMAGE_SYM_DTYPE_NULL", COFF::IMAGE_SYM_DTYPE_NULL)
.Case("IMAGE_SYM_DTYPE_POINTER", COFF::IMAGE_SYM_DTYPE_POINTER)
.Case("IMAGE_SYM_DTYPE_FUNCTION", COFF::IMAGE_SYM_DTYPE_FUNCTION)
.Case("IMAGE_SYM_DTYPE_ARRAY", COFF::IMAGE_SYM_DTYPE_ARRAY)
.Default(COFF::IMAGE_SYM_DTYPE_NULL)
<< COFF::SCT_COMPLEX_TYPE_SHIFT;
} else if (KeyValue == "StorageClass") {
Sym.Header.StorageClass = StringSwitch<COFF::SymbolStorageClass>(
Value->getValue(Storage))
.Case( "IMAGE_SYM_CLASS_END_OF_FUNCTION"
, COFF::IMAGE_SYM_CLASS_END_OF_FUNCTION)
.Case( "IMAGE_SYM_CLASS_NULL"
, COFF::IMAGE_SYM_CLASS_NULL)
.Case( "IMAGE_SYM_CLASS_AUTOMATIC"
, COFF::IMAGE_SYM_CLASS_AUTOMATIC)
.Case( "IMAGE_SYM_CLASS_EXTERNAL"
, COFF::IMAGE_SYM_CLASS_EXTERNAL)
.Case( "IMAGE_SYM_CLASS_STATIC"
, COFF::IMAGE_SYM_CLASS_STATIC)
.Case( "IMAGE_SYM_CLASS_REGISTER"
, COFF::IMAGE_SYM_CLASS_REGISTER)
.Case( "IMAGE_SYM_CLASS_EXTERNAL_DEF"
, COFF::IMAGE_SYM_CLASS_EXTERNAL_DEF)
.Case( "IMAGE_SYM_CLASS_LABEL"
, COFF::IMAGE_SYM_CLASS_LABEL)
.Case( "IMAGE_SYM_CLASS_UNDEFINED_LABEL"
, COFF::IMAGE_SYM_CLASS_UNDEFINED_LABEL)
.Case( "IMAGE_SYM_CLASS_MEMBER_OF_STRUCT"
, COFF::IMAGE_SYM_CLASS_MEMBER_OF_STRUCT)
.Case( "IMAGE_SYM_CLASS_ARGUMENT"
, COFF::IMAGE_SYM_CLASS_ARGUMENT)
.Case( "IMAGE_SYM_CLASS_STRUCT_TAG"
, COFF::IMAGE_SYM_CLASS_STRUCT_TAG)
.Case( "IMAGE_SYM_CLASS_MEMBER_OF_UNION"
, COFF::IMAGE_SYM_CLASS_MEMBER_OF_UNION)
.Case( "IMAGE_SYM_CLASS_UNION_TAG"
, COFF::IMAGE_SYM_CLASS_UNION_TAG)
.Case( "IMAGE_SYM_CLASS_TYPE_DEFINITION"
, COFF::IMAGE_SYM_CLASS_TYPE_DEFINITION)
.Case( "IMAGE_SYM_CLASS_UNDEFINED_STATIC"
, COFF::IMAGE_SYM_CLASS_UNDEFINED_STATIC)
.Case( "IMAGE_SYM_CLASS_ENUM_TAG"
, COFF::IMAGE_SYM_CLASS_ENUM_TAG)
.Case( "IMAGE_SYM_CLASS_MEMBER_OF_ENUM"
, COFF::IMAGE_SYM_CLASS_MEMBER_OF_ENUM)
.Case( "IMAGE_SYM_CLASS_REGISTER_PARAM"
, COFF::IMAGE_SYM_CLASS_REGISTER_PARAM)
.Case( "IMAGE_SYM_CLASS_BIT_FIELD"
, COFF::IMAGE_SYM_CLASS_BIT_FIELD)
.Case( "IMAGE_SYM_CLASS_BLOCK"
, COFF::IMAGE_SYM_CLASS_BLOCK)
.Case( "IMAGE_SYM_CLASS_FUNCTION"
, COFF::IMAGE_SYM_CLASS_FUNCTION)
.Case( "IMAGE_SYM_CLASS_END_OF_STRUCT"
, COFF::IMAGE_SYM_CLASS_END_OF_STRUCT)
.Case( "IMAGE_SYM_CLASS_FILE"
, COFF::IMAGE_SYM_CLASS_FILE)
.Case( "IMAGE_SYM_CLASS_SECTION"
, COFF::IMAGE_SYM_CLASS_SECTION)
.Case( "IMAGE_SYM_CLASS_WEAK_EXTERNAL"
, COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL)
.Case( "IMAGE_SYM_CLASS_CLR_TOKEN"
, COFF::IMAGE_SYM_CLASS_CLR_TOKEN)
.Default(COFF::SSC_Invalid);
if (Sym.Header.StorageClass == COFF::SSC_Invalid) {
YS.printError(Value, "Invalid value for StorageClass");
return false;
}
} else if (KeyValue == "SectionNumber") {
if (!getAs(Value, Sym.Header.SectionNumber)) {
YS.printError(Value, "Invalid value for SectionNumber");
return false;
}
} else if (KeyValue == "AuxillaryData") {
StringRef Data = Value->getValue(Storage);
if (!hexStringToByteArray(Data, Sym.AuxSymbols)) {
YS.printError(Value, "AuxillaryData must be a collection of pairs"
"of hex bytes");
return false;
}
} else
si->skip();
}
Symbols.push_back(Sym);
}
return true;
}
bool parse() {
yaml::Document &D = *YS.begin();
yaml::MappingNode *Root = dyn_cast<yaml::MappingNode>(D.getRoot());
if (!Root) {
YS.printError(D.getRoot(), "Root node must be a map");
return false;
}
for (yaml::MappingNode::iterator i = Root->begin(), e = Root->end();
i != e; ++i) {
yaml::ScalarNode *Key = dyn_cast<yaml::ScalarNode>(i->getKey());
if (!Key) {
YS.printError(i->getKey(), "Keys must be scalar values");
return false;
}
SmallString<32> Storage;
StringRef KeyValue = Key->getValue(Storage);
if (KeyValue == "header") {
if (!parseHeader(i->getValue()))
return false;
} else if (KeyValue == "sections") {
if (!parseSections(i->getValue()))
return false;
} else if (KeyValue == "symbols") {
if (!parseSymbols(i->getValue()))
return false;
}
}
return !YS.failed();
}
unsigned getStringIndex(StringRef Str) {
StringMap<unsigned>::iterator i = StringTableMap.find(Str);
if (i == StringTableMap.end()) {
unsigned Index = StringTable.size();
StringTable.append(Str.begin(), Str.end());
StringTable.push_back(0);
StringTableMap[Str] = Index;
return Index;
}
return i->second;
}
yaml::Stream &YS;
COFF::header Header;
struct Section {
COFF::section Header;
std::vector<uint8_t> Data;
std::vector<COFF::relocation> Relocations;
};
struct Symbol {
COFF::symbol Header;
std::vector<uint8_t> AuxSymbols;
};
std::vector<Section> Sections;
std::vector<Symbol> Symbols;
StringMap<unsigned> StringTableMap;
std::string StringTable;
};
// Take a CP and assign addresses and sizes to everything. Returns false if the
// layout is not valid to do.
static bool layoutCOFF(COFFParser &CP) {
uint32_t SectionTableStart = 0;
uint32_t SectionTableSize = 0;
// The section table starts immediately after the header, including the
// optional header.
SectionTableStart = sizeof(COFF::header) + CP.Header.SizeOfOptionalHeader;
SectionTableSize = sizeof(COFF::section) * CP.Sections.size();
uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
// Assign each section data address consecutively.
for (std::vector<COFFParser::Section>::iterator i = CP.Sections.begin(),
e = CP.Sections.end();
i != e; ++i) {
if (!i->Data.empty()) {
i->Header.SizeOfRawData = i->Data.size();
i->Header.PointerToRawData = CurrentSectionDataOffset;
CurrentSectionDataOffset += i->Header.SizeOfRawData;
// TODO: Handle alignment.
} else {
i->Header.SizeOfRawData = 0;
i->Header.PointerToRawData = 0;
}
}
uint32_t SymbolTableStart = CurrentSectionDataOffset;
// Calculate number of symbols.
uint32_t NumberOfSymbols = 0;
for (std::vector<COFFParser::Symbol>::iterator i = CP.Symbols.begin(),
e = CP.Symbols.end();
i != e; ++i) {
if (i->AuxSymbols.size() % COFF::SymbolSize != 0) {
errs() << "AuxillaryData size not a multiple of symbol size!\n";
return false;
}
i->Header.NumberOfAuxSymbols = i->AuxSymbols.size() / COFF::SymbolSize;
NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols;
}
// Store all the allocated start addresses in the header.
CP.Header.NumberOfSections = CP.Sections.size();
CP.Header.NumberOfSymbols = NumberOfSymbols;
CP.Header.PointerToSymbolTable = SymbolTableStart;
*reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
= CP.StringTable.size();
return true;
}
template <typename value_type>
struct binary_le_impl {
value_type Value;
binary_le_impl(value_type V) : Value(V) {}
};
template <typename value_type>
raw_ostream &operator <<( raw_ostream &OS
, const binary_le_impl<value_type> &BLE) {
char Buffer[sizeof(BLE.Value)];
support::endian::write<value_type, support::little, support::unaligned>(
Buffer, BLE.Value);
OS.write(Buffer, sizeof(BLE.Value));
return OS;
}
template <typename value_type>
binary_le_impl<value_type> binary_le(value_type V) {
return binary_le_impl<value_type>(V);
}
void writeCOFF(COFFParser &CP, raw_ostream &OS) {
OS << binary_le(CP.Header.Machine)
<< binary_le(CP.Header.NumberOfSections)
<< binary_le(CP.Header.TimeDateStamp)
<< binary_le(CP.Header.PointerToSymbolTable)
<< binary_le(CP.Header.NumberOfSymbols)
<< binary_le(CP.Header.SizeOfOptionalHeader)
<< binary_le(CP.Header.Characteristics);
// Output section table.
for (std::vector<COFFParser::Section>::const_iterator i = CP.Sections.begin(),
e = CP.Sections.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.VirtualSize)
<< binary_le(i->Header.VirtualAddress)
<< binary_le(i->Header.SizeOfRawData)
<< binary_le(i->Header.PointerToRawData)
<< binary_le(i->Header.PointerToRelocations)
<< binary_le(i->Header.PointerToLineNumbers)
<< binary_le(i->Header.NumberOfRelocations)
<< binary_le(i->Header.NumberOfLineNumbers)
<< binary_le(i->Header.Characteristics);
}
// Output section data.
for (std::vector<COFFParser::Section>::const_iterator i = CP.Sections.begin(),
e = CP.Sections.end();
i != e; ++i) {
if (!i->Data.empty())
OS.write(reinterpret_cast<const char*>(&i->Data[0]), i->Data.size());
}
// Output symbol table.
for (std::vector<COFFParser::Symbol>::const_iterator i = CP.Symbols.begin(),
e = CP.Symbols.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.Value)
<< binary_le(i->Header.SectionNumber)
<< binary_le(i->Header.Type)
<< binary_le(i->Header.StorageClass)
<< binary_le(i->Header.NumberOfAuxSymbols);
if (!i->AuxSymbols.empty())
OS.write( reinterpret_cast<const char*>(&i->AuxSymbols[0])
, i->AuxSymbols.size());
}
// Output string table.
OS.write(&CP.StringTable[0], CP.StringTable.size());
}
int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv);
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
OwningPtr<MemoryBuffer> Buf;
if (MemoryBuffer::getFileOrSTDIN(Input, Buf))
return 1;
SourceMgr SM;
yaml::Stream S(Buf->getBuffer(), SM);
COFFParser CP(S);
if (!CP.parse()) {
errs() << "yaml2obj: Failed to parse YAML file!\n";
return 1;
}
if (!layoutCOFF(CP)) {
errs() << "yaml2obj: Failed to layout COFF file!\n";
return 1;
}
writeCOFF(CP, outs());
}