mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
da574d3bff
For sections with different virtual and physical addresses, alignment and placement in the output binary should be based on the physical address. Ran into this problem with a bare metal ARM project where llvm-objcopy added a lot of zero-padding before the .data section that had differing addresses. GNU objcopy did not add the padding, and after this fix, neither does llvm-objcopy. Update a test case so a section has different physical and virtual addresses. Fixes B35708 Authored By: Owen Shaw (owenpshaw) Differential Revision: https://reviews.llvm.org/D41619 llvm-svn: 323144
1043 lines
36 KiB
C++
1043 lines
36 KiB
C++
//===- Object.cpp ---------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Object.h"
|
|
#include "llvm-objcopy.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FileOutputBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace object;
|
|
using namespace ELF;
|
|
|
|
template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
|
|
using Elf_Ehdr = typename ELFT::Ehdr;
|
|
using Elf_Phdr = typename ELFT::Phdr;
|
|
|
|
uint8_t *Buf = Out.getBufferStart();
|
|
Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
|
|
Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
|
|
Phdr.p_type = Type;
|
|
Phdr.p_flags = Flags;
|
|
Phdr.p_offset = Offset;
|
|
Phdr.p_vaddr = VAddr;
|
|
Phdr.p_paddr = PAddr;
|
|
Phdr.p_filesz = FileSize;
|
|
Phdr.p_memsz = MemSize;
|
|
Phdr.p_align = Align;
|
|
}
|
|
|
|
void Segment::writeSegment(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
// We want to maintain segments' interstitial data and contents exactly.
|
|
// This lets us just copy segments directly.
|
|
std::copy(std::begin(Contents), std::end(Contents), Buf);
|
|
}
|
|
|
|
void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
|
|
void SectionBase::initialize(SectionTableRef SecTable) {}
|
|
void SectionBase::finalize() {}
|
|
|
|
template <class ELFT>
|
|
void SectionBase::writeHeader(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart();
|
|
Buf += HeaderOffset;
|
|
typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
|
|
Shdr.sh_name = NameIndex;
|
|
Shdr.sh_type = Type;
|
|
Shdr.sh_flags = Flags;
|
|
Shdr.sh_addr = Addr;
|
|
Shdr.sh_offset = Offset;
|
|
Shdr.sh_size = Size;
|
|
Shdr.sh_link = Link;
|
|
Shdr.sh_info = Info;
|
|
Shdr.sh_addralign = Align;
|
|
Shdr.sh_entsize = EntrySize;
|
|
}
|
|
|
|
void Section::writeSection(FileOutputBuffer &Out) const {
|
|
if (Type == SHT_NOBITS)
|
|
return;
|
|
uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
std::copy(std::begin(Contents), std::end(Contents), Buf);
|
|
}
|
|
|
|
void OwnedDataSection::writeSection(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
std::copy(std::begin(Data), std::end(Data), Buf);
|
|
}
|
|
|
|
void StringTableSection::addString(StringRef Name) {
|
|
StrTabBuilder.add(Name);
|
|
Size = StrTabBuilder.getSize();
|
|
}
|
|
|
|
uint32_t StringTableSection::findIndex(StringRef Name) const {
|
|
return StrTabBuilder.getOffset(Name);
|
|
}
|
|
|
|
void StringTableSection::finalize() { StrTabBuilder.finalize(); }
|
|
|
|
void StringTableSection::writeSection(FileOutputBuffer &Out) const {
|
|
StrTabBuilder.write(Out.getBufferStart() + Offset);
|
|
}
|
|
|
|
static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
|
|
switch (Index) {
|
|
case SHN_ABS:
|
|
case SHN_COMMON:
|
|
return true;
|
|
}
|
|
if (Machine == EM_HEXAGON) {
|
|
switch (Index) {
|
|
case SHN_HEXAGON_SCOMMON:
|
|
case SHN_HEXAGON_SCOMMON_2:
|
|
case SHN_HEXAGON_SCOMMON_4:
|
|
case SHN_HEXAGON_SCOMMON_8:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint16_t Symbol::getShndx() const {
|
|
if (DefinedIn != nullptr) {
|
|
return DefinedIn->Index;
|
|
}
|
|
switch (ShndxType) {
|
|
// This means that we don't have a defined section but we do need to
|
|
// output a legitimate section index.
|
|
case SYMBOL_SIMPLE_INDEX:
|
|
return SHN_UNDEF;
|
|
case SYMBOL_ABS:
|
|
case SYMBOL_COMMON:
|
|
case SYMBOL_HEXAGON_SCOMMON:
|
|
case SYMBOL_HEXAGON_SCOMMON_2:
|
|
case SYMBOL_HEXAGON_SCOMMON_4:
|
|
case SYMBOL_HEXAGON_SCOMMON_8:
|
|
return static_cast<uint16_t>(ShndxType);
|
|
}
|
|
llvm_unreachable("Symbol with invalid ShndxType encountered");
|
|
}
|
|
|
|
void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
|
|
SectionBase *DefinedIn, uint64_t Value,
|
|
uint8_t Visibility, uint16_t Shndx,
|
|
uint64_t Sz) {
|
|
Symbol Sym;
|
|
Sym.Name = Name;
|
|
Sym.Binding = Bind;
|
|
Sym.Type = Type;
|
|
Sym.DefinedIn = DefinedIn;
|
|
if (DefinedIn == nullptr) {
|
|
if (Shndx >= SHN_LORESERVE)
|
|
Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
|
|
else
|
|
Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
|
|
}
|
|
Sym.Value = Value;
|
|
Sym.Visibility = Visibility;
|
|
Sym.Size = Sz;
|
|
Sym.Index = Symbols.size();
|
|
Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
|
|
Size += this->EntrySize;
|
|
}
|
|
|
|
void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
|
|
if (SymbolNames == Sec) {
|
|
error("String table " + SymbolNames->Name +
|
|
" cannot be removed because it is referenced by the symbol table " +
|
|
this->Name);
|
|
}
|
|
auto Iter =
|
|
std::remove_if(std::begin(Symbols), std::end(Symbols),
|
|
[=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
|
|
Size -= (std::end(Symbols) - Iter) * this->EntrySize;
|
|
Symbols.erase(Iter, std::end(Symbols));
|
|
}
|
|
|
|
void SymbolTableSection::localize(
|
|
std::function<bool(const Symbol &)> ToLocalize) {
|
|
for (const auto &Sym : Symbols) {
|
|
if (ToLocalize(*Sym))
|
|
Sym->Binding = STB_LOCAL;
|
|
}
|
|
|
|
// Now that the local symbols aren't grouped at the start we have to reorder
|
|
// the symbols to respect this property.
|
|
std::stable_partition(
|
|
std::begin(Symbols), std::end(Symbols),
|
|
[](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
|
|
|
|
// Lastly we fix the symbol indexes.
|
|
uint32_t Index = 0;
|
|
for (auto &Sym : Symbols)
|
|
Sym->Index = Index++;
|
|
}
|
|
|
|
void SymbolTableSection::initialize(SectionTableRef SecTable) {
|
|
Size = 0;
|
|
setStrTab(SecTable.getSectionOfType<StringTableSection>(
|
|
Link,
|
|
"Symbol table has link index of " + Twine(Link) +
|
|
" which is not a valid index",
|
|
"Symbol table has link index of " + Twine(Link) +
|
|
" which is not a string table"));
|
|
}
|
|
|
|
void SymbolTableSection::finalize() {
|
|
// Make sure SymbolNames is finalized before getting name indexes.
|
|
SymbolNames->finalize();
|
|
|
|
uint32_t MaxLocalIndex = 0;
|
|
for (auto &Sym : Symbols) {
|
|
Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
|
|
if (Sym->Binding == STB_LOCAL)
|
|
MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
|
|
}
|
|
// Now we need to set the Link and Info fields.
|
|
Link = SymbolNames->Index;
|
|
Info = MaxLocalIndex + 1;
|
|
}
|
|
|
|
void SymbolTableSection::addSymbolNames() {
|
|
// Add all of our strings to SymbolNames so that SymbolNames has the right
|
|
// size before layout is decided.
|
|
for (auto &Sym : Symbols)
|
|
SymbolNames->addString(Sym->Name);
|
|
}
|
|
|
|
const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
|
|
if (Symbols.size() <= Index)
|
|
error("Invalid symbol index: " + Twine(Index));
|
|
return Symbols[Index].get();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSectionImpl<ELFT>::writeSection(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart();
|
|
Buf += Offset;
|
|
typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
|
|
// Loop though symbols setting each entry of the symbol table.
|
|
for (auto &Symbol : Symbols) {
|
|
Sym->st_name = Symbol->NameIndex;
|
|
Sym->st_value = Symbol->Value;
|
|
Sym->st_size = Symbol->Size;
|
|
Sym->st_other = Symbol->Visibility;
|
|
Sym->setBinding(Symbol->Binding);
|
|
Sym->setType(Symbol->Type);
|
|
Sym->st_shndx = Symbol->getShndx();
|
|
++Sym;
|
|
}
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
|
|
const SectionBase *Sec) {
|
|
if (Symbols == Sec) {
|
|
error("Symbol table " + Symbols->Name + " cannot be removed because it is "
|
|
"referenced by the relocation "
|
|
"section " +
|
|
this->Name);
|
|
}
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::initialize(
|
|
SectionTableRef SecTable) {
|
|
setSymTab(SecTable.getSectionOfType<SymTabType>(
|
|
Link,
|
|
"Link field value " + Twine(Link) + " in section " + Name + " is invalid",
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is not a symbol table"));
|
|
|
|
if (Info != SHN_UNDEF)
|
|
setSection(SecTable.getSection(Info,
|
|
"Info field value " + Twine(Info) +
|
|
" in section " + Name + " is invalid"));
|
|
else
|
|
setSection(nullptr);
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
|
|
this->Link = Symbols->Index;
|
|
if (SecToApplyRel != nullptr)
|
|
this->Info = SecToApplyRel->Index;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
|
|
|
|
template <class ELFT>
|
|
void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
|
|
Rela.r_addend = Addend;
|
|
}
|
|
|
|
template <class ELFT>
|
|
template <class T>
|
|
void RelocationSection<ELFT>::writeRel(T *Buf) const {
|
|
for (const auto &Reloc : Relocations) {
|
|
Buf->r_offset = Reloc.Offset;
|
|
setAddend(*Buf, Reloc.Addend);
|
|
Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
|
|
++Buf;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void RelocationSection<ELFT>::writeSection(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
if (Type == SHT_REL)
|
|
writeRel(reinterpret_cast<Elf_Rel *>(Buf));
|
|
else
|
|
writeRel(reinterpret_cast<Elf_Rela *>(Buf));
|
|
}
|
|
|
|
void DynamicRelocationSection::writeSection(FileOutputBuffer &Out) const {
|
|
std::copy(std::begin(Contents), std::end(Contents),
|
|
Out.getBufferStart() + Offset);
|
|
}
|
|
|
|
void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
|
|
if (StrTab == Sec) {
|
|
error("String table " + StrTab->Name + " cannot be removed because it is "
|
|
"referenced by the section " +
|
|
this->Name);
|
|
}
|
|
}
|
|
|
|
bool SectionWithStrTab::classof(const SectionBase *S) {
|
|
return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
|
|
}
|
|
|
|
void SectionWithStrTab::initialize(SectionTableRef SecTable) {
|
|
auto StrTab = SecTable.getSection(Link,
|
|
"Link field value " + Twine(Link) +
|
|
" in section " + Name + " is invalid");
|
|
if (StrTab->Type != SHT_STRTAB) {
|
|
error("Link field value " + Twine(Link) + " in section " + Name +
|
|
" is not a string table");
|
|
}
|
|
setStrTab(StrTab);
|
|
}
|
|
|
|
void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }
|
|
|
|
template <class ELFT>
|
|
void GnuDebugLinkSection<ELFT>::init(StringRef File, StringRef Data) {
|
|
FileName = sys::path::stem(File);
|
|
// The format for the .gnu_debuglink starts with the stemmed file name and is
|
|
// followed by a null terminator and then the CRC32 of the file. The CRC32
|
|
// should be 4 byte aligned. So we add the FileName size, a 1 for the null
|
|
// byte, and then finally push the size to alignment and add 4.
|
|
Size = alignTo(FileName.size() + 1, 4) + 4;
|
|
// The CRC32 will only be aligned if we align the whole section.
|
|
Align = 4;
|
|
Type = ELF::SHT_PROGBITS;
|
|
Name = ".gnu_debuglink";
|
|
// For sections not found in segments, OriginalOffset is only used to
|
|
// establish the order that sections should go in. By using the maximum
|
|
// possible offset we cause this section to wind up at the end.
|
|
OriginalOffset = std::numeric_limits<uint64_t>::max();
|
|
JamCRC crc;
|
|
crc.update(ArrayRef<char>(Data.data(), Data.size()));
|
|
// The CRC32 value needs to be complemented because the JamCRC dosn't
|
|
// finalize the CRC32 value. It also dosn't negate the initial CRC32 value
|
|
// but it starts by default at 0xFFFFFFFF which is the complement of zero.
|
|
CRC32 = ~crc.getCRC();
|
|
}
|
|
|
|
template <class ELFT>
|
|
GnuDebugLinkSection<ELFT>::GnuDebugLinkSection(StringRef File)
|
|
: FileName(File) {
|
|
// Read in the file to compute the CRC of it.
|
|
auto DebugOrErr = MemoryBuffer::getFile(File);
|
|
if (!DebugOrErr)
|
|
error("'" + File + "': " + DebugOrErr.getError().message());
|
|
auto Debug = std::move(*DebugOrErr);
|
|
init(File, Debug->getBuffer());
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuDebugLinkSection<ELFT>::writeSection(FileOutputBuffer &Out) const {
|
|
auto Buf = Out.getBufferStart() + Offset;
|
|
char *File = reinterpret_cast<char *>(Buf);
|
|
Elf_Word *CRC = reinterpret_cast<Elf_Word *>(Buf + Size - sizeof(Elf_Word));
|
|
*CRC = CRC32;
|
|
std::copy(std::begin(FileName), std::end(FileName), File);
|
|
}
|
|
|
|
// Returns true IFF a section is wholly inside the range of a segment
|
|
static bool sectionWithinSegment(const SectionBase &Section,
|
|
const Segment &Segment) {
|
|
// If a section is empty it should be treated like it has a size of 1. This is
|
|
// to clarify the case when an empty section lies on a boundary between two
|
|
// segments and ensures that the section "belongs" to the second segment and
|
|
// not the first.
|
|
uint64_t SecSize = Section.Size ? Section.Size : 1;
|
|
return Segment.Offset <= Section.OriginalOffset &&
|
|
Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
|
|
}
|
|
|
|
// Returns true IFF a segment's original offset is inside of another segment's
|
|
// range.
|
|
static bool segmentOverlapsSegment(const Segment &Child,
|
|
const Segment &Parent) {
|
|
|
|
return Parent.OriginalOffset <= Child.OriginalOffset &&
|
|
Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
|
|
}
|
|
|
|
static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
|
|
// Any segment without a parent segment should come before a segment
|
|
// that has a parent segment.
|
|
if (A->OriginalOffset < B->OriginalOffset)
|
|
return true;
|
|
if (A->OriginalOffset > B->OriginalOffset)
|
|
return false;
|
|
return A->Index < B->Index;
|
|
}
|
|
|
|
static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
|
|
if (A->PAddr < B->PAddr)
|
|
return true;
|
|
if (A->PAddr > B->PAddr)
|
|
return false;
|
|
return A->Index < B->Index;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
|
|
uint32_t Index = 0;
|
|
for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
|
|
ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
|
|
(size_t)Phdr.p_filesz};
|
|
Segments.emplace_back(llvm::make_unique<Segment>(Data));
|
|
Segment &Seg = *Segments.back();
|
|
Seg.Type = Phdr.p_type;
|
|
Seg.Flags = Phdr.p_flags;
|
|
Seg.OriginalOffset = Phdr.p_offset;
|
|
Seg.Offset = Phdr.p_offset;
|
|
Seg.VAddr = Phdr.p_vaddr;
|
|
Seg.PAddr = Phdr.p_paddr;
|
|
Seg.FileSize = Phdr.p_filesz;
|
|
Seg.MemSize = Phdr.p_memsz;
|
|
Seg.Align = Phdr.p_align;
|
|
Seg.Index = Index++;
|
|
for (auto &Section : Sections) {
|
|
if (sectionWithinSegment(*Section, Seg)) {
|
|
Seg.addSection(&*Section);
|
|
if (!Section->ParentSegment ||
|
|
Section->ParentSegment->Offset > Seg.Offset) {
|
|
Section->ParentSegment = &Seg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Now we do an O(n^2) loop through the segments in order to match up
|
|
// segments.
|
|
for (auto &Child : Segments) {
|
|
for (auto &Parent : Segments) {
|
|
// Every segment will overlap with itself but we don't want a segment to
|
|
// be it's own parent so we avoid that situation.
|
|
if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) {
|
|
// We want a canonical "most parental" segment but this requires
|
|
// inspecting the ParentSegment.
|
|
if (compareSegmentsByOffset(Parent.get(), Child.get()))
|
|
if (Child->ParentSegment == nullptr ||
|
|
compareSegmentsByOffset(Parent.get(), Child->ParentSegment)) {
|
|
Child->ParentSegment = Parent.get();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
|
|
SymbolTableSection *SymTab,
|
|
SectionTableRef SecTable) {
|
|
const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
|
|
StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
|
|
|
|
for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
|
|
SectionBase *DefSection = nullptr;
|
|
StringRef Name = unwrapOrError(Sym.getName(StrTabData));
|
|
|
|
if (Sym.st_shndx >= SHN_LORESERVE) {
|
|
if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) {
|
|
error(
|
|
"Symbol '" + Name +
|
|
"' has unsupported value greater than or equal to SHN_LORESERVE: " +
|
|
Twine(Sym.st_shndx));
|
|
}
|
|
} else if (Sym.st_shndx != SHN_UNDEF) {
|
|
DefSection = SecTable.getSection(
|
|
Sym.st_shndx,
|
|
"Symbol '" + Name + "' is defined in invalid section with index " +
|
|
Twine(Sym.st_shndx));
|
|
}
|
|
|
|
SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
|
|
Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
|
|
|
|
template <class ELFT>
|
|
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
|
|
ToSet = Rela.r_addend;
|
|
}
|
|
|
|
template <class ELFT, class T>
|
|
void initRelocations(RelocationSection<ELFT> *Relocs,
|
|
SymbolTableSection *SymbolTable, T RelRange) {
|
|
for (const auto &Rel : RelRange) {
|
|
Relocation ToAdd;
|
|
ToAdd.Offset = Rel.r_offset;
|
|
getAddend(ToAdd.Addend, Rel);
|
|
ToAdd.Type = Rel.getType(false);
|
|
ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
|
|
Relocs->addRelocation(ToAdd);
|
|
}
|
|
}
|
|
|
|
SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
|
|
if (Index == SHN_UNDEF || Index > Sections.size())
|
|
error(ErrMsg);
|
|
return Sections[Index - 1].get();
|
|
}
|
|
|
|
template <class T>
|
|
T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
|
|
Twine TypeErrMsg) {
|
|
if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
|
|
return Sec;
|
|
error(TypeErrMsg);
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::unique_ptr<SectionBase>
|
|
Object<ELFT>::makeSection(const object::ELFFile<ELFT> &ElfFile,
|
|
const Elf_Shdr &Shdr) {
|
|
ArrayRef<uint8_t> Data;
|
|
switch (Shdr.sh_type) {
|
|
case SHT_REL:
|
|
case SHT_RELA:
|
|
if (Shdr.sh_flags & SHF_ALLOC) {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return llvm::make_unique<DynamicRelocationSection>(Data);
|
|
}
|
|
return llvm::make_unique<RelocationSection<ELFT>>();
|
|
case SHT_STRTAB:
|
|
// If a string table is allocated we don't want to mess with it. That would
|
|
// mean altering the memory image. There are no special link types or
|
|
// anything so we can just use a Section.
|
|
if (Shdr.sh_flags & SHF_ALLOC) {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return llvm::make_unique<Section>(Data);
|
|
}
|
|
return llvm::make_unique<StringTableSection>();
|
|
case SHT_HASH:
|
|
case SHT_GNU_HASH:
|
|
// Hash tables should refer to SHT_DYNSYM which we're not going to change.
|
|
// Because of this we don't need to mess with the hash tables either.
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return llvm::make_unique<Section>(Data);
|
|
case SHT_DYNSYM:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return llvm::make_unique<DynamicSymbolTableSection>(Data);
|
|
case SHT_DYNAMIC:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return llvm::make_unique<DynamicSection>(Data);
|
|
case SHT_SYMTAB: {
|
|
auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>();
|
|
SymbolTable = SymTab.get();
|
|
return std::move(SymTab);
|
|
}
|
|
case SHT_NOBITS:
|
|
return llvm::make_unique<Section>(Data);
|
|
default:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return llvm::make_unique<Section>(Data);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
|
|
uint32_t Index = 0;
|
|
for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
|
|
if (Index == 0) {
|
|
++Index;
|
|
continue;
|
|
}
|
|
SecPtr Sec = makeSection(ElfFile, Shdr);
|
|
Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
|
|
Sec->Type = Shdr.sh_type;
|
|
Sec->Flags = Shdr.sh_flags;
|
|
Sec->Addr = Shdr.sh_addr;
|
|
Sec->Offset = Shdr.sh_offset;
|
|
Sec->OriginalOffset = Shdr.sh_offset;
|
|
Sec->Size = Shdr.sh_size;
|
|
Sec->Link = Shdr.sh_link;
|
|
Sec->Info = Shdr.sh_info;
|
|
Sec->Align = Shdr.sh_addralign;
|
|
Sec->EntrySize = Shdr.sh_entsize;
|
|
Sec->Index = Index++;
|
|
Sections.push_back(std::move(Sec));
|
|
}
|
|
|
|
SectionTableRef SecTable(Sections);
|
|
|
|
// Now that all of the sections have been added we can fill out some extra
|
|
// details about symbol tables. We need the symbol table filled out before
|
|
// any relocations.
|
|
if (SymbolTable) {
|
|
SymbolTable->initialize(SecTable);
|
|
initSymbolTable(ElfFile, SymbolTable, SecTable);
|
|
}
|
|
|
|
// Now that all sections and symbols have been added we can add
|
|
// relocations that reference symbols and set the link and info fields for
|
|
// relocation sections.
|
|
for (auto &Section : Sections) {
|
|
if (Section.get() == SymbolTable)
|
|
continue;
|
|
Section->initialize(SecTable);
|
|
if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) {
|
|
auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
|
|
if (RelSec->Type == SHT_REL)
|
|
initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr)));
|
|
else
|
|
initRelocations(RelSec, SymbolTable,
|
|
unwrapOrError(ElfFile.relas(Shdr)));
|
|
}
|
|
}
|
|
|
|
return SecTable;
|
|
}
|
|
|
|
template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
|
|
const auto &ElfFile = *Obj.getELFFile();
|
|
const auto &Ehdr = *ElfFile.getHeader();
|
|
|
|
std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
|
|
Type = Ehdr.e_type;
|
|
Machine = Ehdr.e_machine;
|
|
Version = Ehdr.e_version;
|
|
Entry = Ehdr.e_entry;
|
|
Flags = Ehdr.e_flags;
|
|
|
|
SectionTableRef SecTable = readSectionHeaders(ElfFile);
|
|
readProgramHeaders(ElfFile);
|
|
|
|
SectionNames = SecTable.getSectionOfType<StringTableSection>(
|
|
Ehdr.e_shstrndx,
|
|
"e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
|
|
" is invalid",
|
|
"e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
|
|
" is not a string table");
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart();
|
|
Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
|
|
std::copy(Ident, Ident + 16, Ehdr.e_ident);
|
|
Ehdr.e_type = Type;
|
|
Ehdr.e_machine = Machine;
|
|
Ehdr.e_version = Version;
|
|
Ehdr.e_entry = Entry;
|
|
Ehdr.e_phoff = sizeof(Elf_Ehdr);
|
|
Ehdr.e_flags = Flags;
|
|
Ehdr.e_ehsize = sizeof(Elf_Ehdr);
|
|
Ehdr.e_phentsize = sizeof(Elf_Phdr);
|
|
Ehdr.e_phnum = Segments.size();
|
|
Ehdr.e_shentsize = sizeof(Elf_Shdr);
|
|
if (WriteSectionHeaders) {
|
|
Ehdr.e_shoff = SHOffset;
|
|
Ehdr.e_shnum = Sections.size() + 1;
|
|
Ehdr.e_shstrndx = SectionNames->Index;
|
|
} else {
|
|
Ehdr.e_shoff = 0;
|
|
Ehdr.e_shnum = 0;
|
|
Ehdr.e_shstrndx = 0;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
|
|
for (auto &Phdr : Segments)
|
|
Phdr->template writeHeader<ELFT>(Out);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
|
|
uint8_t *Buf = Out.getBufferStart() + SHOffset;
|
|
// This reference serves to write the dummy section header at the begining
|
|
// of the file. It is not used for anything else
|
|
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
|
|
Shdr.sh_name = 0;
|
|
Shdr.sh_type = SHT_NULL;
|
|
Shdr.sh_flags = 0;
|
|
Shdr.sh_addr = 0;
|
|
Shdr.sh_offset = 0;
|
|
Shdr.sh_size = 0;
|
|
Shdr.sh_link = 0;
|
|
Shdr.sh_info = 0;
|
|
Shdr.sh_addralign = 0;
|
|
Shdr.sh_entsize = 0;
|
|
|
|
for (auto &Section : Sections)
|
|
Section->template writeHeader<ELFT>(Out);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
|
|
for (auto &Section : Sections)
|
|
Section->writeSection(Out);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::removeSections(
|
|
std::function<bool(const SectionBase &)> ToRemove) {
|
|
|
|
auto Iter = std::stable_partition(
|
|
std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
|
|
if (ToRemove(*Sec))
|
|
return false;
|
|
if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
|
|
if (auto ToRelSec = RelSec->getSection())
|
|
return !ToRemove(*ToRelSec);
|
|
}
|
|
return true;
|
|
});
|
|
if (SymbolTable != nullptr && ToRemove(*SymbolTable))
|
|
SymbolTable = nullptr;
|
|
if (ToRemove(*SectionNames)) {
|
|
if (WriteSectionHeaders)
|
|
error("Cannot remove " + SectionNames->Name +
|
|
" because it is the section header string table.");
|
|
SectionNames = nullptr;
|
|
}
|
|
// Now make sure there are no remaining references to the sections that will
|
|
// be removed. Sometimes it is impossible to remove a reference so we emit
|
|
// an error here instead.
|
|
for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
|
|
for (auto &Segment : Segments)
|
|
Segment->removeSection(RemoveSec.get());
|
|
for (auto &KeepSec : make_range(std::begin(Sections), Iter))
|
|
KeepSec->removeSectionReferences(RemoveSec.get());
|
|
}
|
|
// Now finally get rid of them all togethor.
|
|
Sections.erase(Iter, std::end(Sections));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Object<ELFT>::addSection(StringRef SecName, ArrayRef<uint8_t> Data) {
|
|
auto Sec = llvm::make_unique<OwnedDataSection>(SecName, Data);
|
|
Sec->OriginalOffset = ~0ULL;
|
|
Sections.push_back(std::move(Sec));
|
|
}
|
|
|
|
template <class ELFT> void Object<ELFT>::addGnuDebugLink(StringRef File) {
|
|
Sections.emplace_back(llvm::make_unique<GnuDebugLinkSection<ELFT>>(File));
|
|
}
|
|
|
|
template <class ELFT> void ELFObject<ELFT>::sortSections() {
|
|
// Put all sections in offset order. Maintain the ordering as closely as
|
|
// possible while meeting that demand however.
|
|
auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
|
|
return A->OriginalOffset < B->OriginalOffset;
|
|
};
|
|
std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
|
|
CompareSections);
|
|
}
|
|
|
|
static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
|
|
// Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
|
|
if (Align == 0)
|
|
Align = 1;
|
|
auto Diff =
|
|
static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
|
|
// We only want to add to Offset, however, so if Diff < 0 we can add Align and
|
|
// (Offset + Diff) & -Align == Addr & -Align will still hold.
|
|
if (Diff < 0)
|
|
Diff += Align;
|
|
return Offset + Diff;
|
|
}
|
|
|
|
// Orders segments such that if x = y->ParentSegment then y comes before x.
|
|
static void OrderSegments(std::vector<Segment *> &Segments) {
|
|
std::stable_sort(std::begin(Segments), std::end(Segments),
|
|
compareSegmentsByOffset);
|
|
}
|
|
|
|
// This function finds a consistent layout for a list of segments starting from
|
|
// an Offset. It assumes that Segments have been sorted by OrderSegments and
|
|
// returns an Offset one past the end of the last segment.
|
|
static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
|
|
uint64_t Offset) {
|
|
assert(std::is_sorted(std::begin(Segments), std::end(Segments),
|
|
compareSegmentsByOffset));
|
|
// The only way a segment should move is if a section was between two
|
|
// segments and that section was removed. If that section isn't in a segment
|
|
// then it's acceptable, but not ideal, to simply move it to after the
|
|
// segments. So we can simply layout segments one after the other accounting
|
|
// for alignment.
|
|
for (auto &Segment : Segments) {
|
|
// We assume that segments have been ordered by OriginalOffset and Index
|
|
// such that a parent segment will always come before a child segment in
|
|
// OrderedSegments. This means that the Offset of the ParentSegment should
|
|
// already be set and we can set our offset relative to it.
|
|
if (Segment->ParentSegment != nullptr) {
|
|
auto Parent = Segment->ParentSegment;
|
|
Segment->Offset =
|
|
Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
|
|
} else {
|
|
Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
|
|
Segment->Offset = Offset;
|
|
}
|
|
Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
// This function finds a consistent layout for a list of sections. It assumes
|
|
// that the ->ParentSegment of each section has already been laid out. The
|
|
// supplied starting Offset is used for the starting offset of any section that
|
|
// does not have a ParentSegment. It returns either the offset given if all
|
|
// sections had a ParentSegment or an offset one past the last section if there
|
|
// was a section that didn't have a ParentSegment.
|
|
template <class SecPtr>
|
|
static uint64_t LayoutSections(std::vector<SecPtr> &Sections, uint64_t Offset) {
|
|
// Now the offset of every segment has been set we can assign the offsets
|
|
// of each section. For sections that are covered by a segment we should use
|
|
// the segment's original offset and the section's original offset to compute
|
|
// the offset from the start of the segment. Using the offset from the start
|
|
// of the segment we can assign a new offset to the section. For sections not
|
|
// covered by segments we can just bump Offset to the next valid location.
|
|
uint32_t Index = 1;
|
|
for (auto &Section : Sections) {
|
|
Section->Index = Index++;
|
|
if (Section->ParentSegment != nullptr) {
|
|
auto Segment = Section->ParentSegment;
|
|
Section->Offset =
|
|
Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
|
|
} else {
|
|
Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align);
|
|
Section->Offset = Offset;
|
|
if (Section->Type != SHT_NOBITS)
|
|
Offset += Section->Size;
|
|
}
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
|
|
// We need a temporary list of segments that has a special order to it
|
|
// so that we know that anytime ->ParentSegment is set that segment has
|
|
// already had its offset properly set.
|
|
std::vector<Segment *> OrderedSegments;
|
|
for (auto &Segment : this->Segments)
|
|
OrderedSegments.push_back(Segment.get());
|
|
OrderSegments(OrderedSegments);
|
|
// The size of ELF + program headers will not change so it is ok to assume
|
|
// that the first offset of the first segment is a good place to start
|
|
// outputting sections. This covers both the standard case and the PT_PHDR
|
|
// case.
|
|
uint64_t Offset;
|
|
if (!OrderedSegments.empty()) {
|
|
Offset = OrderedSegments[0]->Offset;
|
|
} else {
|
|
Offset = sizeof(Elf_Ehdr);
|
|
}
|
|
Offset = LayoutSegments(OrderedSegments, Offset);
|
|
Offset = LayoutSections(this->Sections, Offset);
|
|
// If we need to write the section header table out then we need to align the
|
|
// Offset so that SHOffset is valid.
|
|
if (this->WriteSectionHeaders)
|
|
Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
|
|
this->SHOffset = Offset;
|
|
}
|
|
|
|
template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
|
|
// We already have the section header offset so we can calculate the total
|
|
// size by just adding up the size of each section header.
|
|
auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
|
|
return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
|
|
NullSectionSize;
|
|
}
|
|
|
|
template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
|
|
this->writeHeader(Out);
|
|
this->writeProgramHeaders(Out);
|
|
this->writeSectionData(Out);
|
|
if (this->WriteSectionHeaders)
|
|
this->writeSectionHeaders(Out);
|
|
}
|
|
|
|
template <class ELFT> void ELFObject<ELFT>::finalize() {
|
|
// Make sure we add the names of all the sections.
|
|
if (this->SectionNames != nullptr)
|
|
for (const auto &Section : this->Sections) {
|
|
this->SectionNames->addString(Section->Name);
|
|
}
|
|
// Make sure we add the names of all the symbols.
|
|
if (this->SymbolTable != nullptr)
|
|
this->SymbolTable->addSymbolNames();
|
|
|
|
sortSections();
|
|
assignOffsets();
|
|
|
|
// Finalize SectionNames first so that we can assign name indexes.
|
|
if (this->SectionNames != nullptr)
|
|
this->SectionNames->finalize();
|
|
// Finally now that all offsets and indexes have been set we can finalize any
|
|
// remaining issues.
|
|
uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
|
|
for (auto &Section : this->Sections) {
|
|
Section->HeaderOffset = Offset;
|
|
Offset += sizeof(Elf_Shdr);
|
|
if (this->WriteSectionHeaders)
|
|
Section->NameIndex = this->SectionNames->findIndex(Section->Name);
|
|
Section->finalize();
|
|
}
|
|
}
|
|
|
|
template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
|
|
return TotalSize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
|
|
for (auto &Section : this->Sections) {
|
|
if ((Section->Flags & SHF_ALLOC) == 0)
|
|
continue;
|
|
Section->writeSection(Out);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void BinaryObject<ELFT>::finalize() {
|
|
// TODO: Create a filter range to construct OrderedSegments from so that this
|
|
// code can be deduped with assignOffsets above. This should also solve the
|
|
// todo below for LayoutSections.
|
|
// We need a temporary list of segments that has a special order to it
|
|
// so that we know that anytime ->ParentSegment is set that segment has
|
|
// already had it's offset properly set. We only want to consider the segments
|
|
// that will affect layout of allocated sections so we only add those.
|
|
std::vector<Segment *> OrderedSegments;
|
|
for (auto &Section : this->Sections) {
|
|
if ((Section->Flags & SHF_ALLOC) != 0 &&
|
|
Section->ParentSegment != nullptr) {
|
|
OrderedSegments.push_back(Section->ParentSegment);
|
|
}
|
|
}
|
|
|
|
// For binary output, we're going to use physical addresses instead of
|
|
// virtual addresses, since a binary output is used for cases like ROM
|
|
// loading and physical addresses are intended for ROM loading.
|
|
// However, if no segment has a physical address, we'll fallback to using
|
|
// virtual addresses for all.
|
|
if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments),
|
|
[](const Segment *Segment) { return Segment->PAddr == 0; }))
|
|
for (const auto &Segment : OrderedSegments)
|
|
Segment->PAddr = Segment->VAddr;
|
|
|
|
std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
|
|
compareSegmentsByPAddr);
|
|
|
|
// Because we add a ParentSegment for each section we might have duplicate
|
|
// segments in OrderedSegments. If there were duplicates then LayoutSegments
|
|
// would do very strange things.
|
|
auto End =
|
|
std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
|
|
OrderedSegments.erase(End, std::end(OrderedSegments));
|
|
|
|
uint64_t Offset = 0;
|
|
|
|
// Modify the first segment so that there is no gap at the start. This allows
|
|
// our layout algorithm to proceed as expected while not out writing out the
|
|
// gap at the start.
|
|
if (!OrderedSegments.empty()) {
|
|
auto Seg = OrderedSegments[0];
|
|
auto Sec = Seg->firstSection();
|
|
auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
|
|
Seg->OriginalOffset += Diff;
|
|
// The size needs to be shrunk as well.
|
|
Seg->FileSize -= Diff;
|
|
// The PAddr needs to be increased to remove the gap before the first
|
|
// section.
|
|
Seg->PAddr += Diff;
|
|
uint64_t LowestPAddr = Seg->PAddr;
|
|
for (auto &Segment : OrderedSegments) {
|
|
Segment->Offset = Segment->PAddr - LowestPAddr;
|
|
Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
|
|
}
|
|
}
|
|
|
|
// TODO: generalize LayoutSections to take a range. Pass a special range
|
|
// constructed from an iterator that skips values for which a predicate does
|
|
// not hold. Then pass such a range to LayoutSections instead of constructing
|
|
// AllocatedSections here.
|
|
std::vector<SectionBase *> AllocatedSections;
|
|
for (auto &Section : this->Sections) {
|
|
if ((Section->Flags & SHF_ALLOC) == 0)
|
|
continue;
|
|
AllocatedSections.push_back(Section.get());
|
|
}
|
|
LayoutSections(AllocatedSections, Offset);
|
|
|
|
// Now that every section has been laid out we just need to compute the total
|
|
// file size. This might not be the same as the offset returned by
|
|
// LayoutSections, because we want to truncate the last segment to the end of
|
|
// its last section, to match GNU objcopy's behaviour.
|
|
TotalSize = 0;
|
|
for (const auto &Section : AllocatedSections) {
|
|
if (Section->Type != SHT_NOBITS)
|
|
TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
template class Object<ELF64LE>;
|
|
template class Object<ELF64BE>;
|
|
template class Object<ELF32LE>;
|
|
template class Object<ELF32BE>;
|
|
|
|
template class ELFObject<ELF64LE>;
|
|
template class ELFObject<ELF64BE>;
|
|
template class ELFObject<ELF32LE>;
|
|
template class ELFObject<ELF32BE>;
|
|
|
|
template class BinaryObject<ELF64LE>;
|
|
template class BinaryObject<ELF64BE>;
|
|
template class BinaryObject<ELF32LE>;
|
|
template class BinaryObject<ELF32BE>;
|
|
|
|
} // end namespace llvm
|