mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
861251004b
On certain architectures we can support efficient vectorized version of instructions if the operand value is uniform (splat) or a constant scalar. An example of this is a vector shift on x86. We can efficiently support for (i = 0 ; i < ; i += 4) w[0:3] = v[0:3] << <2, 2, 2, 2> but not for (i = 0; i < ; i += 4) w[0:3] = v[0:3] << x[0:3] This patch adds a parameter to getArithmeticInstrCost to further qualify operand values as uniform or uniform constant. Targets can then choose to return a different cost for instructions with such operand values. A follow-up commit will test this feature on x86. radar://13576547 llvm-svn: 178807
559 lines
18 KiB
C++
559 lines
18 KiB
C++
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "tti"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Setup the analysis group to manage the TargetTransformInfo passes.
|
|
INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
|
|
char TargetTransformInfo::ID = 0;
|
|
|
|
TargetTransformInfo::~TargetTransformInfo() {
|
|
}
|
|
|
|
void TargetTransformInfo::pushTTIStack(Pass *P) {
|
|
TopTTI = this;
|
|
PrevTTI = &P->getAnalysis<TargetTransformInfo>();
|
|
|
|
// Walk up the chain and update the top TTI pointer.
|
|
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
|
|
PTTI->TopTTI = this;
|
|
}
|
|
|
|
void TargetTransformInfo::popTTIStack() {
|
|
TopTTI = 0;
|
|
|
|
// Walk up the chain and update the top TTI pointer.
|
|
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
|
|
PTTI->TopTTI = PrevTTI;
|
|
|
|
PrevTTI = 0;
|
|
}
|
|
|
|
void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetTransformInfo>();
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
|
|
Type *OpTy) const {
|
|
return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getGEPCost(
|
|
const Value *Ptr, ArrayRef<const Value *> Operands) const {
|
|
return PrevTTI->getGEPCost(Ptr, Operands);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
|
|
int NumArgs) const {
|
|
return PrevTTI->getCallCost(FTy, NumArgs);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCallCost(const Function *F,
|
|
int NumArgs) const {
|
|
return PrevTTI->getCallCost(F, NumArgs);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCallCost(
|
|
const Function *F, ArrayRef<const Value *> Arguments) const {
|
|
return PrevTTI->getCallCost(F, Arguments);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getIntrinsicCost(
|
|
Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
|
|
return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getIntrinsicCost(
|
|
Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
|
|
return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getUserCost(const User *U) const {
|
|
return PrevTTI->getUserCost(U);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
|
|
return PrevTTI->isLoweredToCall(F);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
|
|
return PrevTTI->isLegalAddImmediate(Imm);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
|
|
return PrevTTI->isLegalICmpImmediate(Imm);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset,
|
|
bool HasBaseReg,
|
|
int64_t Scale) const {
|
|
return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
Scale);
|
|
}
|
|
|
|
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
return PrevTTI->isTruncateFree(Ty1, Ty2);
|
|
}
|
|
|
|
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
|
|
return PrevTTI->isTypeLegal(Ty);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getJumpBufAlignment() const {
|
|
return PrevTTI->getJumpBufAlignment();
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getJumpBufSize() const {
|
|
return PrevTTI->getJumpBufSize();
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldBuildLookupTables() const {
|
|
return PrevTTI->shouldBuildLookupTables();
|
|
}
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
|
|
return PrevTTI->getPopcntSupport(IntTyWidthInBit);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
return PrevTTI->getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
|
|
return PrevTTI->getNumberOfRegisters(Vector);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
|
|
return PrevTTI->getRegisterBitWidth(Vector);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
|
|
return PrevTTI->getMaximumUnrollFactor();
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
|
|
Type *Ty,
|
|
OperandValueKind Op1Info,
|
|
OperandValueKind Op2Info) const {
|
|
return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const {
|
|
return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
|
|
return PrevTTI->getCFInstrCost(Opcode);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
|
|
;
|
|
}
|
|
|
|
unsigned
|
|
TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
|
|
Type *RetTy,
|
|
ArrayRef<Type *> Tys) const {
|
|
return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
|
|
return PrevTTI->getNumberOfParts(Tp);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp) const {
|
|
return PrevTTI->getAddressComputationCost(Tp);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct NoTTI : ImmutablePass, TargetTransformInfo {
|
|
const DataLayout *DL;
|
|
|
|
NoTTI() : ImmutablePass(ID), DL(0) {
|
|
initializeNoTTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual void initializePass() {
|
|
// Note that this subclass is special, and must *not* call initializeTTI as
|
|
// it does not chain.
|
|
TopTTI = this;
|
|
PrevTTI = 0;
|
|
DL = getAnalysisIfAvailable<DataLayout>();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
// Note that this subclass is special, and must *not* call
|
|
// TTI::getAnalysisUsage as it breaks the recursion.
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
virtual void *getAdjustedAnalysisPointer(const void *ID) {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
|
|
switch (Opcode) {
|
|
default:
|
|
// By default, just classify everything as 'basic'.
|
|
return TCC_Basic;
|
|
|
|
case Instruction::GetElementPtr:
|
|
llvm_unreachable("Use getGEPCost for GEP operations!");
|
|
|
|
case Instruction::BitCast:
|
|
assert(OpTy && "Cast instructions must provide the operand type");
|
|
if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
|
|
// Identity and pointer-to-pointer casts are free.
|
|
return TCC_Free;
|
|
|
|
// Otherwise, the default basic cost is used.
|
|
return TCC_Basic;
|
|
|
|
case Instruction::IntToPtr:
|
|
// An inttoptr cast is free so long as the input is a legal integer type
|
|
// which doesn't contain values outside the range of a pointer.
|
|
if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
|
|
OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
|
|
return TCC_Free;
|
|
|
|
// Otherwise it's not a no-op.
|
|
return TCC_Basic;
|
|
|
|
case Instruction::PtrToInt:
|
|
// A ptrtoint cast is free so long as the result is large enough to store
|
|
// the pointer, and a legal integer type.
|
|
if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) &&
|
|
Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits())
|
|
return TCC_Free;
|
|
|
|
// Otherwise it's not a no-op.
|
|
return TCC_Basic;
|
|
|
|
case Instruction::Trunc:
|
|
// trunc to a native type is free (assuming the target has compare and
|
|
// shift-right of the same width).
|
|
if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
|
|
return TCC_Free;
|
|
|
|
return TCC_Basic;
|
|
}
|
|
}
|
|
|
|
unsigned getGEPCost(const Value *Ptr,
|
|
ArrayRef<const Value *> Operands) const {
|
|
// In the basic model, we just assume that all-constant GEPs will be folded
|
|
// into their uses via addressing modes.
|
|
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
|
|
if (!isa<Constant>(Operands[Idx]))
|
|
return TCC_Basic;
|
|
|
|
return TCC_Free;
|
|
}
|
|
|
|
unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
|
|
assert(FTy && "FunctionType must be provided to this routine.");
|
|
|
|
// The target-independent implementation just measures the size of the
|
|
// function by approximating that each argument will take on average one
|
|
// instruction to prepare.
|
|
|
|
if (NumArgs < 0)
|
|
// Set the argument number to the number of explicit arguments in the
|
|
// function.
|
|
NumArgs = FTy->getNumParams();
|
|
|
|
return TCC_Basic * (NumArgs + 1);
|
|
}
|
|
|
|
unsigned getCallCost(const Function *F, int NumArgs = -1) const {
|
|
assert(F && "A concrete function must be provided to this routine.");
|
|
|
|
if (NumArgs < 0)
|
|
// Set the argument number to the number of explicit arguments in the
|
|
// function.
|
|
NumArgs = F->arg_size();
|
|
|
|
if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
FunctionType *FTy = F->getFunctionType();
|
|
SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
|
|
return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
|
|
}
|
|
|
|
if (!TopTTI->isLoweredToCall(F))
|
|
return TCC_Basic; // Give a basic cost if it will be lowered directly.
|
|
|
|
return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
|
|
}
|
|
|
|
unsigned getCallCost(const Function *F,
|
|
ArrayRef<const Value *> Arguments) const {
|
|
// Simply delegate to generic handling of the call.
|
|
// FIXME: We should use instsimplify or something else to catch calls which
|
|
// will constant fold with these arguments.
|
|
return TopTTI->getCallCost(F, Arguments.size());
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) const {
|
|
switch (IID) {
|
|
default:
|
|
// Intrinsics rarely (if ever) have normal argument setup constraints.
|
|
// Model them as having a basic instruction cost.
|
|
// FIXME: This is wrong for libc intrinsics.
|
|
return TCC_Basic;
|
|
|
|
case Intrinsic::dbg_declare:
|
|
case Intrinsic::dbg_value:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::objectsize:
|
|
case Intrinsic::ptr_annotation:
|
|
case Intrinsic::var_annotation:
|
|
// These intrinsics don't actually represent code after lowering.
|
|
return TCC_Free;
|
|
}
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) const {
|
|
// Delegate to the generic intrinsic handling code. This mostly provides an
|
|
// opportunity for targets to (for example) special case the cost of
|
|
// certain intrinsics based on constants used as arguments.
|
|
SmallVector<Type *, 8> ParamTys;
|
|
ParamTys.reserve(Arguments.size());
|
|
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
|
|
ParamTys.push_back(Arguments[Idx]->getType());
|
|
return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
|
|
}
|
|
|
|
unsigned getUserCost(const User *U) const {
|
|
if (isa<PHINode>(U))
|
|
return TCC_Free; // Model all PHI nodes as free.
|
|
|
|
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
|
|
// In the basic model we just assume that all-constant GEPs will be
|
|
// folded into their uses via addressing modes.
|
|
return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
|
|
|
|
if (ImmutableCallSite CS = U) {
|
|
const Function *F = CS.getCalledFunction();
|
|
if (!F) {
|
|
// Just use the called value type.
|
|
Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
|
|
return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
|
|
}
|
|
|
|
SmallVector<const Value *, 8> Arguments;
|
|
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
|
|
AE = CS.arg_end();
|
|
AI != AE; ++AI)
|
|
Arguments.push_back(*AI);
|
|
|
|
return TopTTI->getCallCost(F, Arguments);
|
|
}
|
|
|
|
if (const CastInst *CI = dyn_cast<CastInst>(U)) {
|
|
// Result of a cmp instruction is often extended (to be used by other
|
|
// cmp instructions, logical or return instructions). These are usually
|
|
// nop on most sane targets.
|
|
if (isa<CmpInst>(CI->getOperand(0)))
|
|
return TCC_Free;
|
|
}
|
|
|
|
// Otherwise delegate to the fully generic implementations.
|
|
return getOperationCost(Operator::getOpcode(U), U->getType(),
|
|
U->getNumOperands() == 1 ?
|
|
U->getOperand(0)->getType() : 0);
|
|
}
|
|
|
|
bool isLoweredToCall(const Function *F) const {
|
|
// FIXME: These should almost certainly not be handled here, and instead
|
|
// handled with the help of TLI or the target itself. This was largely
|
|
// ported from existing analysis heuristics here so that such refactorings
|
|
// can take place in the future.
|
|
|
|
if (F->isIntrinsic())
|
|
return false;
|
|
|
|
if (F->hasLocalLinkage() || !F->hasName())
|
|
return true;
|
|
|
|
StringRef Name = F->getName();
|
|
|
|
// These will all likely lower to a single selection DAG node.
|
|
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
|
|
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
|
|
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
|
|
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
|
|
return false;
|
|
|
|
// These are all likely to be optimized into something smaller.
|
|
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
|
|
Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
|
|
"floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
|
|
Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool isLegalAddImmediate(int64_t Imm) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalICmpImmediate(int64_t Imm) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale) const {
|
|
// Guess that reg+reg addressing is allowed. This heuristic is taken from
|
|
// the implementation of LSR.
|
|
return !BaseGV && BaseOffset == 0 && Scale <= 1;
|
|
}
|
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
return false;
|
|
}
|
|
|
|
bool isTypeLegal(Type *Ty) const {
|
|
return false;
|
|
}
|
|
|
|
unsigned getJumpBufAlignment() const {
|
|
return 0;
|
|
}
|
|
|
|
unsigned getJumpBufSize() const {
|
|
return 0;
|
|
}
|
|
|
|
bool shouldBuildLookupTables() const {
|
|
return true;
|
|
}
|
|
|
|
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
|
|
return PSK_Software;
|
|
}
|
|
|
|
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const {
|
|
return 8;
|
|
}
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned getMaximumUnrollFactor() const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
|
|
OperandValueKind) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index = 0, Type *SubTp = 0) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCFInstrCost(unsigned Opcode) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy = 0) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index = -1) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
|
|
Type *RetTy,
|
|
ArrayRef<Type*> Tys) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getNumberOfParts(Type *Tp) const {
|
|
return 0;
|
|
}
|
|
|
|
unsigned getAddressComputationCost(Type *Tp) const {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
|
|
"No target information", true, true, true)
|
|
char NoTTI::ID = 0;
|
|
|
|
ImmutablePass *llvm::createNoTargetTransformInfoPass() {
|
|
return new NoTTI();
|
|
}
|