1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/unittests/Support/KnownBitsTest.cpp
Nikita Popov 768a368cf7 [KnownBits] Add computeForAddCarry()
This is for D60460. computeForAddSub() essentially already supports
carries because it has to deal with subtractions. This revision
extracts a lower-level computeForAddCarry() function, which allows
computing the known bits for add (carry known zero), sub (carry known
one) and addcarry (carry unknown).

As we don't seem to have any yet, I've added a unit test file for
KnownBits and exhaustive tests for the new computeForAddCarry()
functionality, as well the existing computeForAddSub() function.

Differential Revision: https://reviews.llvm.org/D60522

llvm-svn: 358297
2019-04-12 18:18:08 +00:00

131 lines
3.8 KiB
C++

//===- llvm/unittest/Support/KnownBitsTest.cpp - KnownBits tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements unit tests for KnownBits functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/KnownBits.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
template<typename FnTy>
void ForeachKnownBits(unsigned Bits, FnTy Fn) {
unsigned Max = 1 << Bits;
KnownBits Known(Bits);
for (unsigned Zero = 0; Zero < Max; ++Zero) {
for (unsigned One = 0; One < Max; ++One) {
Known.Zero = Zero;
Known.One = One;
if (Known.hasConflict())
continue;
Fn(Known);
}
}
}
template<typename FnTy>
void ForeachNumInKnownBits(const KnownBits &Known, FnTy Fn) {
unsigned Bits = Known.getBitWidth();
unsigned Max = 1 << Bits;
for (unsigned N = 0; N < Max; ++N) {
APInt Num(Bits, N);
if ((Num & Known.Zero) != 0 || (~Num & Known.One) != 0)
continue;
Fn(Num);
}
}
TEST(KnownBitsTest, AddCarryExhaustive) {
unsigned Bits = 4;
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
ForeachKnownBits(1, [&](const KnownBits &KnownCarry) {
// Explicitly compute known bits of the addition by trying all
// possibilities.
KnownBits Known(Bits);
Known.Zero.setAllBits();
Known.One.setAllBits();
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
ForeachNumInKnownBits(KnownCarry, [&](const APInt &Carry) {
APInt Add = N1 + N2;
if (Carry.getBoolValue())
++Add;
Known.One &= Add;
Known.Zero &= ~Add;
});
});
});
KnownBits KnownComputed = KnownBits::computeForAddCarry(
Known1, Known2, KnownCarry);
EXPECT_EQ(Known.Zero, KnownComputed.Zero);
EXPECT_EQ(Known.One, KnownComputed.One);
});
});
});
}
static void TestAddSubExhaustive(bool IsAdd) {
unsigned Bits = 4;
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
KnownBits Known(Bits), KnownNSW(Bits);
Known.Zero.setAllBits();
Known.One.setAllBits();
KnownNSW.Zero.setAllBits();
KnownNSW.One.setAllBits();
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
bool Overflow;
APInt Res;
if (IsAdd)
Res = N1.sadd_ov(N2, Overflow);
else
Res = N1.ssub_ov(N2, Overflow);
Known.One &= Res;
Known.Zero &= ~Res;
if (!Overflow) {
KnownNSW.One &= Res;
KnownNSW.Zero &= ~Res;
}
});
});
KnownBits KnownComputed = KnownBits::computeForAddSub(
IsAdd, /*NSW*/false, Known1, Known2);
EXPECT_EQ(Known.Zero, KnownComputed.Zero);
EXPECT_EQ(Known.One, KnownComputed.One);
// The NSW calculation is not precise, only check that it's
// conservatively correct.
KnownBits KnownNSWComputed = KnownBits::computeForAddSub(
IsAdd, /*NSW*/true, Known1, Known2);
EXPECT_TRUE(KnownNSWComputed.Zero.isSubsetOf(KnownNSW.Zero));
EXPECT_TRUE(KnownNSWComputed.One.isSubsetOf(KnownNSW.One));
});
});
}
TEST(KnownBitsTest, AddSubExhaustive) {
TestAddSubExhaustive(true);
TestAddSubExhaustive(false);
}
} // end anonymous namespace