1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/include/llvm/ADT/PostOrderIterator.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

312 lines
11 KiB
C++

//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POSTORDERITERATOR_H
#define LLVM_ADT_POSTORDERITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include <iterator>
#include <set>
#include <utility>
#include <vector>
namespace llvm {
// The po_iterator_storage template provides access to the set of already
// visited nodes during the po_iterator's depth-first traversal.
//
// The default implementation simply contains a set of visited nodes, while
// the External=true version uses a reference to an external set.
//
// It is possible to prune the depth-first traversal in several ways:
//
// - When providing an external set that already contains some graph nodes,
// those nodes won't be visited again. This is useful for restarting a
// post-order traversal on a graph with nodes that aren't dominated by a
// single node.
//
// - By providing a custom SetType class, unwanted graph nodes can be excluded
// by having the insert() function return false. This could for example
// confine a CFG traversal to blocks in a specific loop.
//
// - Finally, by specializing the po_iterator_storage template itself, graph
// edges can be pruned by returning false in the insertEdge() function. This
// could be used to remove loop back-edges from the CFG seen by po_iterator.
//
// A specialized po_iterator_storage class can observe both the pre-order and
// the post-order. The insertEdge() function is called in a pre-order, while
// the finishPostorder() function is called just before the po_iterator moves
// on to the next node.
/// Default po_iterator_storage implementation with an internal set object.
template<class SetType, bool External>
class po_iterator_storage {
SetType Visited;
public:
// Return true if edge destination should be visited.
template <typename NodeRef>
bool insertEdge(Optional<NodeRef> From, NodeRef To) {
return Visited.insert(To).second;
}
// Called after all children of BB have been visited.
template <typename NodeRef> void finishPostorder(NodeRef BB) {}
};
/// Specialization of po_iterator_storage that references an external set.
template<class SetType>
class po_iterator_storage<SetType, true> {
SetType &Visited;
public:
po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
// Return true if edge destination should be visited, called with From = 0 for
// the root node.
// Graph edges can be pruned by specializing this function.
template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) {
return Visited.insert(To).second;
}
// Called after all children of BB have been visited.
template <class NodeRef> void finishPostorder(NodeRef BB) {}
};
template <class GraphT,
class SetType =
SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
bool ExtStorage = false, class GT = GraphTraits<GraphT>>
class po_iterator
: public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
public po_iterator_storage<SetType, ExtStorage> {
using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
using NodeRef = typename GT::NodeRef;
using ChildItTy = typename GT::ChildIteratorType;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeRef, ChildItTy>> VisitStack;
po_iterator(NodeRef BB) {
this->insertEdge(Optional<NodeRef>(), BB);
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
po_iterator() = default; // End is when stack is empty.
po_iterator(NodeRef BB, SetType &S)
: po_iterator_storage<SetType, ExtStorage>(S) {
if (this->insertEdge(Optional<NodeRef>(), BB)) {
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
}
po_iterator(SetType &S)
: po_iterator_storage<SetType, ExtStorage>(S) {
} // End is when stack is empty.
void traverseChild() {
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
NodeRef BB = *VisitStack.back().second++;
if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) {
// If the block is not visited...
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
}
}
}
public:
using pointer = typename super::pointer;
// Provide static "constructors"...
static po_iterator begin(GraphT G) {
return po_iterator(GT::getEntryNode(G));
}
static po_iterator end(GraphT G) { return po_iterator(); }
static po_iterator begin(GraphT G, SetType &S) {
return po_iterator(GT::getEntryNode(G), S);
}
static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
bool operator==(const po_iterator &x) const {
return VisitStack == x.VisitStack;
}
bool operator!=(const po_iterator &x) const { return !(*this == x); }
const NodeRef &operator*() const { return VisitStack.back().first; }
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
NodeRef operator->() const { return **this; }
po_iterator &operator++() { // Preincrement
this->finishPostorder(VisitStack.back().first);
VisitStack.pop_back();
if (!VisitStack.empty())
traverseChild();
return *this;
}
po_iterator operator++(int) { // Postincrement
po_iterator tmp = *this;
++*this;
return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); }
template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
return make_range(po_begin(G), po_end(G));
}
// Provide global definitions of external postorder iterators...
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iterator(const po_iterator<T, SetType, true> &V) :
po_iterator<T, SetType, true>(V) {}
};
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
return po_ext_iterator<T, SetType>::begin(G, S);
}
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
return po_ext_iterator<T, SetType>::end(G, S);
}
template <class T, class SetType>
iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
return make_range(po_ext_begin(G, S), po_ext_end(G, S));
}
// Provide global definitions of inverse post order iterators...
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
bool External = false>
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
po_iterator<Inverse<T>, SetType, External> (V) {}
};
template <class T>
ipo_iterator<T> ipo_begin(const T &G) {
return ipo_iterator<T>::begin(G);
}
template <class T>
ipo_iterator<T> ipo_end(const T &G){
return ipo_iterator<T>::end(G);
}
template <class T>
iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
return make_range(ipo_begin(G), ipo_end(G));
}
// Provide global definitions of external inverse postorder iterators...
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
};
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
return ipo_ext_iterator<T, SetType>::begin(G, S);
}
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
return ipo_ext_iterator<T, SetType>::end(G, S);
}
template <class T, class SetType>
iterator_range<ipo_ext_iterator<T, SetType>>
inverse_post_order_ext(const T &G, SetType &S) {
return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
//
// Because it does the traversal in its constructor, it won't invalidate when
// BasicBlocks are removed, *but* it may contain erased blocks. Some places
// rely on this behavior (i.e. GVN).
//
// This class should be used like this:
// {
// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
template<class GraphT, class GT = GraphTraits<GraphT>>
class ReversePostOrderTraversal {
using NodeRef = typename GT::NodeRef;
std::vector<NodeRef> Blocks; // Block list in normal PO order
void Initialize(NodeRef BB) {
std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
}
public:
using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
// Because we want a reverse post order, use reverse iterators from the vector
rpo_iterator begin() { return Blocks.rbegin(); }
const_rpo_iterator begin() const { return Blocks.crbegin(); }
rpo_iterator end() { return Blocks.rend(); }
const_rpo_iterator end() const { return Blocks.crend(); }
};
} // end namespace llvm
#endif // LLVM_ADT_POSTORDERITERATOR_H