mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
0dd9c1fcd6
When used in cross-DSO mode, CFI will generate calls to special functions rather than trap instructions. For example, instead of generating if (!InlinedFastCheck(f)) abort(); call *f CFI generates if (!InlinedFastCheck(f)) __cfi_slowpath(CallSiteTypeId, f); call *f This patch teaches cfi-verify to recognize calls to __cfi_slowpath and abort and treat them as trap functions. In addition to normal symbols, we also parse the dynamic relocations to handle cross-DSO calls in libraries. We also extend cfi-verify to recognize other patterns that occur using cross-DSO. For example, some indirect calls are not guarded by a branch to a trap but instead follow a call to __cfi_slowpath. For example: if (!InlinedFastCheck(f)) call *f else { __cfi_slowpath(CallSiteTypeId, f); call *f } In this case, the second call to f is not marked as protected by the current code. We thus recognize if indirect calls directly follow a call to a function that will trap on CFI violations and treat them as protected. We also ignore indirect calls in the PLT, since on AArch64 each entry contains an indirect call that should not be protected by CFI, and these are labeled incorrectly when debug information is not present. Differential Revision: https://reviews.llvm.org/D49383 llvm-svn: 340612
588 lines
19 KiB
C++
588 lines
19 KiB
C++
//===- FileAnalysis.cpp -----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "FileAnalysis.h"
|
|
#include "GraphBuilder.h"
|
|
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
|
|
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
|
|
using LLVMSymbolizer = llvm::symbolize::LLVMSymbolizer;
|
|
|
|
namespace llvm {
|
|
namespace cfi_verify {
|
|
|
|
bool IgnoreDWARFFlag;
|
|
|
|
static cl::opt<bool, true> IgnoreDWARFArg(
|
|
"ignore-dwarf",
|
|
cl::desc(
|
|
"Ignore all DWARF data. This relaxes the requirements for all "
|
|
"statically linked libraries to have been compiled with '-g', but "
|
|
"will result in false positives for 'CFI unprotected' instructions."),
|
|
cl::location(IgnoreDWARFFlag), cl::init(false));
|
|
|
|
StringRef stringCFIProtectionStatus(CFIProtectionStatus Status) {
|
|
switch (Status) {
|
|
case CFIProtectionStatus::PROTECTED:
|
|
return "PROTECTED";
|
|
case CFIProtectionStatus::FAIL_NOT_INDIRECT_CF:
|
|
return "FAIL_NOT_INDIRECT_CF";
|
|
case CFIProtectionStatus::FAIL_ORPHANS:
|
|
return "FAIL_ORPHANS";
|
|
case CFIProtectionStatus::FAIL_BAD_CONDITIONAL_BRANCH:
|
|
return "FAIL_BAD_CONDITIONAL_BRANCH";
|
|
case CFIProtectionStatus::FAIL_REGISTER_CLOBBERED:
|
|
return "FAIL_REGISTER_CLOBBERED";
|
|
case CFIProtectionStatus::FAIL_INVALID_INSTRUCTION:
|
|
return "FAIL_INVALID_INSTRUCTION";
|
|
}
|
|
llvm_unreachable("Attempted to stringify an unknown enum value.");
|
|
}
|
|
|
|
Expected<FileAnalysis> FileAnalysis::Create(StringRef Filename) {
|
|
// Open the filename provided.
|
|
Expected<object::OwningBinary<object::Binary>> BinaryOrErr =
|
|
object::createBinary(Filename);
|
|
if (!BinaryOrErr)
|
|
return BinaryOrErr.takeError();
|
|
|
|
// Construct the object and allow it to take ownership of the binary.
|
|
object::OwningBinary<object::Binary> Binary = std::move(BinaryOrErr.get());
|
|
FileAnalysis Analysis(std::move(Binary));
|
|
|
|
Analysis.Object = dyn_cast<object::ObjectFile>(Analysis.Binary.getBinary());
|
|
if (!Analysis.Object)
|
|
return make_error<UnsupportedDisassembly>("Failed to cast object");
|
|
|
|
switch (Analysis.Object->getArch()) {
|
|
case Triple::x86:
|
|
case Triple::x86_64:
|
|
case Triple::aarch64:
|
|
case Triple::aarch64_be:
|
|
break;
|
|
default:
|
|
return make_error<UnsupportedDisassembly>("Unsupported architecture.");
|
|
}
|
|
|
|
Analysis.ObjectTriple = Analysis.Object->makeTriple();
|
|
Analysis.Features = Analysis.Object->getFeatures();
|
|
|
|
// Init the rest of the object.
|
|
if (auto InitResponse = Analysis.initialiseDisassemblyMembers())
|
|
return std::move(InitResponse);
|
|
|
|
if (auto SectionParseResponse = Analysis.parseCodeSections())
|
|
return std::move(SectionParseResponse);
|
|
|
|
if (auto SymbolTableParseResponse = Analysis.parseSymbolTable())
|
|
return std::move(SymbolTableParseResponse);
|
|
|
|
return std::move(Analysis);
|
|
}
|
|
|
|
FileAnalysis::FileAnalysis(object::OwningBinary<object::Binary> Binary)
|
|
: Binary(std::move(Binary)) {}
|
|
|
|
FileAnalysis::FileAnalysis(const Triple &ObjectTriple,
|
|
const SubtargetFeatures &Features)
|
|
: ObjectTriple(ObjectTriple), Features(Features) {}
|
|
|
|
const Instr *
|
|
FileAnalysis::getPrevInstructionSequential(const Instr &InstrMeta) const {
|
|
std::map<uint64_t, Instr>::const_iterator KV =
|
|
Instructions.find(InstrMeta.VMAddress);
|
|
if (KV == Instructions.end() || KV == Instructions.begin())
|
|
return nullptr;
|
|
|
|
if (!(--KV)->second.Valid)
|
|
return nullptr;
|
|
|
|
return &KV->second;
|
|
}
|
|
|
|
const Instr *
|
|
FileAnalysis::getNextInstructionSequential(const Instr &InstrMeta) const {
|
|
std::map<uint64_t, Instr>::const_iterator KV =
|
|
Instructions.find(InstrMeta.VMAddress);
|
|
if (KV == Instructions.end() || ++KV == Instructions.end())
|
|
return nullptr;
|
|
|
|
if (!KV->second.Valid)
|
|
return nullptr;
|
|
|
|
return &KV->second;
|
|
}
|
|
|
|
bool FileAnalysis::usesRegisterOperand(const Instr &InstrMeta) const {
|
|
for (const auto &Operand : InstrMeta.Instruction) {
|
|
if (Operand.isReg())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const Instr *FileAnalysis::getInstruction(uint64_t Address) const {
|
|
const auto &InstrKV = Instructions.find(Address);
|
|
if (InstrKV == Instructions.end())
|
|
return nullptr;
|
|
|
|
return &InstrKV->second;
|
|
}
|
|
|
|
const Instr &FileAnalysis::getInstructionOrDie(uint64_t Address) const {
|
|
const auto &InstrKV = Instructions.find(Address);
|
|
assert(InstrKV != Instructions.end() && "Address doesn't exist.");
|
|
return InstrKV->second;
|
|
}
|
|
|
|
bool FileAnalysis::isCFITrap(const Instr &InstrMeta) const {
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
return InstrDesc.isTrap() || willTrapOnCFIViolation(InstrMeta);
|
|
}
|
|
|
|
bool FileAnalysis::willTrapOnCFIViolation(const Instr &InstrMeta) const {
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
if (!InstrDesc.isCall())
|
|
return false;
|
|
uint64_t Target;
|
|
if (!MIA->evaluateBranch(InstrMeta.Instruction, InstrMeta.VMAddress,
|
|
InstrMeta.InstructionSize, Target))
|
|
return false;
|
|
return TrapOnFailFunctionAddresses.count(Target) > 0;
|
|
}
|
|
|
|
bool FileAnalysis::canFallThrough(const Instr &InstrMeta) const {
|
|
if (!InstrMeta.Valid)
|
|
return false;
|
|
|
|
if (isCFITrap(InstrMeta))
|
|
return false;
|
|
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
if (InstrDesc.mayAffectControlFlow(InstrMeta.Instruction, *RegisterInfo))
|
|
return InstrDesc.isConditionalBranch();
|
|
|
|
return true;
|
|
}
|
|
|
|
const Instr *
|
|
FileAnalysis::getDefiniteNextInstruction(const Instr &InstrMeta) const {
|
|
if (!InstrMeta.Valid)
|
|
return nullptr;
|
|
|
|
if (isCFITrap(InstrMeta))
|
|
return nullptr;
|
|
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
const Instr *NextMetaPtr;
|
|
if (InstrDesc.mayAffectControlFlow(InstrMeta.Instruction, *RegisterInfo)) {
|
|
if (InstrDesc.isConditionalBranch())
|
|
return nullptr;
|
|
|
|
uint64_t Target;
|
|
if (!MIA->evaluateBranch(InstrMeta.Instruction, InstrMeta.VMAddress,
|
|
InstrMeta.InstructionSize, Target))
|
|
return nullptr;
|
|
|
|
NextMetaPtr = getInstruction(Target);
|
|
} else {
|
|
NextMetaPtr =
|
|
getInstruction(InstrMeta.VMAddress + InstrMeta.InstructionSize);
|
|
}
|
|
|
|
if (!NextMetaPtr || !NextMetaPtr->Valid)
|
|
return nullptr;
|
|
|
|
return NextMetaPtr;
|
|
}
|
|
|
|
std::set<const Instr *>
|
|
FileAnalysis::getDirectControlFlowXRefs(const Instr &InstrMeta) const {
|
|
std::set<const Instr *> CFCrossReferences;
|
|
const Instr *PrevInstruction = getPrevInstructionSequential(InstrMeta);
|
|
|
|
if (PrevInstruction && canFallThrough(*PrevInstruction))
|
|
CFCrossReferences.insert(PrevInstruction);
|
|
|
|
const auto &TargetRefsKV = StaticBranchTargetings.find(InstrMeta.VMAddress);
|
|
if (TargetRefsKV == StaticBranchTargetings.end())
|
|
return CFCrossReferences;
|
|
|
|
for (uint64_t SourceInstrAddress : TargetRefsKV->second) {
|
|
const auto &SourceInstrKV = Instructions.find(SourceInstrAddress);
|
|
if (SourceInstrKV == Instructions.end()) {
|
|
errs() << "Failed to find source instruction at address "
|
|
<< format_hex(SourceInstrAddress, 2)
|
|
<< " for the cross-reference to instruction at address "
|
|
<< format_hex(InstrMeta.VMAddress, 2) << ".\n";
|
|
continue;
|
|
}
|
|
|
|
CFCrossReferences.insert(&SourceInstrKV->second);
|
|
}
|
|
|
|
return CFCrossReferences;
|
|
}
|
|
|
|
const std::set<uint64_t> &FileAnalysis::getIndirectInstructions() const {
|
|
return IndirectInstructions;
|
|
}
|
|
|
|
const MCRegisterInfo *FileAnalysis::getRegisterInfo() const {
|
|
return RegisterInfo.get();
|
|
}
|
|
|
|
const MCInstrInfo *FileAnalysis::getMCInstrInfo() const { return MII.get(); }
|
|
|
|
const MCInstrAnalysis *FileAnalysis::getMCInstrAnalysis() const {
|
|
return MIA.get();
|
|
}
|
|
|
|
Expected<DIInliningInfo> FileAnalysis::symbolizeInlinedCode(uint64_t Address) {
|
|
assert(Symbolizer != nullptr && "Symbolizer is invalid.");
|
|
return Symbolizer->symbolizeInlinedCode(Object->getFileName(), Address);
|
|
}
|
|
|
|
CFIProtectionStatus
|
|
FileAnalysis::validateCFIProtection(const GraphResult &Graph) const {
|
|
const Instr *InstrMetaPtr = getInstruction(Graph.BaseAddress);
|
|
if (!InstrMetaPtr)
|
|
return CFIProtectionStatus::FAIL_INVALID_INSTRUCTION;
|
|
|
|
const auto &InstrDesc = MII->get(InstrMetaPtr->Instruction.getOpcode());
|
|
if (!InstrDesc.mayAffectControlFlow(InstrMetaPtr->Instruction, *RegisterInfo))
|
|
return CFIProtectionStatus::FAIL_NOT_INDIRECT_CF;
|
|
|
|
if (!usesRegisterOperand(*InstrMetaPtr))
|
|
return CFIProtectionStatus::FAIL_NOT_INDIRECT_CF;
|
|
|
|
if (!Graph.OrphanedNodes.empty())
|
|
return CFIProtectionStatus::FAIL_ORPHANS;
|
|
|
|
for (const auto &BranchNode : Graph.ConditionalBranchNodes) {
|
|
if (!BranchNode.CFIProtection)
|
|
return CFIProtectionStatus::FAIL_BAD_CONDITIONAL_BRANCH;
|
|
}
|
|
|
|
if (indirectCFOperandClobber(Graph) != Graph.BaseAddress)
|
|
return CFIProtectionStatus::FAIL_REGISTER_CLOBBERED;
|
|
|
|
return CFIProtectionStatus::PROTECTED;
|
|
}
|
|
|
|
uint64_t FileAnalysis::indirectCFOperandClobber(const GraphResult &Graph) const {
|
|
assert(Graph.OrphanedNodes.empty() && "Orphaned nodes should be empty.");
|
|
|
|
// Get the set of registers we must check to ensure they're not clobbered.
|
|
const Instr &IndirectCF = getInstructionOrDie(Graph.BaseAddress);
|
|
DenseSet<unsigned> RegisterNumbers;
|
|
for (const auto &Operand : IndirectCF.Instruction) {
|
|
if (Operand.isReg())
|
|
RegisterNumbers.insert(Operand.getReg());
|
|
}
|
|
assert(RegisterNumbers.size() && "Zero register operands on indirect CF.");
|
|
|
|
// Now check all branches to indirect CFs and ensure no clobbering happens.
|
|
for (const auto &Branch : Graph.ConditionalBranchNodes) {
|
|
uint64_t Node;
|
|
if (Branch.IndirectCFIsOnTargetPath)
|
|
Node = Branch.Target;
|
|
else
|
|
Node = Branch.Fallthrough;
|
|
|
|
// Some architectures (e.g., AArch64) cannot load in an indirect branch, so
|
|
// we allow them one load.
|
|
bool canLoad = !MII->get(IndirectCF.Instruction.getOpcode()).mayLoad();
|
|
|
|
// We walk backwards from the indirect CF. It is the last node returned by
|
|
// Graph.flattenAddress, so we skip it since we already handled it.
|
|
DenseSet<unsigned> CurRegisterNumbers = RegisterNumbers;
|
|
std::vector<uint64_t> Nodes = Graph.flattenAddress(Node);
|
|
for (auto I = Nodes.rbegin() + 1, E = Nodes.rend(); I != E; ++I) {
|
|
Node = *I;
|
|
const Instr &NodeInstr = getInstructionOrDie(Node);
|
|
const auto &InstrDesc = MII->get(NodeInstr.Instruction.getOpcode());
|
|
|
|
for (auto RI = CurRegisterNumbers.begin(), RE = CurRegisterNumbers.end();
|
|
RI != RE; ++RI) {
|
|
unsigned RegNum = *RI;
|
|
if (InstrDesc.hasDefOfPhysReg(NodeInstr.Instruction, RegNum,
|
|
*RegisterInfo)) {
|
|
if (!canLoad || !InstrDesc.mayLoad())
|
|
return Node;
|
|
canLoad = false;
|
|
CurRegisterNumbers.erase(RI);
|
|
// Add the registers this load reads to those we check for clobbers.
|
|
for (unsigned i = InstrDesc.getNumDefs(),
|
|
e = InstrDesc.getNumOperands(); i != e; i++) {
|
|
const auto Operand = NodeInstr.Instruction.getOperand(i);
|
|
if (Operand.isReg())
|
|
CurRegisterNumbers.insert(Operand.getReg());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Graph.BaseAddress;
|
|
}
|
|
|
|
void FileAnalysis::printInstruction(const Instr &InstrMeta,
|
|
raw_ostream &OS) const {
|
|
Printer->printInst(&InstrMeta.Instruction, OS, "", *SubtargetInfo.get());
|
|
}
|
|
|
|
Error FileAnalysis::initialiseDisassemblyMembers() {
|
|
std::string TripleName = ObjectTriple.getTriple();
|
|
ArchName = "";
|
|
MCPU = "";
|
|
std::string ErrorString;
|
|
|
|
Symbolizer.reset(new LLVMSymbolizer());
|
|
|
|
ObjectTarget =
|
|
TargetRegistry::lookupTarget(ArchName, ObjectTriple, ErrorString);
|
|
if (!ObjectTarget)
|
|
return make_error<UnsupportedDisassembly>(
|
|
(Twine("Couldn't find target \"") + ObjectTriple.getTriple() +
|
|
"\", failed with error: " + ErrorString)
|
|
.str());
|
|
|
|
RegisterInfo.reset(ObjectTarget->createMCRegInfo(TripleName));
|
|
if (!RegisterInfo)
|
|
return make_error<UnsupportedDisassembly>(
|
|
"Failed to initialise RegisterInfo.");
|
|
|
|
AsmInfo.reset(ObjectTarget->createMCAsmInfo(*RegisterInfo, TripleName));
|
|
if (!AsmInfo)
|
|
return make_error<UnsupportedDisassembly>("Failed to initialise AsmInfo.");
|
|
|
|
SubtargetInfo.reset(ObjectTarget->createMCSubtargetInfo(
|
|
TripleName, MCPU, Features.getString()));
|
|
if (!SubtargetInfo)
|
|
return make_error<UnsupportedDisassembly>(
|
|
"Failed to initialise SubtargetInfo.");
|
|
|
|
MII.reset(ObjectTarget->createMCInstrInfo());
|
|
if (!MII)
|
|
return make_error<UnsupportedDisassembly>("Failed to initialise MII.");
|
|
|
|
Context.reset(new MCContext(AsmInfo.get(), RegisterInfo.get(), &MOFI));
|
|
|
|
Disassembler.reset(
|
|
ObjectTarget->createMCDisassembler(*SubtargetInfo, *Context));
|
|
|
|
if (!Disassembler)
|
|
return make_error<UnsupportedDisassembly>(
|
|
"No disassembler available for target");
|
|
|
|
MIA.reset(ObjectTarget->createMCInstrAnalysis(MII.get()));
|
|
|
|
Printer.reset(ObjectTarget->createMCInstPrinter(
|
|
ObjectTriple, AsmInfo->getAssemblerDialect(), *AsmInfo, *MII,
|
|
*RegisterInfo));
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error FileAnalysis::parseCodeSections() {
|
|
if (!IgnoreDWARFFlag) {
|
|
std::unique_ptr<DWARFContext> DWARF = DWARFContext::create(*Object);
|
|
if (!DWARF)
|
|
return make_error<StringError>("Could not create DWARF information.",
|
|
inconvertibleErrorCode());
|
|
|
|
bool LineInfoValid = false;
|
|
|
|
for (auto &Unit : DWARF->compile_units()) {
|
|
const auto &LineTable = DWARF->getLineTableForUnit(Unit.get());
|
|
if (LineTable && !LineTable->Rows.empty()) {
|
|
LineInfoValid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!LineInfoValid)
|
|
return make_error<StringError>(
|
|
"DWARF line information missing. Did you compile with '-g'?",
|
|
inconvertibleErrorCode());
|
|
}
|
|
|
|
for (const object::SectionRef &Section : Object->sections()) {
|
|
// Ensure only executable sections get analysed.
|
|
if (!(object::ELFSectionRef(Section).getFlags() & ELF::SHF_EXECINSTR))
|
|
continue;
|
|
|
|
// Avoid checking the PLT since it produces spurious failures on AArch64
|
|
// when ignoring DWARF data.
|
|
StringRef SectionName;
|
|
if (!Section.getName(SectionName) && SectionName == ".plt")
|
|
continue;
|
|
|
|
StringRef SectionContents;
|
|
if (Section.getContents(SectionContents))
|
|
return make_error<StringError>("Failed to retrieve section contents",
|
|
inconvertibleErrorCode());
|
|
|
|
ArrayRef<uint8_t> SectionBytes((const uint8_t *)SectionContents.data(),
|
|
Section.getSize());
|
|
parseSectionContents(SectionBytes, Section.getAddress());
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
void FileAnalysis::parseSectionContents(ArrayRef<uint8_t> SectionBytes,
|
|
uint64_t SectionAddress) {
|
|
assert(Symbolizer && "Symbolizer is uninitialised.");
|
|
MCInst Instruction;
|
|
Instr InstrMeta;
|
|
uint64_t InstructionSize;
|
|
|
|
for (uint64_t Byte = 0; Byte < SectionBytes.size();) {
|
|
bool ValidInstruction =
|
|
Disassembler->getInstruction(Instruction, InstructionSize,
|
|
SectionBytes.drop_front(Byte), 0, nulls(),
|
|
outs()) == MCDisassembler::Success;
|
|
|
|
Byte += InstructionSize;
|
|
|
|
uint64_t VMAddress = SectionAddress + Byte - InstructionSize;
|
|
InstrMeta.Instruction = Instruction;
|
|
InstrMeta.VMAddress = VMAddress;
|
|
InstrMeta.InstructionSize = InstructionSize;
|
|
InstrMeta.Valid = ValidInstruction;
|
|
|
|
addInstruction(InstrMeta);
|
|
|
|
if (!ValidInstruction)
|
|
continue;
|
|
|
|
// Skip additional parsing for instructions that do not affect the control
|
|
// flow.
|
|
const auto &InstrDesc = MII->get(Instruction.getOpcode());
|
|
if (!InstrDesc.mayAffectControlFlow(Instruction, *RegisterInfo))
|
|
continue;
|
|
|
|
uint64_t Target;
|
|
if (MIA->evaluateBranch(Instruction, VMAddress, InstructionSize, Target)) {
|
|
// If the target can be evaluated, it's not indirect.
|
|
StaticBranchTargetings[Target].push_back(VMAddress);
|
|
continue;
|
|
}
|
|
|
|
if (!usesRegisterOperand(InstrMeta))
|
|
continue;
|
|
|
|
if (InstrDesc.isReturn())
|
|
continue;
|
|
|
|
// Check if this instruction exists in the range of the DWARF metadata.
|
|
if (!IgnoreDWARFFlag) {
|
|
auto LineInfo =
|
|
Symbolizer->symbolizeCode(Object->getFileName(), VMAddress);
|
|
if (!LineInfo) {
|
|
handleAllErrors(LineInfo.takeError(), [](const ErrorInfoBase &E) {
|
|
errs() << "Symbolizer failed to get line: " << E.message() << "\n";
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (LineInfo->FileName == "<invalid>")
|
|
continue;
|
|
}
|
|
|
|
IndirectInstructions.insert(VMAddress);
|
|
}
|
|
}
|
|
|
|
void FileAnalysis::addInstruction(const Instr &Instruction) {
|
|
const auto &KV =
|
|
Instructions.insert(std::make_pair(Instruction.VMAddress, Instruction));
|
|
if (!KV.second) {
|
|
errs() << "Failed to add instruction at address "
|
|
<< format_hex(Instruction.VMAddress, 2)
|
|
<< ": Instruction at this address already exists.\n";
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
Error FileAnalysis::parseSymbolTable() {
|
|
// Functions that will trap on CFI violations.
|
|
SmallSet<StringRef, 4> TrapOnFailFunctions;
|
|
TrapOnFailFunctions.insert("__cfi_slowpath");
|
|
TrapOnFailFunctions.insert("__cfi_slowpath_diag");
|
|
TrapOnFailFunctions.insert("abort");
|
|
|
|
// Look through the list of symbols for functions that will trap on CFI
|
|
// violations.
|
|
for (auto &Sym : Object->symbols()) {
|
|
auto SymNameOrErr = Sym.getName();
|
|
if (!SymNameOrErr)
|
|
consumeError(SymNameOrErr.takeError());
|
|
else if (TrapOnFailFunctions.count(*SymNameOrErr) > 0) {
|
|
auto AddrOrErr = Sym.getAddress();
|
|
if (!AddrOrErr)
|
|
consumeError(AddrOrErr.takeError());
|
|
else
|
|
TrapOnFailFunctionAddresses.insert(*AddrOrErr);
|
|
}
|
|
}
|
|
if (auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Object)) {
|
|
for (const auto &Addr : ElfObject->getPltAddresses()) {
|
|
object::SymbolRef Sym(Addr.first, Object);
|
|
auto SymNameOrErr = Sym.getName();
|
|
if (!SymNameOrErr)
|
|
consumeError(SymNameOrErr.takeError());
|
|
else if (TrapOnFailFunctions.count(*SymNameOrErr) > 0)
|
|
TrapOnFailFunctionAddresses.insert(Addr.second);
|
|
}
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
UnsupportedDisassembly::UnsupportedDisassembly(StringRef Text) : Text(Text) {}
|
|
|
|
char UnsupportedDisassembly::ID;
|
|
void UnsupportedDisassembly::log(raw_ostream &OS) const {
|
|
OS << "Could not initialise disassembler: " << Text;
|
|
}
|
|
|
|
std::error_code UnsupportedDisassembly::convertToErrorCode() const {
|
|
return std::error_code();
|
|
}
|
|
|
|
} // namespace cfi_verify
|
|
} // namespace llvm
|