mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
f1ba4465de
Previously we would use a bundle to hint the register allocator to not overwrite the pointers in a sequence of loads to avoid breaking soft clauses. This bundling was based on a fuzzy register pressure heuristic, so we could not guarantee using more registers than are really available. This would result in register allocator failing on unsatisfiable bundles. Use a kill to artificially extend the live ranges, so we can always succeed at register allocation even if it means extra spills in the worst case. This seems to capture most of the benefit of the bundle while avoiding most of the risk presented by the bundle. However the lit tests do show a handful of regressions. In some cases with sequences of volatile loads, unused load components end up getting reallocated to the next load which forces a wait between. There are also a few small scheduling regressions where a hazard used to be avoided, and one spill torture test which for some reason nearly doubles the stack usage. There is also a bit of noise from leftover kills (it may make sense for post-RA pseudos to strip all of these out).
214 lines
6.4 KiB
C++
214 lines
6.4 KiB
C++
//===-- SIPostRABundler.cpp -----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass creates bundles of memory instructions to protect adjacent loads
|
|
/// and stores from beeing rescheduled apart from each other post-RA.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "si-post-ra-bundler"
|
|
|
|
namespace {
|
|
|
|
class SIPostRABundler : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
public:
|
|
SIPostRABundler() : MachineFunctionPass(ID) {
|
|
initializeSIPostRABundlerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return "SI post-RA bundler";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
const SIRegisterInfo *TRI;
|
|
|
|
SmallSet<Register, 16> Defs;
|
|
|
|
void collectUsedRegUnits(const MachineInstr &MI,
|
|
BitVector &UsedRegUnits) const;
|
|
|
|
bool isBundleCandidate(const MachineInstr &MI) const;
|
|
bool isDependentLoad(const MachineInstr &MI) const;
|
|
bool canBundle(const MachineInstr &MI, const MachineInstr &NextMI) const;
|
|
};
|
|
|
|
constexpr uint64_t MemFlags = SIInstrFlags::MTBUF | SIInstrFlags::MUBUF |
|
|
SIInstrFlags::SMRD | SIInstrFlags::DS |
|
|
SIInstrFlags::FLAT | SIInstrFlags::MIMG;
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS(SIPostRABundler, DEBUG_TYPE, "SI post-RA bundler", false, false)
|
|
|
|
char SIPostRABundler::ID = 0;
|
|
|
|
char &llvm::SIPostRABundlerID = SIPostRABundler::ID;
|
|
|
|
FunctionPass *llvm::createSIPostRABundlerPass() {
|
|
return new SIPostRABundler();
|
|
}
|
|
|
|
bool SIPostRABundler::isDependentLoad(const MachineInstr &MI) const {
|
|
if (!MI.mayLoad())
|
|
return false;
|
|
|
|
for (const MachineOperand &Op : MI.explicit_operands()) {
|
|
if (!Op.isReg())
|
|
continue;
|
|
Register Reg = Op.getReg();
|
|
for (Register Def : Defs)
|
|
if (TRI->regsOverlap(Reg, Def))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void SIPostRABundler::collectUsedRegUnits(const MachineInstr &MI,
|
|
BitVector &UsedRegUnits) const {
|
|
for (const MachineOperand &Op : MI.operands()) {
|
|
if (!Op.isReg() || !Op.readsReg())
|
|
continue;
|
|
|
|
Register Reg = Op.getReg();
|
|
assert(!Op.getSubReg() &&
|
|
"subregister indexes should not be present after RA");
|
|
|
|
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
|
|
UsedRegUnits.set(*Units);
|
|
}
|
|
}
|
|
|
|
bool SIPostRABundler::isBundleCandidate(const MachineInstr &MI) const {
|
|
const uint64_t IMemFlags = MI.getDesc().TSFlags & MemFlags;
|
|
return IMemFlags != 0 && MI.mayLoadOrStore() && !MI.isBundled();
|
|
}
|
|
|
|
bool SIPostRABundler::canBundle(const MachineInstr &MI,
|
|
const MachineInstr &NextMI) const {
|
|
const uint64_t IMemFlags = MI.getDesc().TSFlags & MemFlags;
|
|
|
|
return (IMemFlags != 0 && MI.mayLoadOrStore() && !NextMI.isBundled() &&
|
|
NextMI.mayLoad() == MI.mayLoad() && NextMI.mayStore() == MI.mayStore() &&
|
|
((NextMI.getDesc().TSFlags & MemFlags) == IMemFlags) &&
|
|
!isDependentLoad(NextMI));
|
|
}
|
|
|
|
bool SIPostRABundler::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
|
|
BitVector BundleUsedRegUnits(TRI->getNumRegUnits());
|
|
BitVector KillUsedRegUnits(TRI->getNumRegUnits());
|
|
|
|
bool Changed = false;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
MachineBasicBlock::instr_iterator Next;
|
|
MachineBasicBlock::instr_iterator B = MBB.instr_begin();
|
|
MachineBasicBlock::instr_iterator E = MBB.instr_end();
|
|
|
|
for (auto I = B; I != E; I = Next) {
|
|
Next = std::next(I);
|
|
if (!isBundleCandidate(*I))
|
|
continue;
|
|
|
|
assert(Defs.empty());
|
|
|
|
if (I->getNumExplicitDefs() != 0)
|
|
Defs.insert(I->defs().begin()->getReg());
|
|
|
|
MachineBasicBlock::instr_iterator BundleStart = I;
|
|
MachineBasicBlock::instr_iterator BundleEnd = I;
|
|
unsigned ClauseLength = 1;
|
|
for (I = Next; I != E; I = Next) {
|
|
Next = std::next(I);
|
|
|
|
assert(BundleEnd != I);
|
|
if (canBundle(*BundleEnd, *I)) {
|
|
BundleEnd = I;
|
|
if (I->getNumExplicitDefs() != 0)
|
|
Defs.insert(I->defs().begin()->getReg());
|
|
++ClauseLength;
|
|
} else if (!I->isMetaInstruction()) {
|
|
// Allow meta instructions in between bundle candidates, but do not
|
|
// start or end a bundle on one.
|
|
//
|
|
// TODO: It may be better to move meta instructions like dbg_value
|
|
// after the bundle. We're relying on the memory legalizer to unbundle
|
|
// these.
|
|
break;
|
|
}
|
|
}
|
|
|
|
Next = std::next(BundleEnd);
|
|
if (ClauseLength > 1) {
|
|
Changed = true;
|
|
|
|
// Before register allocation, kills are inserted after potential soft
|
|
// clauses to hint register allocation. Look for kills that look like
|
|
// this, and erase them.
|
|
if (Next != E && Next->isKill()) {
|
|
|
|
// TODO: Should maybe back-propagate kill flags to the bundle.
|
|
for (const MachineInstr &BundleMI : make_range(BundleStart, Next))
|
|
collectUsedRegUnits(BundleMI, BundleUsedRegUnits);
|
|
|
|
BundleUsedRegUnits.flip();
|
|
|
|
while (Next != E && Next->isKill()) {
|
|
MachineInstr &Kill = *Next;
|
|
collectUsedRegUnits(Kill, KillUsedRegUnits);
|
|
|
|
KillUsedRegUnits &= BundleUsedRegUnits;
|
|
|
|
// Erase the kill if it's a subset of the used registers.
|
|
//
|
|
// TODO: Should we just remove all kills? Is there any real reason to
|
|
// keep them after RA?
|
|
if (KillUsedRegUnits.none()) {
|
|
++Next;
|
|
Kill.eraseFromParent();
|
|
} else
|
|
break;
|
|
|
|
KillUsedRegUnits.reset();
|
|
}
|
|
|
|
BundleUsedRegUnits.reset();
|
|
}
|
|
|
|
finalizeBundle(MBB, BundleStart, Next);
|
|
}
|
|
|
|
Defs.clear();
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|