1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Analysis/ValueTracking.cpp
Philip Reames 6215df8065 Reapply "Look through invertible recurrences in isKnownNonEqual"
I'd reverted this in commit 3b6acb179708ea2f3caf95ace0f134fcbc460333 due to buildbot failures.  This patch contains the fix for said issue.  I'd forgotten to handle the case where two phis in the same block have different operand order.  We canonicalize away from this, but it's still valid IR.  The tests included in this change (as opposed to simply having test output changed), crashed without the fix.

Original commit message follows...

This extends the phi handling in isKnownNonEqual with a special case based on invertible recurrences. If we can prove the recurrence is invertible (which many common ones are), we can recurse through the start operands of the recurrence skipping the phi cycle.

(Side note: Instcombine currently does not push back through these cases. I will implement that in a follow up change w/separate review.)

Differential Revision: https://reviews.llvm.org/D99912
2021-04-20 12:47:59 -07:00

7077 lines
261 KiB
C++

//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
// Controls the number of uses of the value searched for possible
// dominating comparisons.
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
cl::Hidden, cl::init(20));
/// Returns the bitwidth of the given scalar or pointer type. For vector types,
/// returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
return DL.getPointerTypeSizeInBits(Ty);
}
namespace {
// Simplifying using an assume can only be done in a particular control-flow
// context (the context instruction provides that context). If an assume and
// the context instruction are not in the same block then the DT helps in
// figuring out if we can use it.
struct Query {
const DataLayout &DL;
AssumptionCache *AC;
const Instruction *CxtI;
const DominatorTree *DT;
// Unlike the other analyses, this may be a nullptr because not all clients
// provide it currently.
OptimizationRemarkEmitter *ORE;
/// If true, it is safe to use metadata during simplification.
InstrInfoQuery IIQ;
Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo,
OptimizationRemarkEmitter *ORE = nullptr)
: DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
};
} // end anonymous namespace
// Given the provided Value and, potentially, a context instruction, return
// the preferred context instruction (if any).
static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
// If we've been provided with a context instruction, then use that (provided
// it has been inserted).
if (CxtI && CxtI->getParent())
return CxtI;
// If the value is really an already-inserted instruction, then use that.
CxtI = dyn_cast<Instruction>(V);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
// If we've been provided with a context instruction, then use that (provided
// it has been inserted).
if (CxtI && CxtI->getParent())
return CxtI;
// If the value is really an already-inserted instruction, then use that.
CxtI = dyn_cast<Instruction>(V1);
if (CxtI && CxtI->getParent())
return CxtI;
CxtI = dyn_cast<Instruction>(V2);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
const APInt &DemandedElts,
APInt &DemandedLHS, APInt &DemandedRHS) {
// The length of scalable vectors is unknown at compile time, thus we
// cannot check their values
if (isa<ScalableVectorType>(Shuf->getType()))
return false;
int NumElts =
cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
if (DemandedElts.isNullValue())
return true;
// Simple case of a shuffle with zeroinitializer.
if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
DemandedLHS.setBit(0);
return true;
}
for (int i = 0; i != NumMaskElts; ++i) {
if (!DemandedElts[i])
continue;
int M = Shuf->getMaskValue(i);
assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
// For undef elements, we don't know anything about the common state of
// the shuffle result.
if (M == -1)
return false;
if (M < NumElts)
DemandedLHS.setBit(M % NumElts);
else
DemandedRHS.setBit(M % NumElts);
}
return true;
}
static void computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, unsigned Depth, const Query &Q);
static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
const Query &Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType())) {
Known.resetAll();
return;
}
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
}
void llvm::computeKnownBits(const Value *V, KnownBits &Known,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, DemandedElts, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static KnownBits computeKnownBits(const Value *V, unsigned Depth,
const Query &Q);
KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, DemandedElts, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
assert(LHS->getType() == RHS->getType() &&
"LHS and RHS should have the same type");
assert(LHS->getType()->isIntOrIntVectorTy() &&
"LHS and RHS should be integers");
// Look for an inverted mask: (X & ~M) op (Y & M).
Value *M;
if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(RHS, m_c_And(m_Specific(M), m_Value())))
return true;
if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(LHS, m_c_And(m_Specific(M), m_Value())))
return true;
IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
KnownBits LHSKnown(IT->getBitWidth());
KnownBits RHSKnown(IT->getBitWidth());
computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
}
bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
for (const User *U : CxtI->users()) {
if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
return false;
}
return true;
}
static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q);
bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
bool OrZero, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownToBeAPowerOfTwo(
V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownNonZero(V, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNonNegative();
}
bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->getValue().isStrictlyPositive();
// TODO: We'd doing two recursive queries here. We should factor this such
// that only a single query is needed.
return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
}
bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNegative();
}
static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q);
bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
return ::isKnownNonEqual(V1, V2, 0,
Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
UseInstrInfo, /*ORE=*/nullptr));
}
static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q);
bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::MaskedValueIsZero(
V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
const Query &Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType()))
return 1;
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
return ComputeNumSignBits(V, DemandedElts, Depth, Q);
}
unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::ComputeNumSignBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
bool NSW, const APInt &DemandedElts,
KnownBits &KnownOut, KnownBits &Known2,
unsigned Depth, const Query &Q) {
computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
// If one operand is unknown and we have no nowrap information,
// the result will be unknown independently of the second operand.
if (KnownOut.isUnknown() && !NSW)
return;
computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
}
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
const APInt &DemandedElts, KnownBits &Known,
KnownBits &Known2, unsigned Depth,
const Query &Q) {
computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
// If the multiplication is known not to overflow, compute the sign bit.
if (NSW) {
if (Op0 == Op1) {
// The product of a number with itself is non-negative.
isKnownNonNegative = true;
} else {
bool isKnownNonNegativeOp1 = Known.isNonNegative();
bool isKnownNonNegativeOp0 = Known2.isNonNegative();
bool isKnownNegativeOp1 = Known.isNegative();
bool isKnownNegativeOp0 = Known2.isNegative();
// The product of two numbers with the same sign is non-negative.
isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
(isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
// The product of a negative number and a non-negative number is either
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative =
(isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Known2.isNonZero()) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
}
}
Known = KnownBits::mul(Known, Known2);
// Only make use of no-wrap flags if we failed to compute the sign bit
// directly. This matters if the multiplication always overflows, in
// which case we prefer to follow the result of the direct computation,
// though as the program is invoking undefined behaviour we can choose
// whatever we like here.
if (isKnownNonNegative && !Known.isNegative())
Known.makeNonNegative();
else if (isKnownNegative && !Known.isNonNegative())
Known.makeNegative();
}
void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
KnownBits &Known) {
unsigned BitWidth = Known.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
// The first CommonPrefixBits of all values in Range are equal.
unsigned CommonPrefixBits =
(Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
Known.One &= UnsignedMax & Mask;
Known.Zero &= ~UnsignedMax & Mask;
}
}
static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
SmallVector<const Value *, 16> WorkSet(1, I);
SmallPtrSet<const Value *, 32> Visited;
SmallPtrSet<const Value *, 16> EphValues;
// The instruction defining an assumption's condition itself is always
// considered ephemeral to that assumption (even if it has other
// non-ephemeral users). See r246696's test case for an example.
if (is_contained(I->operands(), E))
return true;
while (!WorkSet.empty()) {
const Value *V = WorkSet.pop_back_val();
if (!Visited.insert(V).second)
continue;
// If all uses of this value are ephemeral, then so is this value.
if (llvm::all_of(V->users(), [&](const User *U) {
return EphValues.count(U);
})) {
if (V == E)
return true;
if (V == I || isSafeToSpeculativelyExecute(V)) {
EphValues.insert(V);
if (const User *U = dyn_cast<User>(V))
append_range(WorkSet, U->operands());
}
}
}
return false;
}
// Is this an intrinsic that cannot be speculated but also cannot trap?
bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
return CI->isAssumeLikeIntrinsic();
return false;
}
bool llvm::isValidAssumeForContext(const Instruction *Inv,
const Instruction *CxtI,
const DominatorTree *DT) {
// There are two restrictions on the use of an assume:
// 1. The assume must dominate the context (or the control flow must
// reach the assume whenever it reaches the context).
// 2. The context must not be in the assume's set of ephemeral values
// (otherwise we will use the assume to prove that the condition
// feeding the assume is trivially true, thus causing the removal of
// the assume).
if (Inv->getParent() == CxtI->getParent()) {
// If Inv and CtxI are in the same block, check if the assume (Inv) is first
// in the BB.
if (Inv->comesBefore(CxtI))
return true;
// Don't let an assume affect itself - this would cause the problems
// `isEphemeralValueOf` is trying to prevent, and it would also make
// the loop below go out of bounds.
if (Inv == CxtI)
return false;
// The context comes first, but they're both in the same block.
// Make sure there is nothing in between that might interrupt
// the control flow, not even CxtI itself.
// We limit the scan distance between the assume and its context instruction
// to avoid a compile-time explosion. This limit is chosen arbitrarily, so
// it can be adjusted if needed (could be turned into a cl::opt).
unsigned ScanLimit = 15;
for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0)
return false;
return !isEphemeralValueOf(Inv, CxtI);
}
// Inv and CxtI are in different blocks.
if (DT) {
if (DT->dominates(Inv, CxtI))
return true;
} else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
// We don't have a DT, but this trivially dominates.
return true;
}
return false;
}
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
// v u> y implies v != 0.
if (Pred == ICmpInst::ICMP_UGT)
return true;
// Special-case v != 0 to also handle v != null.
if (Pred == ICmpInst::ICMP_NE)
return match(RHS, m_Zero());
// All other predicates - rely on generic ConstantRange handling.
const APInt *C;
if (!match(RHS, m_APInt(C)))
return false;
ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
return !TrueValues.contains(APInt::getNullValue(C->getBitWidth()));
}
static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
if (!Q.AC || !Q.CxtI)
return false;
if (Q.CxtI && V->getType()->isPointerTy()) {
SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
if (!NullPointerIsDefined(Q.CxtI->getFunction(),
V->getType()->getPointerAddressSpace()))
AttrKinds.push_back(Attribute::Dereferenceable);
if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
return true;
}
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getFunction() == Q.CxtI->getFunction() &&
"Got assumption for the wrong function!");
// Warning: This loop can end up being somewhat performance sensitive.
// We're running this loop for once for each value queried resulting in a
// runtime of ~O(#assumes * #values).
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *RHS;
CmpInst::Predicate Pred;
auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
return false;
if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
return true;
}
return false;
}
static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
unsigned Depth, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
if (!Q.AC || !Q.CxtI)
return;
unsigned BitWidth = Known.getBitWidth();
// Refine Known set if the pointer alignment is set by assume bundles.
if (V->getType()->isPointerTy()) {
if (RetainedKnowledge RK = getKnowledgeValidInContext(
V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
Known.Zero.setLowBits(Log2_32(RK.ArgValue));
}
}
// Note that the patterns below need to be kept in sync with the code
// in AssumptionCache::updateAffectedValues.
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
"Got assumption for the wrong function!");
// Warning: This loop can end up being somewhat performance sensitive.
// We're running this loop for once for each value queried resulting in a
// runtime of ~O(#assumes * #values).
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *Arg = I->getArgOperand(0);
if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllOnes();
return;
}
if (match(Arg, m_Not(m_Specific(V))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllZero();
return;
}
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth == MaxAnalysisRecursionDepth)
continue;
ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
if (!Cmp)
continue;
// We are attempting to compute known bits for the operands of an assume.
// Do not try to use other assumptions for those recursive calls because
// that can lead to mutual recursion and a compile-time explosion.
// An example of the mutual recursion: computeKnownBits can call
// isKnownNonZero which calls computeKnownBitsFromAssume (this function)
// and so on.
Query QueryNoAC = Q;
QueryNoAC.AC = nullptr;
// Note that ptrtoint may change the bitwidth.
Value *A, *B;
auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
CmpInst::Predicate Pred;
uint64_t C;
switch (Cmp->getPredicate()) {
default:
break;
case ICmpInst::ICMP_EQ:
// assume(v = a)
if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero;
Known.One |= RHSKnown.One;
// assume(v & b = a)
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits MaskKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in the mask that are known to be one, we can propagate
// known bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & MaskKnown.One;
Known.One |= RHSKnown.One & MaskKnown.One;
// assume(~(v & b) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits MaskKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in the mask that are known to be one, we can propagate
// inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.One & MaskKnown.One;
Known.One |= RHSKnown.Zero & MaskKnown.One;
// assume(v | b = a)
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
// assume(~(v | b) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
// assume(v ^ b = a)
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V. For those bits in B that are known to be one,
// we can propagate inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
Known.Zero |= RHSKnown.One & BKnown.One;
Known.One |= RHSKnown.Zero & BKnown.One;
// assume(~(v ^ b) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V. For those bits in B that are
// known to be one, we can propagate known bits from the RHS to V.
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
Known.Zero |= RHSKnown.Zero & BKnown.One;
Known.One |= RHSKnown.One & BKnown.One;
// assume(v << c = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
RHSKnown.Zero.lshrInPlace(C);
Known.Zero |= RHSKnown.Zero;
RHSKnown.One.lshrInPlace(C);
Known.One |= RHSKnown.One;
// assume(~(v << c) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
RHSKnown.One.lshrInPlace(C);
Known.Zero |= RHSKnown.One;
RHSKnown.Zero.lshrInPlace(C);
Known.One |= RHSKnown.Zero;
// assume(v >> c = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
Known.Zero |= RHSKnown.Zero << C;
Known.One |= RHSKnown.One << C;
// assume(~(v >> c) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
Known.Zero |= RHSKnown.One << C;
Known.One |= RHSKnown.Zero << C;
}
break;
case ICmpInst::ICMP_SGE:
// assume(v >=_s c) where c is non-negative
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isNonNegative()) {
// We know that the sign bit is zero.
Known.makeNonNegative();
}
}
break;
case ICmpInst::ICMP_SGT:
// assume(v >_s c) where c is at least -1.
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
// We know that the sign bit is zero.
Known.makeNonNegative();
}
}
break;
case ICmpInst::ICMP_SLE:
// assume(v <=_s c) where c is negative
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isNegative()) {
// We know that the sign bit is one.
Known.makeNegative();
}
}
break;
case ICmpInst::ICMP_SLT:
// assume(v <_s c) where c is non-positive
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isZero() || RHSKnown.isNegative()) {
// We know that the sign bit is one.
Known.makeNegative();
}
}
break;
case ICmpInst::ICMP_ULE:
// assume(v <=_u c)
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// Whatever high bits in c are zero are known to be zero.
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
break;
case ICmpInst::ICMP_ULT:
// assume(v <_u c)
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// If the RHS is known zero, then this assumption must be wrong (nothing
// is unsigned less than zero). Signal a conflict and get out of here.
if (RHSKnown.isZero()) {
Known.Zero.setAllBits();
Known.One.setAllBits();
break;
}
// Whatever high bits in c are zero are known to be zero (if c is a power
// of 2, then one more).
if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
else
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
break;
}
}
// If assumptions conflict with each other or previous known bits, then we
// have a logical fallacy. It's possible that the assumption is not reachable,
// so this isn't a real bug. On the other hand, the program may have undefined
// behavior, or we might have a bug in the compiler. We can't assert/crash, so
// clear out the known bits, try to warn the user, and hope for the best.
if (Known.Zero.intersects(Known.One)) {
Known.resetAll();
if (Q.ORE)
Q.ORE->emit([&]() {
auto *CxtI = const_cast<Instruction *>(Q.CxtI);
return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
CxtI)
<< "Detected conflicting code assumptions. Program may "
"have undefined behavior, or compiler may have "
"internal error.";
});
}
}
/// Compute known bits from a shift operator, including those with a
/// non-constant shift amount. Known is the output of this function. Known2 is a
/// pre-allocated temporary with the same bit width as Known and on return
/// contains the known bit of the shift value source. KF is an
/// operator-specific function that, given the known-bits and a shift amount,
/// compute the implied known-bits of the shift operator's result respectively
/// for that shift amount. The results from calling KF are conservatively
/// combined for all permitted shift amounts.
static void computeKnownBitsFromShiftOperator(
const Operator *I, const APInt &DemandedElts, KnownBits &Known,
KnownBits &Known2, unsigned Depth, const Query &Q,
function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
unsigned BitWidth = Known.getBitWidth();
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
// Note: We cannot use Known.Zero.getLimitedValue() here, because if
// BitWidth > 64 and any upper bits are known, we'll end up returning the
// limit value (which implies all bits are known).
uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
bool ShiftAmtIsConstant = Known.isConstant();
bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
if (ShiftAmtIsConstant) {
Known = KF(Known2, Known);
// If the known bits conflict, this must be an overflowing left shift, so
// the shift result is poison. We can return anything we want. Choose 0 for
// the best folding opportunity.
if (Known.hasConflict())
Known.setAllZero();
return;
}
// If the shift amount could be greater than or equal to the bit-width of the
// LHS, the value could be poison, but bail out because the check below is
// expensive.
// TODO: Should we just carry on?
if (MaxShiftAmtIsOutOfRange) {
Known.resetAll();
return;
}
// It would be more-clearly correct to use the two temporaries for this
// calculation. Reusing the APInts here to prevent unnecessary allocations.
Known.resetAll();
// If we know the shifter operand is nonzero, we can sometimes infer more
// known bits. However this is expensive to compute, so be lazy about it and
// only compute it when absolutely necessary.
Optional<bool> ShifterOperandIsNonZero;
// Early exit if we can't constrain any well-defined shift amount.
if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
!(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
if (!*ShifterOperandIsNonZero)
return;
}
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
// Combine the shifted known input bits only for those shift amounts
// compatible with its known constraints.
if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
continue;
if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
continue;
// If we know the shifter is nonzero, we may be able to infer more known
// bits. This check is sunk down as far as possible to avoid the expensive
// call to isKnownNonZero if the cheaper checks above fail.
if (ShiftAmt == 0) {
if (!ShifterOperandIsNonZero.hasValue())
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
if (*ShifterOperandIsNonZero)
continue;
}
Known = KnownBits::commonBits(
Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
}
// If the known bits conflict, the result is poison. Return a 0 and hope the
// caller can further optimize that.
if (Known.hasConflict())
Known.setAllZero();
}
static void computeKnownBitsFromOperator(const Operator *I,
const APInt &DemandedElts,
KnownBits &Known, unsigned Depth,
const Query &Q) {
unsigned BitWidth = Known.getBitWidth();
KnownBits Known2(BitWidth);
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
if (MDNode *MD =
Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known &= Known2;
// and(x, add (x, -1)) is a common idiom that always clears the low bit;
// here we handle the more general case of adding any odd number by
// matching the form add(x, add(x, y)) where y is odd.
// TODO: This could be generalized to clearing any bit set in y where the
// following bit is known to be unset in y.
Value *X = nullptr, *Y = nullptr;
if (!Known.Zero[0] && !Known.One[0] &&
match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Known2.resetAll();
computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
if (Known2.countMinTrailingOnes() > 0)
Known.Zero.setBit(0);
}
break;
}
case Instruction::Or:
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known |= Known2;
break;
case Instruction::Xor:
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known ^= Known2;
break;
case Instruction::Mul: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
Known, Known2, Depth, Q);
break;
}
case Instruction::UDiv: {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::udiv(Known, Known2);
break;
}
case Instruction::Select: {
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
if (SelectPatternResult::isMinOrMax(SPF)) {
computeKnownBits(RHS, Known, Depth + 1, Q);
computeKnownBits(LHS, Known2, Depth + 1, Q);
switch (SPF) {
default:
llvm_unreachable("Unhandled select pattern flavor!");
case SPF_SMAX:
Known = KnownBits::smax(Known, Known2);
break;
case SPF_SMIN:
Known = KnownBits::smin(Known, Known2);
break;
case SPF_UMAX:
Known = KnownBits::umax(Known, Known2);
break;
case SPF_UMIN:
Known = KnownBits::umin(Known, Known2);
break;
}
break;
}
computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
// Only known if known in both the LHS and RHS.
Known = KnownBits::commonBits(Known, Known2);
if (SPF == SPF_ABS) {
// RHS from matchSelectPattern returns the negation part of abs pattern.
// If the negate has an NSW flag we can assume the sign bit of the result
// will be 0 because that makes abs(INT_MIN) undefined.
if (match(RHS, m_Neg(m_Specific(LHS))) &&
Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
Known.Zero.setSignBit();
}
break;
}
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
break; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// Fall through and handle them the same as zext/trunc.
LLVM_FALLTHROUGH;
case Instruction::ZExt:
case Instruction::Trunc: {
Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
Type *ScalarTy = SrcTy->getScalarType();
SrcBitWidth = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.anyextOrTrunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known = Known.zextOrTrunc(BitWidth);
break;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy->isIntOrPtrTy() &&
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
break;
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Known = Known.trunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
Known = Known.sext(BitWidth);
break;
}
case Instruction::Shl: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
// If this shift has "nsw" keyword, then the result is either a poison
// value or has the same sign bit as the first operand.
if (NSW) {
if (KnownVal.Zero.isSignBitSet())
Result.Zero.setSignBit();
if (KnownVal.One.isSignBitSet())
Result.One.setSignBit();
}
return Result;
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
// Trailing zeros of a right-shifted constant never decrease.
const APInt *C;
if (match(I->getOperand(0), m_APInt(C)))
Known.Zero.setLowBits(C->countTrailingZeros());
break;
}
case Instruction::LShr: {
auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
return KnownBits::lshr(KnownVal, KnownAmt);
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
// Leading zeros of a left-shifted constant never decrease.
const APInt *C;
if (match(I->getOperand(0), m_APInt(C)))
Known.Zero.setHighBits(C->countLeadingZeros());
break;
}
case Instruction::AShr: {
auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
return KnownBits::ashr(KnownVal, KnownAmt);
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
break;
}
case Instruction::Sub: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
DemandedElts, Known, Known2, Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
DemandedElts, Known, Known2, Depth, Q);
break;
}
case Instruction::SRem:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::srem(Known, Known2);
break;
case Instruction::URem:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::urem(Known, Known2);
break;
case Instruction::Alloca:
Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
break;
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
// Accumulate the constant indices in a separate variable
// to minimize the number of calls to computeForAddSub.
APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
gep_type_iterator GTI = gep_type_begin(I);
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
// TrailZ can only become smaller, short-circuit if we hit zero.
if (Known.isUnknown())
break;
Value *Index = I->getOperand(i);
// Handle case when index is zero.
Constant *CIndex = dyn_cast<Constant>(Index);
if (CIndex && CIndex->isZeroValue())
continue;
if (StructType *STy = GTI.getStructTypeOrNull()) {
// Handle struct member offset arithmetic.
assert(CIndex &&
"Access to structure field must be known at compile time");
if (CIndex->getType()->isVectorTy())
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
AccConstIndices += Offset;
continue;
}
// Handle array index arithmetic.
Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) {
Known.resetAll();
break;
}
unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
KnownBits IndexBits(IndexBitWidth);
computeKnownBits(Index, IndexBits, Depth + 1, Q);
TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
KnownBits ScalingFactor(IndexBitWidth);
// Multiply by current sizeof type.
// &A[i] == A + i * sizeof(*A[i]).
if (IndexTypeSize.isScalable()) {
// For scalable types the only thing we know about sizeof is
// that this is a multiple of the minimum size.
ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
} else if (IndexBits.isConstant()) {
APInt IndexConst = IndexBits.getConstant();
APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
IndexConst *= ScalingFactor;
AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
continue;
} else {
ScalingFactor =
KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
}
IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
// If the offsets have a different width from the pointer, according
// to the language reference we need to sign-extend or truncate them
// to the width of the pointer.
IndexBits = IndexBits.sextOrTrunc(BitWidth);
// Note that inbounds does *not* guarantee nsw for the addition, as only
// the offset is signed, while the base address is unsigned.
Known = KnownBits::computeForAddSub(
/*Add=*/true, /*NSW=*/false, Known, IndexBits);
}
if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
KnownBits Index = KnownBits::makeConstant(AccConstIndices);
Known = KnownBits::computeForAddSub(
/*Add=*/true, /*NSW=*/false, Known, Index);
}
break;
}
case Instruction::PHI: {
const PHINode *P = cast<PHINode>(I);
BinaryOperator *BO = nullptr;
Value *R = nullptr, *L = nullptr;
if (matchSimpleRecurrence(P, BO, R, L)) {
// Handle the case of a simple two-predecessor recurrence PHI.
// There's a lot more that could theoretically be done here, but
// this is sufficient to catch some interesting cases.
unsigned Opcode = BO->getOpcode();
// If this is a shift recurrence, we know the bits being shifted in.
// We can combine that with information about the start value of the
// recurrence to conclude facts about the result.
if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
Opcode == Instruction::Shl) &&
BO->getOperand(0) == I) {
// We have matched a recurrence of the form:
// %iv = [R, %entry], [%iv.next, %backedge]
// %iv.next = shift_op %iv, L
// Recurse with the phi context to avoid concern about whether facts
// inferred hold at original context instruction. TODO: It may be
// correct to use the original context. IF warranted, explore and
// add sufficient tests to cover.
Query RecQ = Q;
RecQ.CxtI = P;
computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
switch (Opcode) {
case Instruction::Shl:
// A shl recurrence will only increase the tailing zeros
Known.Zero.setLowBits(Known2.countMinTrailingZeros());
break;
case Instruction::LShr:
// A lshr recurrence will preserve the leading zeros of the
// start value
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
break;
case Instruction::AShr:
// An ashr recurrence will extend the initial sign bit
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
Known.One.setHighBits(Known2.countMinLeadingOnes());
break;
};
}
// Check for operations that have the property that if
// both their operands have low zero bits, the result
// will have low zero bits.
if (Opcode == Instruction::Add ||
Opcode == Instruction::Sub ||
Opcode == Instruction::And ||
Opcode == Instruction::Or ||
Opcode == Instruction::Mul) {
// Change the context instruction to the "edge" that flows into the
// phi. This is important because that is where the value is actually
// "evaluated" even though it is used later somewhere else. (see also
// D69571).
Query RecQ = Q;
unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
RecQ.CxtI = RInst;
computeKnownBits(R, Known2, Depth + 1, RecQ);
// We need to take the minimum number of known bits
KnownBits Known3(BitWidth);
RecQ.CxtI = LInst;
computeKnownBits(L, Known3, Depth + 1, RecQ);
Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
Known3.countMinTrailingZeros()));
auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
// If initial value of recurrence is nonnegative, and we are adding
// a nonnegative number with nsw, the result can only be nonnegative
// or poison value regardless of the number of times we execute the
// add in phi recurrence. If initial value is negative and we are
// adding a negative number with nsw, the result can only be
// negative or poison value. Similar arguments apply to sub and mul.
//
// (add non-negative, non-negative) --> non-negative
// (add negative, negative) --> negative
if (Opcode == Instruction::Add) {
if (Known2.isNonNegative() && Known3.isNonNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNegative())
Known.makeNegative();
}
// (sub nsw non-negative, negative) --> non-negative
// (sub nsw negative, non-negative) --> negative
else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
if (Known2.isNonNegative() && Known3.isNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNonNegative())
Known.makeNegative();
}
// (mul nsw non-negative, non-negative) --> non-negative
else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
Known3.isNonNegative())
Known.makeNonNegative();
}
break;
}
}
// Unreachable blocks may have zero-operand PHI nodes.
if (P->getNumIncomingValues() == 0)
break;
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
// Skip if every incoming value references to ourself.
if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
break;
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
Value *IncValue = P->getIncomingValue(u);
// Skip direct self references.
if (IncValue == P) continue;
// Change the context instruction to the "edge" that flows into the
// phi. This is important because that is where the value is actually
// "evaluated" even though it is used later somewhere else. (see also
// D69571).
Query RecQ = Q;
RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
Known2 = KnownBits(BitWidth);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
Known = KnownBits::commonBits(Known, Known2);
// If all bits have been ruled out, there's no need to check
// more operands.
if (Known.isUnknown())
break;
}
}
break;
}
case Instruction::Call:
case Instruction::Invoke:
// If range metadata is attached to this call, set known bits from that,
// and then intersect with known bits based on other properties of the
// function.
if (MDNode *MD =
Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
computeKnownBits(RV, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero;
Known.One |= Known2.One;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::abs: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
Known = Known2.abs(IntMinIsPoison);
break;
}
case Intrinsic::bitreverse:
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.reverseBits();
Known.One |= Known2.One.reverseBits();
break;
case Intrinsic::bswap:
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.byteSwap();
Known.One |= Known2.One.byteSwap();
break;
case Intrinsic::ctlz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If we have a known 1, its position is our upper bound.
unsigned PossibleLZ = Known2.countMaxLeadingZeros();
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleLZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::cttz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If we have a known 1, its position is our upper bound.
unsigned PossibleTZ = Known2.countMaxTrailingZeros();
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleTZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::ctpop: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// We can bound the space the count needs. Also, bits known to be zero
// can't contribute to the population.
unsigned BitsPossiblySet = Known2.countMaxPopulation();
unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Known.Zero.setBitsFrom(LowBits);
// TODO: we could bound KnownOne using the lower bound on the number
// of bits which might be set provided by popcnt KnownOne2.
break;
}
case Intrinsic::fshr:
case Intrinsic::fshl: {
const APInt *SA;
if (!match(I->getOperand(2), m_APInt(SA)))
break;
// Normalize to funnel shift left.
uint64_t ShiftAmt = SA->urem(BitWidth);
if (II->getIntrinsicID() == Intrinsic::fshr)
ShiftAmt = BitWidth - ShiftAmt;
KnownBits Known3(BitWidth);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
Known.Zero =
Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
Known.One =
Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
break;
}
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
// Add: Leading ones of either operand are preserved.
// Sub: Leading zeros of LHS and leading ones of RHS are preserved
// as leading zeros in the result.
unsigned LeadingKnown;
if (IsAdd)
LeadingKnown = std::max(Known.countMinLeadingOnes(),
Known2.countMinLeadingOnes());
else
LeadingKnown = std::max(Known.countMinLeadingZeros(),
Known2.countMinLeadingOnes());
Known = KnownBits::computeForAddSub(
IsAdd, /* NSW */ false, Known, Known2);
// We select between the operation result and all-ones/zero
// respectively, so we can preserve known ones/zeros.
if (IsAdd) {
Known.One.setHighBits(LeadingKnown);
Known.Zero.clearAllBits();
} else {
Known.Zero.setHighBits(LeadingKnown);
Known.One.clearAllBits();
}
break;
}
case Intrinsic::umin:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::umin(Known, Known2);
break;
case Intrinsic::umax:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::umax(Known, Known2);
break;
case Intrinsic::smin:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::smin(Known, Known2);
break;
case Intrinsic::smax:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::smax(Known, Known2);
break;
case Intrinsic::x86_sse42_crc32_64_64:
Known.Zero.setBitsFrom(32);
break;
}
}
break;
case Instruction::ShuffleVector: {
auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
// FIXME: Do we need to handle ConstantExpr involving shufflevectors?
if (!Shuf) {
Known.resetAll();
return;
}
// For undef elements, we don't know anything about the common state of
// the shuffle result.
APInt DemandedLHS, DemandedRHS;
if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
Known.resetAll();
return;
}
Known.One.setAllBits();
Known.Zero.setAllBits();
if (!!DemandedLHS) {
const Value *LHS = Shuf->getOperand(0);
computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
if (!!DemandedRHS) {
const Value *RHS = Shuf->getOperand(1);
computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case Instruction::InsertElement: {
const Value *Vec = I->getOperand(0);
const Value *Elt = I->getOperand(1);
auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
// Early out if the index is non-constant or out-of-range.
unsigned NumElts = DemandedElts.getBitWidth();
if (!CIdx || CIdx->getValue().uge(NumElts)) {
Known.resetAll();
return;
}
Known.One.setAllBits();
Known.Zero.setAllBits();
unsigned EltIdx = CIdx->getZExtValue();
// Do we demand the inserted element?
if (DemandedElts[EltIdx]) {
computeKnownBits(Elt, Known, Depth + 1, Q);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
// We don't need the base vector element that has been inserted.
APInt DemandedVecElts = DemandedElts;
DemandedVecElts.clearBit(EltIdx);
if (!!DemandedVecElts) {
computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case Instruction::ExtractElement: {
// Look through extract element. If the index is non-constant or
// out-of-range demand all elements, otherwise just the extracted element.
const Value *Vec = I->getOperand(0);
const Value *Idx = I->getOperand(1);
auto *CIdx = dyn_cast<ConstantInt>(Idx);
if (isa<ScalableVectorType>(Vec->getType())) {
// FIXME: there's probably *something* we can do with scalable vectors
Known.resetAll();
break;
}
unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
if (CIdx && CIdx->getValue().ult(NumElts))
DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
break;
}
case Instruction::ExtractValue:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
if (EVI->getNumIndices() != 1) break;
if (EVI->getIndices()[0] == 0) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, DemandedElts,
Known, Known2, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, DemandedElts,
Known, Known2, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
DemandedElts, Known, Known2, Depth, Q);
break;
}
}
}
break;
case Instruction::Freeze:
if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
Depth + 1))
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
}
/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, DemandedElts, Known, Depth, Q);
return Known;
}
/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, Known, Depth, Q);
return Known;
}
/// Determine which bits of V are known to be either zero or one and return
/// them in the Known bit set.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers. In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the demanded elements in the vector specified by DemandedElts.
void computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, unsigned Depth, const Query &Q) {
if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
// No demanded elts or V is a scalable vector, better to assume we don't
// know anything.
Known.resetAll();
return;
}
assert(V && "No Value?");
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
#ifndef NDEBUG
Type *Ty = V->getType();
unsigned BitWidth = Known.getBitWidth();
assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
"Not integer or pointer type!");
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
assert(
FVTy->getNumElements() == DemandedElts.getBitWidth() &&
"DemandedElt width should equal the fixed vector number of elements");
} else {
assert(DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars");
}
Type *ScalarTy = Ty->getScalarType();
if (ScalarTy->isPointerTy()) {
assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
"V and Known should have same BitWidth");
} else {
assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
"V and Known should have same BitWidth");
}
#endif
const APInt *C;
if (match(V, m_APInt(C))) {
// We know all of the bits for a scalar constant or a splat vector constant!
Known = KnownBits::makeConstant(*C);
return;
}
// Null and aggregate-zero are all-zeros.
if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Known.setAllZero();
return;
}
// Handle a constant vector by taking the intersection of the known bits of
// each element.
if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
// We know that CDV must be a vector of integers. Take the intersection of
// each element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
if (!DemandedElts[i])
continue;
APInt Elt = CDV->getElementAsAPInt(i);
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
if (const auto *CV = dyn_cast<ConstantVector>(V)) {
// We know that CV must be a vector of integers. Take the intersection of
// each element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
Constant *Element = CV->getAggregateElement(i);
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI) {
Known.resetAll();
return;
}
const APInt &Elt = ElementCI->getValue();
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
// Start out not knowing anything.
Known.resetAll();
// We can't imply anything about undefs.
if (isa<UndefValue>(V))
return;
// There's no point in looking through other users of ConstantData for
// assumptions. Confirm that we've handled them all.
assert(!isa<ConstantData>(V) && "Unhandled constant data!");
// All recursive calls that increase depth must come after this.
if (Depth == MaxAnalysisRecursionDepth)
return;
// A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
// the bits of its aliasee.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->isInterposable())
computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
return;
}
if (const Operator *I = dyn_cast<Operator>(V))
computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
// Aligned pointers have trailing zeros - refine Known.Zero set
if (isa<PointerType>(V->getType())) {
Align Alignment = V->getPointerAlignment(Q.DL);
Known.Zero.setLowBits(Log2(Alignment));
}
// computeKnownBitsFromAssume strictly refines Known.
// Therefore, we run them after computeKnownBitsFromOperator.
// Check whether a nearby assume intrinsic can determine some known bits.
computeKnownBitsFromAssume(V, Known, Depth, Q);
assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}
/// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q) {
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
// Attempt to match against constants.
if (OrZero && match(V, m_Power2OrZero()))
return true;
if (match(V, m_Power2()))
return true;
// 1 << X is clearly a power of two if the one is not shifted off the end. If
// it is shifted off the end then the result is undefined.
if (match(V, m_Shl(m_One(), m_Value())))
return true;
// (signmask) >>l X is clearly a power of two if the one is not shifted off
// the bottom. If it is shifted off the bottom then the result is undefined.
if (match(V, m_LShr(m_SignMask(), m_Value())))
return true;
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxAnalysisRecursionDepth)
return false;
Value *X = nullptr, *Y = nullptr;
// A shift left or a logical shift right of a power of two is a power of two
// or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_LShr(m_Value(X), m_Value()))))
return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
if (const SelectInst *SI = dyn_cast<SelectInst>(V))
return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
// Peek through min/max.
if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
}
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
return true;
return false;
}
// Adding a power-of-two or zero to the same power-of-two or zero yields
// either the original power-of-two, a larger power-of-two or zero.
if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
Q.IIQ.hasNoSignedWrap(VOBO)) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
KnownBits LHSBits(BitWidth);
computeKnownBits(X, LHSBits, Depth, Q);
KnownBits RHSBits(BitWidth);
computeKnownBits(Y, RHSBits, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
// If OrZero isn't set, we cannot give back a zero result.
// Make sure either the LHS or RHS has a bit set.
if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
return true;
}
}
// An exact divide or right shift can only shift off zero bits, so the result
// is a power of two only if the first operand is a power of two and not
// copying a sign bit (sdiv int_min, 2).
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Depth, Q);
}
return false;
}
/// Test whether a GEP's result is known to be non-null.
///
/// Uses properties inherent in a GEP to try to determine whether it is known
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
const Query &Q) {
const Function *F = nullptr;
if (const Instruction *I = dyn_cast<Instruction>(GEP))
F = I->getFunction();
if (!GEP->isInBounds() ||
NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
return false;
// FIXME: Support vector-GEPs.
assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
// If the base pointer is non-null, we cannot walk to a null address with an
// inbounds GEP in address space zero.
if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
return true;
// Walk the GEP operands and see if any operand introduces a non-zero offset.
// If so, then the GEP cannot produce a null pointer, as doing so would
// inherently violate the inbounds contract within address space zero.
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
// Struct types are easy -- they must always be indexed by a constant.
if (StructType *STy = GTI.getStructTypeOrNull()) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
continue;
}
// If we have a zero-sized type, the index doesn't matter. Keep looping.
if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
continue;
// Fast path the constant operand case both for efficiency and so we don't
// increment Depth when just zipping down an all-constant GEP.
if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
if (!OpC->isZero())
return true;
continue;
}
// We post-increment Depth here because while isKnownNonZero increments it
// as well, when we pop back up that increment won't persist. We don't want
// to recurse 10k times just because we have 10k GEP operands. We don't
// bail completely out because we want to handle constant GEPs regardless
// of depth.
if (Depth++ >= MaxAnalysisRecursionDepth)
continue;
if (isKnownNonZero(GTI.getOperand(), Depth, Q))
return true;
}
return false;
}
static bool isKnownNonNullFromDominatingCondition(const Value *V,
const Instruction *CtxI,
const DominatorTree *DT) {
if (isa<Constant>(V))
return false;
if (!CtxI || !DT)
return false;
unsigned NumUsesExplored = 0;
for (auto *U : V->users()) {
// Avoid massive lists
if (NumUsesExplored >= DomConditionsMaxUses)
break;
NumUsesExplored++;
// If the value is used as an argument to a call or invoke, then argument
// attributes may provide an answer about null-ness.
if (const auto *CB = dyn_cast<CallBase>(U))
if (auto *CalledFunc = CB->getCalledFunction())
for (const Argument &Arg : CalledFunc->args())
if (CB->getArgOperand(Arg.getArgNo()) == V &&
Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
DT->dominates(CB, CtxI))
return true;
// If the value is used as a load/store, then the pointer must be non null.
if (V == getLoadStorePointerOperand(U)) {
const Instruction *I = cast<Instruction>(U);
if (!NullPointerIsDefined(I->getFunction(),
V->getType()->getPointerAddressSpace()) &&
DT->dominates(I, CtxI))
return true;
}
// Consider only compare instructions uniquely controlling a branch
Value *RHS;
CmpInst::Predicate Pred;
if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
continue;
bool NonNullIfTrue;
if (cmpExcludesZero(Pred, RHS))
NonNullIfTrue = true;
else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
NonNullIfTrue = false;
else
continue;
SmallVector<const User *, 4> WorkList;
SmallPtrSet<const User *, 4> Visited;
for (auto *CmpU : U->users()) {
assert(WorkList.empty() && "Should be!");
if (Visited.insert(CmpU).second)
WorkList.push_back(CmpU);
while (!WorkList.empty()) {
auto *Curr = WorkList.pop_back_val();
// If a user is an AND, add all its users to the work list. We only
// propagate "pred != null" condition through AND because it is only
// correct to assume that all conditions of AND are met in true branch.
// TODO: Support similar logic of OR and EQ predicate?
if (NonNullIfTrue)
if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
for (auto *CurrU : Curr->users())
if (Visited.insert(CurrU).second)
WorkList.push_back(CurrU);
continue;
}
if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
assert(BI->isConditional() && "uses a comparison!");
BasicBlock *NonNullSuccessor =
BI->getSuccessor(NonNullIfTrue ? 0 : 1);
BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
return true;
} else if (NonNullIfTrue && isGuard(Curr) &&
DT->dominates(cast<Instruction>(Curr), CtxI)) {
return true;
}
}
}
}
return false;
}
/// Does the 'Range' metadata (which must be a valid MD_range operand list)
/// ensure that the value it's attached to is never Value? 'RangeType' is
/// is the type of the value described by the range.
static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
const unsigned NumRanges = Ranges->getNumOperands() / 2;
assert(NumRanges >= 1);
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
if (Range.contains(Value))
return false;
}
return true;
}
/// Try to detect a recurrence that monotonically increases/decreases from a
/// non-zero starting value. These are common as induction variables.
static bool isNonZeroRecurrence(const PHINode *PN) {
BinaryOperator *BO = nullptr;
Value *Start = nullptr, *Step = nullptr;
const APInt *StartC, *StepC;
if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
!match(Start, m_APInt(StartC)) || StartC->isNullValue())
return false;
switch (BO->getOpcode()) {
case Instruction::Add:
// Starting from non-zero and stepping away from zero can never wrap back
// to zero.
return BO->hasNoUnsignedWrap() ||
(BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
StartC->isNegative() == StepC->isNegative());
case Instruction::Mul:
return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
match(Step, m_APInt(StepC)) && !StepC->isNullValue();
case Instruction::Shl:
return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
case Instruction::AShr:
case Instruction::LShr:
return BO->isExact();
default:
return false;
}
}
/// Return true if the given value is known to be non-zero when defined. For
/// vectors, return true if every demanded element is known to be non-zero when
/// defined. For pointers, if the context instruction and dominator tree are
/// specified, perform context-sensitive analysis and return true if the
/// pointer couldn't possibly be null at the specified instruction.
/// Supports values with integer or pointer type and vectors of integers.
bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
const Query &Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType()))
return false;
if (auto *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
if (isa<ConstantInt>(C))
// Must be non-zero due to null test above.
return true;
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
// See the comment for IntToPtr/PtrToInt instructions below.
if (CE->getOpcode() == Instruction::IntToPtr ||
CE->getOpcode() == Instruction::PtrToInt)
if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
.getFixedSize() <=
Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
return isKnownNonZero(CE->getOperand(0), Depth, Q);
}
// For constant vectors, check that all elements are undefined or known
// non-zero to determine that the whole vector is known non-zero.
if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
if (!DemandedElts[i])
continue;
Constant *Elt = C->getAggregateElement(i);
if (!Elt || Elt->isNullValue())
return false;
if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
return false;
}
return true;
}
// A global variable in address space 0 is non null unless extern weak
// or an absolute symbol reference. Other address spaces may have null as a
// valid address for a global, so we can't assume anything.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
GV->getType()->getAddressSpace() == 0)
return true;
} else
return false;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
// If the possible ranges don't contain zero, then the value is
// definitely non-zero.
if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
const APInt ZeroValue(Ty->getBitWidth(), 0);
if (rangeMetadataExcludesValue(Ranges, ZeroValue))
return true;
}
}
}
if (isKnownNonZeroFromAssume(V, Q))
return true;
// Some of the tests below are recursive, so bail out if we hit the limit.
if (Depth++ >= MaxAnalysisRecursionDepth)
return false;
// Check for pointer simplifications.
if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
return true;
// A byval, inalloca may not be null in a non-default addres space. A
// nonnull argument is assumed never 0.
if (const Argument *A = dyn_cast<Argument>(V)) {
if (((A->hasPassPointeeByValueCopyAttr() &&
!NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
A->hasNonNullAttr()))
return true;
}
// A Load tagged with nonnull metadata is never null.
if (const LoadInst *LI = dyn_cast<LoadInst>(V))
if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
return true;
if (const auto *Call = dyn_cast<CallBase>(V)) {
if (Call->isReturnNonNull())
return true;
if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
return isKnownNonZero(RP, Depth, Q);
}
}
if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
return true;
// Check for recursive pointer simplifications.
if (V->getType()->isPointerTy()) {
// Look through bitcast operations, GEPs, and int2ptr instructions as they
// do not alter the value, or at least not the nullness property of the
// value, e.g., int2ptr is allowed to zero/sign extend the value.
//
// Note that we have to take special care to avoid looking through
// truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
// as casts that can alter the value, e.g., AddrSpaceCasts.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
return isGEPKnownNonNull(GEP, Depth, Q);
if (auto *BCO = dyn_cast<BitCastOperator>(V))
return isKnownNonZero(BCO->getOperand(0), Depth, Q);
if (auto *I2P = dyn_cast<IntToPtrInst>(V))
if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
return isKnownNonZero(I2P->getOperand(0), Depth, Q);
}
// Similar to int2ptr above, we can look through ptr2int here if the cast
// is a no-op or an extend and not a truncate.
if (auto *P2I = dyn_cast<PtrToIntInst>(V))
if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
return isKnownNonZero(P2I->getOperand(0), Depth, Q);
unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, DemandedElts, Depth, Q) ||
isKnownNonZero(Y, DemandedElts, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
// shl nuw can't remove any non-zero bits.
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (Q.IIQ.hasNoUnsignedWrap(BO))
return isKnownNonZero(X, Depth, Q);
KnownBits Known(BitWidth);
computeKnownBits(X, DemandedElts, Known, Depth, Q);
if (Known.One[0])
return true;
}
// shr X, Y != 0 if X is negative. Note that the value of the shift is not
// defined if the sign bit is shifted off the end.
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
// shr exact can only shift out zero bits.
const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, Depth, Q);
KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
if (Known.isNegative())
return true;
// If the shifter operand is a constant, and all of the bits shifted
// out are known to be zero, and X is known non-zero then at least one
// non-zero bit must remain.
if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
// Is there a known one in the portion not shifted out?
if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
return true;
// Are all the bits to be shifted out known zero?
if (Known.countMinTrailingZeros() >= ShiftVal)
return isKnownNonZero(X, DemandedElts, Depth, Q);
}
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
return isKnownNonZero(X, DemandedElts, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnown.isNonNegative() && YKnown.isNonNegative())
if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
isKnownNonZero(Y, DemandedElts, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
// zero unless both X and Y equal INT_MIN.
if (XKnown.isNegative() && YKnown.isNegative()) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
if (XKnown.One.intersects(Mask))
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
if (YKnown.One.intersects(Mask))
return true;
}
// The sum of a non-negative number and a power of two is not zero.
if (XKnown.isNonNegative() &&
isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
return true;
if (YKnown.isNonNegative() &&
isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
return true;
}
// X * Y.
else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
isKnownNonZero(X, DemandedElts, Depth, Q) &&
isKnownNonZero(Y, DemandedElts, Depth, Q))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
return true;
}
// PHI
else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
return true;
// Check if all incoming values are non-zero using recursion.
Query RecQ = Q;
unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
return llvm::all_of(PN->operands(), [&](const Use &U) {
if (U.get() == PN)
return true;
RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
});
}
// ExtractElement
else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
const Value *Vec = EEI->getVectorOperand();
const Value *Idx = EEI->getIndexOperand();
auto *CIdx = dyn_cast<ConstantInt>(Idx);
if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
unsigned NumElts = VecTy->getNumElements();
APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
if (CIdx && CIdx->getValue().ult(NumElts))
DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
}
}
// Freeze
else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
auto *Op = FI->getOperand(0);
if (isKnownNonZero(Op, Depth, Q) &&
isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
return true;
}
KnownBits Known(BitWidth);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
return Known.One != 0;
}
bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType()))
return false;
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
return isKnownNonZero(V, DemandedElts, Depth, Q);
}
/// If the pair of operators are the same invertible function of a single
/// operand return the index of that operand. Otherwise, return None. An
/// invertible function is one that is 1-to-1 and maps every input value
/// to exactly one output value. This is equivalent to saying that Op1
/// and Op2 are equal exactly when the specified pair of operands are equal,
/// (except that Op1 and Op2 may be poison more often.)
static Optional<unsigned> getInvertibleOperand(const Operator *Op1,
const Operator *Op2) {
if (Op1->getOpcode() != Op2->getOpcode())
return None;
switch (Op1->getOpcode()) {
default:
break;
case Instruction::Add:
case Instruction::Sub:
if (Op1->getOperand(0) == Op2->getOperand(0))
return 1;
if (Op1->getOperand(1) == Op2->getOperand(1))
return 0;
break;
case Instruction::Mul: {
// invertible if A * B == (A * B) mod 2^N where A, and B are integers
// and N is the bitwdith. The nsw case is non-obvious, but proven by
// alive2: https://alive2.llvm.org/ce/z/Z6D5qK
auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
(!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
break;
// Assume operand order has been canonicalized
if (Op1->getOperand(1) == Op2->getOperand(1) &&
isa<ConstantInt>(Op1->getOperand(1)) &&
!cast<ConstantInt>(Op1->getOperand(1))->isZero())
return 0;
break;
}
case Instruction::Shl: {
// Same as multiplies, with the difference that we don't need to check
// for a non-zero multiply. Shifts always multiply by non-zero.
auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
(!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
break;
if (Op1->getOperand(1) == Op2->getOperand(1))
return 0;
break;
}
case Instruction::AShr:
case Instruction::LShr: {
auto *PEO1 = cast<PossiblyExactOperator>(Op1);
auto *PEO2 = cast<PossiblyExactOperator>(Op2);
if (!PEO1->isExact() || !PEO2->isExact())
break;
if (Op1->getOperand(1) == Op2->getOperand(1))
return 0;
break;
}
case Instruction::SExt:
case Instruction::ZExt:
if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
return 0;
break;
case Instruction::PHI: {
const PHINode *PN1 = cast<PHINode>(Op1);
const PHINode *PN2 = cast<PHINode>(Op2);
// If PN1 and PN2 are both recurrences, can we prove the entire recurrences
// are a single invertible function of the start values? Note that repeated
// application of an invertible function is also invertible
BinaryOperator *BO1 = nullptr;
Value *Start1 = nullptr, *Step1 = nullptr;
BinaryOperator *BO2 = nullptr;
Value *Start2 = nullptr, *Step2 = nullptr;
if (PN1->getParent() != PN2->getParent() ||
!matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
!matchSimpleRecurrence(PN2, BO2, Start2, Step2))
break;
Optional<unsigned> Idx = getInvertibleOperand(cast<Operator>(BO1),
cast<Operator>(BO2));
if (!Idx || *Idx != 0)
break;
assert(BO1->getOperand(*Idx) == PN1 && BO2->getOperand(*Idx) == PN2);
// Phi operands might not be in the same order. TODO: generalize
// interface to return pair of operands.
if (PN1->getOperand(0) == BO1 && PN2->getOperand(0) == BO2)
return 1;
if (PN1->getOperand(1) == BO1 && PN2->getOperand(1) == BO2)
return 0;
}
}
return None;
}
/// Return true if V2 == V1 + X, where X is known non-zero.
static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
if (!BO || BO->getOpcode() != Instruction::Add)
return false;
Value *Op = nullptr;
if (V2 == BO->getOperand(0))
Op = BO->getOperand(1);
else if (V2 == BO->getOperand(1))
Op = BO->getOperand(0);
else
return false;
return isKnownNonZero(Op, Depth + 1, Q);
}
/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
/// the multiplication is nuw or nsw.
static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
const APInt *C;
return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
(OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
!C->isNullValue() && !C->isOneValue() &&
isKnownNonZero(V1, Depth + 1, Q);
}
return false;
}
/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
/// the shift is nuw or nsw.
static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
const APInt *C;
return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
(OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
!C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q);
}
return false;
}
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
unsigned Depth, const Query &Q) {
// Check two PHIs are in same block.
if (PN1->getParent() != PN2->getParent())
return false;
SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
bool UsedFullRecursion = false;
for (const BasicBlock *IncomBB : PN1->blocks()) {
if (!VisitedBBs.insert(IncomBB).second)
continue; // Don't reprocess blocks that we have dealt with already.
const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
const APInt *C1, *C2;
if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
continue;
// Only one pair of phi operands is allowed for full recursion.
if (UsedFullRecursion)
return false;
Query RecQ = Q;
RecQ.CxtI = IncomBB->getTerminator();
if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
return false;
UsedFullRecursion = true;
}
return true;
}
/// Return true if it is known that V1 != V2.
static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
if (V1 == V2)
return false;
if (V1->getType() != V2->getType())
// We can't look through casts yet.
return false;
if (Depth >= MaxAnalysisRecursionDepth)
return false;
// See if we can recurse through (exactly one of) our operands. This
// requires our operation be 1-to-1 and map every input value to exactly
// one output value. Such an operation is invertible.
auto *O1 = dyn_cast<Operator>(V1);
auto *O2 = dyn_cast<Operator>(V2);
if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) {
unsigned Idx = *Opt;
return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx),
Depth + 1, Q);
}
if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
const PHINode *PN2 = cast<PHINode>(V2);
// FIXME: This is missing a generalization to handle the case where one is
// a PHI and another one isn't.
if (isNonEqualPHIs(PN1, PN2, Depth, Q))
return true;
};
}
if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
return true;
if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
return true;
if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
return true;
if (V1->getType()->isIntOrIntVectorTy()) {
// Are any known bits in V1 contradictory to known bits in V2? If V1
// has a known zero where V2 has a known one, they must not be equal.
KnownBits Known1 = computeKnownBits(V1, Depth, Q);
KnownBits Known2 = computeKnownBits(V2, Depth, Q);
if (Known1.Zero.intersects(Known2.One) ||
Known2.Zero.intersects(Known1.One))
return true;
}
return false;
}
/// Return true if 'V & Mask' is known to be zero. We use this predicate to
/// simplify operations downstream. Mask is known to be zero for bits that V
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers. In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q) {
KnownBits Known(Mask.getBitWidth());
computeKnownBits(V, Known, Depth, Q);
return Mask.isSubsetOf(Known.Zero);
}
// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
// Returns the input and lower/upper bounds.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
const APInt *&CLow, const APInt *&CHigh) {
assert(isa<Operator>(Select) &&
cast<Operator>(Select)->getOpcode() == Instruction::Select &&
"Input should be a Select!");
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
if (SPF != SPF_SMAX && SPF != SPF_SMIN)
return false;
if (!match(RHS, m_APInt(CLow)))
return false;
const Value *LHS2 = nullptr, *RHS2 = nullptr;
SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
if (getInverseMinMaxFlavor(SPF) != SPF2)
return false;
if (!match(RHS2, m_APInt(CHigh)))
return false;
if (SPF == SPF_SMIN)
std::swap(CLow, CHigh);
In = LHS2;
return CLow->sle(*CHigh);
}
/// For vector constants, loop over the elements and find the constant with the
/// minimum number of sign bits. Return 0 if the value is not a vector constant
/// or if any element was not analyzed; otherwise, return the count for the
/// element with the minimum number of sign bits.
static unsigned computeNumSignBitsVectorConstant(const Value *V,
const APInt &DemandedElts,
unsigned TyBits) {
const auto *CV = dyn_cast<Constant>(V);
if (!CV || !isa<FixedVectorType>(CV->getType()))
return 0;
unsigned MinSignBits = TyBits;
unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
// If we find a non-ConstantInt, bail out.
auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
if (!Elt)
return 0;
MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
}
return MinSignBits;
}
static unsigned ComputeNumSignBitsImpl(const Value *V,
const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
assert(Result > 0 && "At least one sign bit needs to be present!");
return Result;
}
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign bit
/// (itself), but other cases can give us information. For example, immediately
/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
/// other, so we return 3. For vectors, return the number of sign bits for the
/// vector element with the minimum number of known sign bits of the demanded
/// elements in the vector specified by DemandedElts.
static unsigned ComputeNumSignBitsImpl(const Value *V,
const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
Type *Ty = V->getType();
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(Ty))
return 1;
#ifndef NDEBUG
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
assert(
FVTy->getNumElements() == DemandedElts.getBitWidth() &&
"DemandedElt width should equal the fixed vector number of elements");
} else {
assert(DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars");
}
#endif
// We return the minimum number of sign bits that are guaranteed to be present
// in V, so for undef we have to conservatively return 1. We don't have the
// same behavior for poison though -- that's a FIXME today.
Type *ScalarTy = Ty->getScalarType();
unsigned TyBits = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
// Note that ConstantInt is handled by the general computeKnownBits case
// below.
if (Depth == MaxAnalysisRecursionDepth)
return 1;
if (auto *U = dyn_cast<Operator>(V)) {
switch (Operator::getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
case Instruction::SDiv: {
const APInt *Denominator;
// sdiv X, C -> adds log(C) sign bits.
if (match(U->getOperand(1), m_APInt(Denominator))) {
// Ignore non-positive denominator.
if (!Denominator->isStrictlyPositive())
break;
// Calculate the incoming numerator bits.
unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// Add floor(log(C)) bits to the numerator bits.
return std::min(TyBits, NumBits + Denominator->logBase2());
}
break;
}
case Instruction::SRem: {
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
const APInt *Denominator;
// srem X, C -> we know that the result is within [-C+1,C) when C is a
// positive constant. This let us put a lower bound on the number of sign
// bits.
if (match(U->getOperand(1), m_APInt(Denominator))) {
// Ignore non-positive denominator.
if (Denominator->isStrictlyPositive()) {
// Calculate the leading sign bit constraints by examining the
// denominator. Given that the denominator is positive, there are two
// cases:
//
// 1. The numerator is positive. The result range is [0,C) and
// [0,C) u< (1 << ceilLogBase2(C)).
//
// 2. The numerator is negative. Then the result range is (-C,0] and
// integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
//
// Thus a lower bound on the number of sign bits is `TyBits -
// ceilLogBase2(C)`.
unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Tmp = std::max(Tmp, ResBits);
}
}
return Tmp;
}
case Instruction::AShr: {
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
if (ShAmt->uge(TyBits))
break; // Bad shift.
unsigned ShAmtLimited = ShAmt->getZExtValue();
Tmp += ShAmtLimited;
if (Tmp > TyBits) Tmp = TyBits;
}
return Tmp;
}
case Instruction::Shl: {
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (ShAmt->uge(TyBits) || // Bad shift.
ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Tmp2 = ShAmt->getZExtValue();
return Tmp - Tmp2;
}
break;
}
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// computeKnownBits, and pick whichever answer is better.
}
break;
case Instruction::Select: {
// If we have a clamp pattern, we know that the number of sign bits will
// be the minimum of the clamp min/max range.
const Value *X;
const APInt *CLow, *CHigh;
if (isSignedMinMaxClamp(U, X, CLow, CHigh))
return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp == 1) break;
Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
return std::min(Tmp, Tmp2);
}
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
// Special case decrementing a value (ADD X, -1):
if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
KnownBits Known(TyBits);
computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is
// all sign bits set.
if ((Known.Zero | 1).isAllOnesValue())
return TyBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (Known.isNonNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) break;
return std::min(Tmp, Tmp2) - 1;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) break;
// Handle NEG.
if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
KnownBits Known(TyBits);
computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is
// all sign bits set.
if ((Known.Zero | 1).isAllOnesValue())
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the
// input.
if (Known.isNonNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
return std::min(Tmp, Tmp2) - 1;
case Instruction::Mul: {
// The output of the Mul can be at most twice the valid bits in the
// inputs.
unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (SignBitsOp0 == 1) break;
unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (SignBitsOp1 == 1) break;
unsigned OutValidBits =
(TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
}
case Instruction::PHI: {
const PHINode *PN = cast<PHINode>(U);
unsigned NumIncomingValues = PN->getNumIncomingValues();
// Don't analyze large in-degree PHIs.
if (NumIncomingValues > 4) break;
// Unreachable blocks may have zero-operand PHI nodes.
if (NumIncomingValues == 0) break;
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
Query RecQ = Q;
Tmp = TyBits;
for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
Tmp = std::min(
Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
}
return Tmp;
}
case Instruction::Trunc:
// FIXME: it's tricky to do anything useful for this, but it is an
// important case for targets like X86.
break;
case Instruction::ExtractElement:
// Look through extract element. At the moment we keep this simple and
// skip tracking the specific element. But at least we might find
// information valid for all elements of the vector (for example if vector
// is sign extended, shifted, etc).
return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
case Instruction::ShuffleVector: {
// Collect the minimum number of sign bits that are shared by every vector
// element referenced by the shuffle.
auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
if (!Shuf) {
// FIXME: Add support for shufflevector constant expressions.
return 1;
}
APInt DemandedLHS, DemandedRHS;
// For undef elements, we don't know anything about the common state of
// the shuffle result.
if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
return 1;
Tmp = std::numeric_limits<unsigned>::max();
if (!!DemandedLHS) {
const Value *LHS = Shuf->getOperand(0);
Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
}
// If we don't know anything, early out and try computeKnownBits
// fall-back.
if (Tmp == 1)
break;
if (!!DemandedRHS) {
const Value *RHS = Shuf->getOperand(1);
Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
Tmp = std::min(Tmp, Tmp2);
}
// If we don't know anything, early out and try computeKnownBits
// fall-back.
if (Tmp == 1)
break;
assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
return Tmp;
}
case Instruction::Call: {
if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::abs:
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
// Absolute value reduces number of sign bits by at most 1.
return Tmp - 1;
}
}
}
}
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
// If we can examine all elements of a vector constant successfully, we're
// done (we can't do any better than that). If not, keep trying.
if (unsigned VecSignBits =
computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
return VecSignBits;
KnownBits Known(TyBits);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
// If we know that the sign bit is either zero or one, determine the number of
// identical bits in the top of the input value.
return std::max(FirstAnswer, Known.countMinSignBits());
}
/// This function computes the integer multiple of Base that equals V.
/// If successful, it returns true and returns the multiple in
/// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
bool LookThroughSExt, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Type *T = V->getType();
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (Base == 0)
return false;
if (Base == 1) {
Multiple = V;
return true;
}
ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
Constant *BaseVal = ConstantInt::get(T, Base);
if (CO && CO == BaseVal) {
// Multiple is 1.
Multiple = ConstantInt::get(T, 1);
return true;
}
if (CI && CI->getZExtValue() % Base == 0) {
Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
return true;
}
if (Depth == MaxAnalysisRecursionDepth) return false;
Operator *I = dyn_cast<Operator>(V);
if (!I) return false;
switch (I->getOpcode()) {
default: break;
case Instruction::SExt:
if (!LookThroughSExt) return false;
// otherwise fall through to ZExt
LLVM_FALLTHROUGH;
case Instruction::ZExt:
return ComputeMultiple(I->getOperand(0), Base, Multiple,
LookThroughSExt, Depth+1);
case Instruction::Shl:
case Instruction::Mul: {
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
if (I->getOpcode() == Instruction::Shl) {
ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
if (!Op1CI) return false;
// Turn Op0 << Op1 into Op0 * 2^Op1
APInt Op1Int = Op1CI->getValue();
uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
APInt API(Op1Int.getBitWidth(), 0);
API.setBit(BitToSet);
Op1 = ConstantInt::get(V->getContext(), API);
}
Value *Mul0 = nullptr;
if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1))
if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
// V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
Multiple = ConstantExpr::getMul(MulC, Op1C);
return true;
}
if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
if (Mul0CI->getValue() == 1) {
// V == Base * Op1, so return Op1
Multiple = Op1;
return true;
}
}
Value *Mul1 = nullptr;
if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
if (Constant *Op0C = dyn_cast<Constant>(Op0))
if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
// V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
Multiple = ConstantExpr::getMul(MulC, Op0C);
return true;
}
if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
if (Mul1CI->getValue() == 1) {
// V == Base * Op0, so return Op0
Multiple = Op0;
return true;
}
}
}
}
// We could not determine if V is a multiple of Base.
return false;
}
Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
const TargetLibraryInfo *TLI) {
const Function *F = CB.getCalledFunction();
if (!F)
return Intrinsic::not_intrinsic;
if (F->isIntrinsic())
return F->getIntrinsicID();
// We are going to infer semantics of a library function based on mapping it
// to an LLVM intrinsic. Check that the library function is available from
// this callbase and in this environment.
LibFunc Func;
if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
!CB.onlyReadsMemory())
return Intrinsic::not_intrinsic;
switch (Func) {
default:
break;
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_sinl:
return Intrinsic::sin;
case LibFunc_cos:
case LibFunc_cosf:
case LibFunc_cosl:
return Intrinsic::cos;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_expl:
return Intrinsic::exp;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2l:
return Intrinsic::exp2;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_logl:
return Intrinsic::log;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10l:
return Intrinsic::log10;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2l:
return Intrinsic::log2;
case LibFunc_fabs:
case LibFunc_fabsf:
case LibFunc_fabsl:
return Intrinsic::fabs;
case LibFunc_fmin:
case LibFunc_fminf:
case LibFunc_fminl:
return Intrinsic::minnum;
case LibFunc_fmax:
case LibFunc_fmaxf:
case LibFunc_fmaxl:
return Intrinsic::maxnum;
case LibFunc_copysign:
case LibFunc_copysignf:
case LibFunc_copysignl:
return Intrinsic::copysign;
case LibFunc_floor:
case LibFunc_floorf:
case LibFunc_floorl:
return Intrinsic::floor;
case LibFunc_ceil:
case LibFunc_ceilf:
case LibFunc_ceill:
return Intrinsic::ceil;
case LibFunc_trunc:
case LibFunc_truncf:
case LibFunc_truncl:
return Intrinsic::trunc;
case LibFunc_rint:
case LibFunc_rintf:
case LibFunc_rintl:
return Intrinsic::rint;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_nearbyintl:
return Intrinsic::nearbyint;
case LibFunc_round:
case LibFunc_roundf:
case LibFunc_roundl:
return Intrinsic::round;
case LibFunc_roundeven:
case LibFunc_roundevenf:
case LibFunc_roundevenl:
return Intrinsic::roundeven;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_powl:
return Intrinsic::pow;
case LibFunc_sqrt:
case LibFunc_sqrtf:
case LibFunc_sqrtl:
return Intrinsic::sqrt;
}
return Intrinsic::not_intrinsic;
}
/// Return true if we can prove that the specified FP value is never equal to
/// -0.0.
/// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
/// that a value is not -0.0. It only guarantees that -0.0 may be treated
/// the same as +0.0 in floating-point ops.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
if (Depth == MaxAnalysisRecursionDepth)
return false;
auto *Op = dyn_cast<Operator>(V);
if (!Op)
return false;
// (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
return true;
// sitofp and uitofp turn into +0.0 for zero.
if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
return true;
if (auto *Call = dyn_cast<CallInst>(Op)) {
Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
switch (IID) {
default:
break;
// sqrt(-0.0) = -0.0, no other negative results are possible.
case Intrinsic::sqrt:
case Intrinsic::canonicalize:
return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
// fabs(x) != -0.0
case Intrinsic::fabs:
return true;
}
}
return false;
}
/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
/// bit despite comparing equal.
static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
const TargetLibraryInfo *TLI,
bool SignBitOnly,
unsigned Depth) {
// TODO: This function does not do the right thing when SignBitOnly is true
// and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
// which flips the sign bits of NaNs. See
// https://llvm.org/bugs/show_bug.cgi?id=31702.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
return !CFP->getValueAPF().isNegative() ||
(!SignBitOnly && CFP->getValueAPF().isZero());
}
// Handle vector of constants.
if (auto *CV = dyn_cast<Constant>(V)) {
if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
unsigned NumElts = CVFVTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
if (!CFP)
return false;
if (CFP->getValueAPF().isNegative() &&
(SignBitOnly || !CFP->getValueAPF().isZero()))
return false;
}
// All non-negative ConstantFPs.
return true;
}
}
if (Depth == MaxAnalysisRecursionDepth)
return false;
const Operator *I = dyn_cast<Operator>(V);
if (!I)
return false;
switch (I->getOpcode()) {
default:
break;
// Unsigned integers are always nonnegative.
case Instruction::UIToFP:
return true;
case Instruction::FMul:
case Instruction::FDiv:
// X * X is always non-negative or a NaN.
// X / X is always exactly 1.0 or a NaN.
if (I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
return true;
LLVM_FALLTHROUGH;
case Instruction::FAdd:
case Instruction::FRem:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Instruction::Select:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
Depth + 1);
case Instruction::FPExt:
case Instruction::FPTrunc:
// Widening/narrowing never change sign.
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::ExtractElement:
// Look through extract element. At the moment we keep this simple and skip
// tracking the specific element. But at least we might find information
// valid for all elements of the vector.
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::Call:
const auto *CI = cast<CallInst>(I);
Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
switch (IID) {
default:
break;
case Intrinsic::maxnum: {
Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
auto isPositiveNum = [&](Value *V) {
if (SignBitOnly) {
// With SignBitOnly, this is tricky because the result of
// maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
// a constant strictly greater than 0.0.
const APFloat *C;
return match(V, m_APFloat(C)) &&
*C > APFloat::getZero(C->getSemantics());
}
// -0.0 compares equal to 0.0, so if this operand is at least -0.0,
// maxnum can't be ordered-less-than-zero.
return isKnownNeverNaN(V, TLI) &&
cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
};
// TODO: This could be improved. We could also check that neither operand
// has its sign bit set (and at least 1 is not-NAN?).
return isPositiveNum(V0) || isPositiveNum(V1);
}
case Intrinsic::maximum:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) ||
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::minnum:
case Intrinsic::minimum:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::fabs:
return true;
case Intrinsic::sqrt:
// sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
if (!SignBitOnly)
return true;
return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
CannotBeNegativeZero(CI->getOperand(0), TLI));
case Intrinsic::powi:
if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
// powi(x,n) is non-negative if n is even.
if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
return true;
}
// TODO: This is not correct. Given that exp is an integer, here are the
// ways that pow can return a negative value:
//
// pow(x, exp) --> negative if exp is odd and x is negative.
// pow(-0, exp) --> -inf if exp is negative odd.
// pow(-0, exp) --> -0 if exp is positive odd.
// pow(-inf, exp) --> -0 if exp is negative odd.
// pow(-inf, exp) --> -inf if exp is positive odd.
//
// Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
// but we must return false if x == -0. Unfortunately we do not currently
// have a way of expressing this constraint. See details in
// https://llvm.org/bugs/show_bug.cgi?id=31702.
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::fma:
case Intrinsic::fmuladd:
// x*x+y is non-negative if y is non-negative.
return I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
Depth + 1);
}
break;
}
return false;
}
bool llvm::CannotBeOrderedLessThanZero(const Value *V,
const TargetLibraryInfo *TLI) {
return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
}
bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
}
bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
// If we're told that infinities won't happen, assume they won't.
if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
if (FPMathOp->hasNoInfs())
return true;
// Handle scalar constants.
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->isInfinity();
if (Depth == MaxAnalysisRecursionDepth)
return false;
if (auto *Inst = dyn_cast<Instruction>(V)) {
switch (Inst->getOpcode()) {
case Instruction::Select: {
return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
}
case Instruction::SIToFP:
case Instruction::UIToFP: {
// Get width of largest magnitude integer (remove a bit if signed).
// This still works for a signed minimum value because the largest FP
// value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
if (Inst->getOpcode() == Instruction::SIToFP)
--IntSize;
// If the exponent of the largest finite FP value can hold the largest
// integer, the result of the cast must be finite.
Type *FPTy = Inst->getType()->getScalarType();
return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
}
default:
break;
}
}
// try to handle fixed width vector constants
auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
if (VFVTy && isa<Constant>(V)) {
// For vectors, verify that each element is not infinity.
unsigned NumElts = VFVTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
auto *CElt = dyn_cast<ConstantFP>(Elt);
if (!CElt || CElt->isInfinity())
return false;
}
// All elements were confirmed non-infinity or undefined.
return true;
}
// was not able to prove that V never contains infinity
return false;
}
bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
// If we're told that NaNs won't happen, assume they won't.
if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
if (FPMathOp->hasNoNaNs())
return true;
// Handle scalar constants.
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->isNaN();
if (Depth == MaxAnalysisRecursionDepth)
return false;
if (auto *Inst = dyn_cast<Instruction>(V)) {
switch (Inst->getOpcode()) {
case Instruction::FAdd:
case Instruction::FSub:
// Adding positive and negative infinity produces NaN.
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
(isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
case Instruction::FMul:
// Zero multiplied with infinity produces NaN.
// FIXME: If neither side can be zero fmul never produces NaN.
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
case Instruction::FDiv:
case Instruction::FRem:
// FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
return false;
case Instruction::Select: {
return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
}
case Instruction::SIToFP:
case Instruction::UIToFP:
return true;
case Instruction::FPTrunc:
case Instruction::FPExt:
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
default:
break;
}
}
if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
switch (II->getIntrinsicID()) {
case Intrinsic::canonicalize:
case Intrinsic::fabs:
case Intrinsic::copysign:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::nearbyint:
case Intrinsic::round:
case Intrinsic::roundeven:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
case Intrinsic::sqrt:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
case Intrinsic::minnum:
case Intrinsic::maxnum:
// If either operand is not NaN, the result is not NaN.
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
default:
return false;
}
}
// Try to handle fixed width vector constants
auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
if (VFVTy && isa<Constant>(V)) {
// For vectors, verify that each element is not NaN.
unsigned NumElts = VFVTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
auto *CElt = dyn_cast<ConstantFP>(Elt);
if (!CElt || CElt->isNaN())
return false;
}
// All elements were confirmed not-NaN or undefined.
return true;
}
// Was not able to prove that V never contains NaN
return false;
}
Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
// All byte-wide stores are splatable, even of arbitrary variables.
if (V->getType()->isIntegerTy(8))
return V;
LLVMContext &Ctx = V->getContext();
// Undef don't care.
auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
if (isa<UndefValue>(V))
return UndefInt8;
// Return Undef for zero-sized type.
if (!DL.getTypeStoreSize(V->getType()).isNonZero())
return UndefInt8;
Constant *C = dyn_cast<Constant>(V);
if (!C) {
// Conceptually, we could handle things like:
// %a = zext i8 %X to i16
// %b = shl i16 %a, 8
// %c = or i16 %a, %b
// but until there is an example that actually needs this, it doesn't seem
// worth worrying about.
return nullptr;
}
// Handle 'null' ConstantArrayZero etc.
if (C->isNullValue())
return Constant::getNullValue(Type::getInt8Ty(Ctx));
// Constant floating-point values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Type *Ty = nullptr;
if (CFP->getType()->isHalfTy())
Ty = Type::getInt16Ty(Ctx);
else if (CFP->getType()->isFloatTy())
Ty = Type::getInt32Ty(Ctx);
else if (CFP->getType()->isDoubleTy())
Ty = Type::getInt64Ty(Ctx);
// Don't handle long double formats, which have strange constraints.
return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
: nullptr;
}
// We can handle constant integers that are multiple of 8 bits.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() % 8 == 0) {
assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
if (!CI->getValue().isSplat(8))
return nullptr;
return ConstantInt::get(Ctx, CI->getValue().trunc(8));
}
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
return isBytewiseValue(
ConstantExpr::getIntegerCast(CE->getOperand(0),
Type::getIntNTy(Ctx, BitWidth), false),
DL);
}
}
}
auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
if (LHS == RHS)
return LHS;
if (!LHS || !RHS)
return nullptr;
if (LHS == UndefInt8)
return RHS;
if (RHS == UndefInt8)
return LHS;
return nullptr;
};
if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
Value *Val = UndefInt8;
for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
return nullptr;
return Val;
}
if (isa<ConstantAggregate>(C)) {
Value *Val = UndefInt8;
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
return nullptr;
return Val;
}
// Don't try to handle the handful of other constants.
return nullptr;
}
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
SmallVectorImpl<unsigned> &Idxs,
unsigned IdxSkip,
Instruction *InsertBefore) {
StructType *STy = dyn_cast<StructType>(IndexedType);
if (STy) {
// Save the original To argument so we can modify it
Value *OrigTo = To;
// General case, the type indexed by Idxs is a struct
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// Process each struct element recursively
Idxs.push_back(i);
Value *PrevTo = To;
To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
InsertBefore);
Idxs.pop_back();
if (!To) {
// Couldn't find any inserted value for this index? Cleanup
while (PrevTo != OrigTo) {
InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
PrevTo = Del->getAggregateOperand();
Del->eraseFromParent();
}
// Stop processing elements
break;
}
}
// If we successfully found a value for each of our subaggregates
if (To)
return To;
}
// Base case, the type indexed by SourceIdxs is not a struct, or not all of
// the struct's elements had a value that was inserted directly. In the latter
// case, perhaps we can't determine each of the subelements individually, but
// we might be able to find the complete struct somewhere.
// Find the value that is at that particular spot
Value *V = FindInsertedValue(From, Idxs);
if (!V)
return nullptr;
// Insert the value in the new (sub) aggregate
return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
"tmp", InsertBefore);
}
// This helper takes a nested struct and extracts a part of it (which is again a
// struct) into a new value. For example, given the struct:
// { a, { b, { c, d }, e } }
// and the indices "1, 1" this returns
// { c, d }.
//
// It does this by inserting an insertvalue for each element in the resulting
// struct, as opposed to just inserting a single struct. This will only work if
// each of the elements of the substruct are known (ie, inserted into From by an
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_range);
Value *To = UndefValue::get(IndexedType);
SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
unsigned IdxSkip = Idxs.size();
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}
/// Given an aggregate and a sequence of indices, see if the scalar value
/// indexed is already around as a register, for example if it was inserted
/// directly into the aggregate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
// recursion).
if (idx_range.empty())
return V;
// We have indices, so V should have an indexable type.
assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
"Not looking at a struct or array?");
assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
"Invalid indices for type?");
if (Constant *C = dyn_cast<Constant>(V)) {
C = C->getAggregateElement(idx_range[0]);
if (!C) return nullptr;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
const unsigned *req_idx = idx_range.begin();
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i, ++req_idx) {
if (req_idx == idx_range.end()) {
// We can't handle this without inserting insertvalues
if (!InsertBefore)
return nullptr;
// The requested index identifies a part of a nested aggregate. Handle
// this specially. For example,
// %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
// %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
// %C = extractvalue {i32, { i32, i32 } } %B, 1
// This can be changed into
// %A = insertvalue {i32, i32 } undef, i32 10, 0
// %C = insertvalue {i32, i32 } %A, i32 11, 1
// which allows the unused 0,0 element from the nested struct to be
// removed.
return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
InsertBefore);
}
// This insert value inserts something else than what we are looking for.
// See if the (aggregate) value inserted into has the value we are
// looking for, then.
if (*req_idx != *i)
return FindInsertedValue(I->getAggregateOperand(), idx_range,
InsertBefore);
}
// If we end up here, the indices of the insertvalue match with those
// requested (though possibly only partially). Now we recursively look at
// the inserted value, passing any remaining indices.
return FindInsertedValue(I->getInsertedValueOperand(),
makeArrayRef(req_idx, idx_range.end()),
InsertBefore);
}
if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregate that was extracted from
// something else, we can extract from that something else directly instead.
// However, we will need to chain I's indices with the requested indices.
// Calculate the number of indices required
unsigned size = I->getNumIndices() + idx_range.size();
// Allocate some space to put the new indices in
SmallVector<unsigned, 5> Idxs;
Idxs.reserve(size);
// Add indices from the extract value instruction
Idxs.append(I->idx_begin(), I->idx_end());
// Add requested indices
Idxs.append(idx_range.begin(), idx_range.end());
assert(Idxs.size() == size
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
return nullptr;
}
bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
unsigned CharSize) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Make sure the index-ee is a pointer to array of \p CharSize integers.
// CharSize.
ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (!FirstIdx || !FirstIdx->isZero())
return false;
return true;
}
bool llvm::getConstantDataArrayInfo(const Value *V,
ConstantDataArraySlice &Slice,
unsigned ElementSize, uint64_t Offset) {
assert(V);
// Look through bitcast instructions and geps.
V = V->stripPointerCasts();
// If the value is a GEP instruction or constant expression, treat it as an
// offset.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// The GEP operator should be based on a pointer to string constant, and is
// indexing into the string constant.
if (!isGEPBasedOnPointerToString(GEP, ElementSize))
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return false;
return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
StartIdx + Offset);
}
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
const ConstantDataArray *Array;
ArrayType *ArrayTy;
if (GV->getInitializer()->isNullValue()) {
Type *GVTy = GV->getValueType();
if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
// A zeroinitializer for the array; there is no ConstantDataArray.
Array = nullptr;
} else {
const DataLayout &DL = GV->getParent()->getDataLayout();
uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
uint64_t Length = SizeInBytes / (ElementSize / 8);
if (Length <= Offset)
return false;
Slice.Array = nullptr;
Slice.Offset = 0;
Slice.Length = Length - Offset;
return true;
}
} else {
// This must be a ConstantDataArray.
Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
if (!Array)
return false;
ArrayTy = Array->getType();
}
if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
return false;
uint64_t NumElts = ArrayTy->getArrayNumElements();
if (Offset > NumElts)
return false;
Slice.Array = Array;
Slice.Offset = Offset;
Slice.Length = NumElts - Offset;
return true;
}
/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
return false;
if (Slice.Array == nullptr) {
if (TrimAtNul) {
Str = StringRef();
return true;
}
if (Slice.Length == 1) {
Str = StringRef("", 1);
return true;
}
// We cannot instantiate a StringRef as we do not have an appropriate string
// of 0s at hand.
return false;
}
// Start out with the entire array in the StringRef.
Str = Slice.Array->getAsString();
// Skip over 'offset' bytes.
Str = Str.substr(Slice.Offset);
if (TrimAtNul) {
// Trim off the \0 and anything after it. If the array is not nul
// terminated, we just return the whole end of string. The client may know
// some other way that the string is length-bound.
Str = Str.substr(0, Str.find('\0'));
}
return true;
}
// These next two are very similar to the above, but also look through PHI
// nodes.
// TODO: See if we can integrate these two together.
/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(const Value *V,
SmallPtrSetImpl<const PHINode*> &PHIs,
unsigned CharSize) {
// Look through noop bitcast instructions.
V = V->stripPointerCasts();
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
if (!PHIs.insert(PN).second)
return ~0ULL; // already in the set.
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
for (Value *IncValue : PN->incoming_values()) {
uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
if (Len == 0) return 0; // Unknown length -> unknown.
if (Len == ~0ULL) continue;
if (Len != LenSoFar && LenSoFar != ~0ULL)
return 0; // Disagree -> unknown.
LenSoFar = Len;
}
// Success, all agree.
return LenSoFar;
}
// strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
if (Len1 == 0) return 0;
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
if (Len2 == 0) return 0;
if (Len1 == ~0ULL) return Len2;
if (Len2 == ~0ULL) return Len1;
if (Len1 != Len2) return 0;
return Len1;
}
// Otherwise, see if we can read the string.
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, CharSize))
return 0;
if (Slice.Array == nullptr)
return 1;
// Search for nul characters
unsigned NullIndex = 0;
for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
break;
}
return NullIndex + 1;
}
/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
if (!V->getType()->isPointerTy())
return 0;
SmallPtrSet<const PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
// If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
// an empty string as a length.
return Len == ~0ULL ? 1 : Len;
}
const Value *
llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
bool MustPreserveNullness) {
assert(Call &&
"getArgumentAliasingToReturnedPointer only works on nonnull calls");
if (const Value *RV = Call->getReturnedArgOperand())
return RV;
// This can be used only as a aliasing property.
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
Call, MustPreserveNullness))
return Call->getArgOperand(0);
return nullptr;
}
bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
const CallBase *Call, bool MustPreserveNullness) {
switch (Call->getIntrinsicID()) {
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::aarch64_irg:
case Intrinsic::aarch64_tagp:
return true;
case Intrinsic::ptrmask:
return !MustPreserveNullness;
default:
return false;
}
}
/// \p PN defines a loop-variant pointer to an object. Check if the
/// previous iteration of the loop was referring to the same object as \p PN.
static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
const LoopInfo *LI) {
// Find the loop-defined value.
Loop *L = LI->getLoopFor(PN->getParent());
if (PN->getNumIncomingValues() != 2)
return true;
// Find the value from previous iteration.
auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
return true;
// If a new pointer is loaded in the loop, the pointer references a different
// object in every iteration. E.g.:
// for (i)
// int *p = a[i];
// ...
if (auto *Load = dyn_cast<LoadInst>(PrevValue))
if (!L->isLoopInvariant(Load->getPointerOperand()))
return false;
return true;
}
const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast ||
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
V = cast<Operator>(V)->getOperand(0);
if (!V->getType()->isPointerTy())
return V;
} else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->isInterposable())
return V;
V = GA->getAliasee();
} else {
if (auto *PHI = dyn_cast<PHINode>(V)) {
// Look through single-arg phi nodes created by LCSSA.
if (PHI->getNumIncomingValues() == 1) {
V = PHI->getIncomingValue(0);
continue;
}
} else if (auto *Call = dyn_cast<CallBase>(V)) {
// CaptureTracking can know about special capturing properties of some
// intrinsics like launder.invariant.group, that can't be expressed with
// the attributes, but have properties like returning aliasing pointer.
// Because some analysis may assume that nocaptured pointer is not
// returned from some special intrinsic (because function would have to
// be marked with returns attribute), it is crucial to use this function
// because it should be in sync with CaptureTracking. Not using it may
// cause weird miscompilations where 2 aliasing pointers are assumed to
// noalias.
if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
V = RP;
continue;
}
}
return V;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
}
return V;
}
void llvm::getUnderlyingObjects(const Value *V,
SmallVectorImpl<const Value *> &Objects,
LoopInfo *LI, unsigned MaxLookup) {
SmallPtrSet<const Value *, 4> Visited;
SmallVector<const Value *, 4> Worklist;
Worklist.push_back(V);
do {
const Value *P = Worklist.pop_back_val();
P = getUnderlyingObject(P, MaxLookup);
if (!Visited.insert(P).second)
continue;
if (auto *SI = dyn_cast<SelectInst>(P)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (auto *PN = dyn_cast<PHINode>(P)) {
// If this PHI changes the underlying object in every iteration of the
// loop, don't look through it. Consider:
// int **A;
// for (i) {
// Prev = Curr; // Prev = PHI (Prev_0, Curr)
// Curr = A[i];
// *Prev, *Curr;
//
// Prev is tracking Curr one iteration behind so they refer to different
// underlying objects.
if (!LI || !LI->isLoopHeader(PN->getParent()) ||
isSameUnderlyingObjectInLoop(PN, LI))
append_range(Worklist, PN->incoming_values());
continue;
}
Objects.push_back(P);
} while (!Worklist.empty());
}
/// This is the function that does the work of looking through basic
/// ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
if (const Operator *U = dyn_cast<Operator>(V)) {
// If we find a ptrtoint, we can transfer control back to the
// regular getUnderlyingObjectFromInt.
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
// If we find an add of a constant, a multiplied value, or a phi, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
// object address is somehow being computed by the multiply,
// because our callers only care when the result is an
// identifiable object.
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
!isa<PHINode>(U->getOperand(1))))
return V;
V = U->getOperand(0);
} else {
return V;
}
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
} while (true);
}
/// This is a wrapper around getUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
/// It returns false if unidentified object is found in getUnderlyingObjects.
bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
SmallVectorImpl<Value *> &Objects) {
SmallPtrSet<const Value *, 16> Visited;
SmallVector<const Value *, 4> Working(1, V);
do {
V = Working.pop_back_val();
SmallVector<const Value *, 4> Objs;
getUnderlyingObjects(V, Objs);
for (const Value *V : Objs) {
if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
const Value *O =
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
if (O->getType()->isPointerTy()) {
Working.push_back(O);
continue;
}
}
// If getUnderlyingObjects fails to find an identifiable object,
// getUnderlyingObjectsForCodeGen also fails for safety.
if (!isIdentifiedObject(V)) {
Objects.clear();
return false;
}
Objects.push_back(const_cast<Value *>(V));
}
} while (!Working.empty());
return true;
}
AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
AllocaInst *Result = nullptr;
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
auto AddWork = [&](Value *V) {
if (Visited.insert(V).second)
Worklist.push_back(V);
};
AddWork(V);
do {
V = Worklist.pop_back_val();
assert(Visited.count(V));
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
if (Result && Result != AI)
return nullptr;
Result = AI;
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
AddWork(CI->getOperand(0));
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
for (Value *IncValue : PN->incoming_values())
AddWork(IncValue);
} else if (auto *SI = dyn_cast<SelectInst>(V)) {
AddWork(SI->getTrueValue());
AddWork(SI->getFalseValue());
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
if (OffsetZero && !GEP->hasAllZeroIndices())
return nullptr;
AddWork(GEP->getPointerOperand());
} else {
return nullptr;
}
} while (!Worklist.empty());
return Result;
}
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
const Value *V, bool AllowLifetime, bool AllowDroppable) {
for (const User *U : V->users()) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II)
return false;
if (AllowLifetime && II->isLifetimeStartOrEnd())
continue;
if (AllowDroppable && II->isDroppable())
continue;
return false;
}
return true;
}
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
V, /* AllowLifetime */ true, /* AllowDroppable */ false);
}
bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
V, /* AllowLifetime */ true, /* AllowDroppable */ true);
}
bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
if (!LI.isUnordered())
return true;
const Function &F = *LI.getFunction();
// Speculative load may create a race that did not exist in the source.
return F.hasFnAttribute(Attribute::SanitizeThread) ||
// Speculative load may load data from dirty regions.
F.hasFnAttribute(Attribute::SanitizeAddress) ||
F.hasFnAttribute(Attribute::SanitizeHWAddress);
}
bool llvm::isSafeToSpeculativelyExecute(const Value *V,
const Instruction *CtxI,
const DominatorTree *DT,
const TargetLibraryInfo *TLI) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
if (C->canTrap())
return false;
switch (Inst->getOpcode()) {
default:
return true;
case Instruction::UDiv:
case Instruction::URem: {
// x / y is undefined if y == 0.
const APInt *V;
if (match(Inst->getOperand(1), m_APInt(V)))
return *V != 0;
return false;
}
case Instruction::SDiv:
case Instruction::SRem: {
// x / y is undefined if y == 0 or x == INT_MIN and y == -1
const APInt *Numerator, *Denominator;
if (!match(Inst->getOperand(1), m_APInt(Denominator)))
return false;
// We cannot hoist this division if the denominator is 0.
if (*Denominator == 0)
return false;
// It's safe to hoist if the denominator is not 0 or -1.
if (!Denominator->isAllOnesValue())
return true;
// At this point we know that the denominator is -1. It is safe to hoist as
// long we know that the numerator is not INT_MIN.
if (match(Inst->getOperand(0), m_APInt(Numerator)))
return !Numerator->isMinSignedValue();
// The numerator *might* be MinSignedValue.
return false;
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(Inst);
if (mustSuppressSpeculation(*LI))
return false;
const DataLayout &DL = LI->getModule()->getDataLayout();
return isDereferenceableAndAlignedPointer(
LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
DL, CtxI, DT, TLI);
}
case Instruction::Call: {
auto *CI = cast<const CallInst>(Inst);
const Function *Callee = CI->getCalledFunction();
// The called function could have undefined behavior or side-effects, even
// if marked readnone nounwind.
return Callee && Callee->isSpeculatable();
}
case Instruction::VAArg:
case Instruction::Alloca:
case Instruction::Invoke:
case Instruction::CallBr:
case Instruction::PHI:
case Instruction::Store:
case Instruction::Ret:
case Instruction::Br:
case Instruction::IndirectBr:
case Instruction::Switch:
case Instruction::Unreachable:
case Instruction::Fence:
case Instruction::AtomicRMW:
case Instruction::AtomicCmpXchg:
case Instruction::LandingPad:
case Instruction::Resume:
case Instruction::CatchSwitch:
case Instruction::CatchPad:
case Instruction::CatchRet:
case Instruction::CleanupPad:
case Instruction::CleanupRet:
return false; // Misc instructions which have effects
}
}
bool llvm::mayBeMemoryDependent(const Instruction &I) {
return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
}
/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
switch (OR) {
case ConstantRange::OverflowResult::MayOverflow:
return OverflowResult::MayOverflow;
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
return OverflowResult::AlwaysOverflowsLow;
case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
return OverflowResult::AlwaysOverflowsHigh;
case ConstantRange::OverflowResult::NeverOverflows:
return OverflowResult::NeverOverflows;
}
llvm_unreachable("Unknown OverflowResult");
}
/// Combine constant ranges from computeConstantRange() and computeKnownBits().
static ConstantRange computeConstantRangeIncludingKnownBits(
const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
KnownBits Known = computeKnownBits(
V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
ConstantRange::PreferredRangeType RangeType =
ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
return CR1.intersectWith(CR2, RangeType);
}
OverflowResult llvm::computeOverflowForUnsignedMul(
const Value *LHS, const Value *RHS, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
}
OverflowResult
llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
// This means if we have enough leading sign bits in the operands
// we can guarantee that the result does not overflow.
// Ref: "Hacker's Delight" by Henry Warren
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
// Note that underestimating the number of sign bits gives a more
// conservative answer.
unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
// First handle the easy case: if we have enough sign bits there's
// definitely no overflow.
if (SignBits > BitWidth + 1)
return OverflowResult::NeverOverflows;
// There are two ambiguous cases where there can be no overflow:
// SignBits == BitWidth + 1 and
// SignBits == BitWidth
// The second case is difficult to check, therefore we only handle the
// first case.
if (SignBits == BitWidth + 1) {
// It overflows only when both arguments are negative and the true
// product is exactly the minimum negative number.
// E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
// For simplicity we just check if at least one side is not negative.
KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
return OverflowResult::NeverOverflows;
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForUnsignedAdd(
const Value *LHS, const Value *RHS, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
}
static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
if (Add && Add->hasNoSignedWrap()) {
return OverflowResult::NeverOverflows;
}
// If LHS and RHS each have at least two sign bits, the addition will look
// like
//
// XX..... +
// YY.....
//
// If the carry into the most significant position is 0, X and Y can't both
// be 1 and therefore the carry out of the addition is also 0.
//
// If the carry into the most significant position is 1, X and Y can't both
// be 0 and therefore the carry out of the addition is also 1.
//
// Since the carry into the most significant position is always equal to
// the carry out of the addition, there is no signed overflow.
if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
return OverflowResult::NeverOverflows;
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
OverflowResult OR =
mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
if (OR != OverflowResult::MayOverflow)
return OR;
// The remaining code needs Add to be available. Early returns if not so.
if (!Add)
return OverflowResult::MayOverflow;
// If the sign of Add is the same as at least one of the operands, this add
// CANNOT overflow. If this can be determined from the known bits of the
// operands the above signedAddMayOverflow() check will have already done so.
// The only other way to improve on the known bits is from an assumption, so
// call computeKnownBitsFromAssume() directly.
bool LHSOrRHSKnownNonNegative =
(LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
bool LHSOrRHSKnownNegative =
(LHSRange.isAllNegative() || RHSRange.isAllNegative());
if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
KnownBits AddKnown(LHSRange.getBitWidth());
computeKnownBitsFromAssume(
Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
(AddKnown.isNegative() && LHSOrRHSKnownNegative))
return OverflowResult::NeverOverflows;
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
// Checking for conditions implied by dominating conditions may be expensive.
// Limit it to usub_with_overflow calls for now.
if (match(CxtI,
m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
if (auto C =
isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
if (*C)
return OverflowResult::NeverOverflows;
return OverflowResult::AlwaysOverflowsLow;
}
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
}
OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
// If LHS and RHS each have at least two sign bits, the subtraction
// cannot overflow.
if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
return OverflowResult::NeverOverflows;
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
}
bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
const DominatorTree &DT) {
SmallVector<const BranchInst *, 2> GuardingBranches;
SmallVector<const ExtractValueInst *, 2> Results;
for (const User *U : WO->users()) {
if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
if (EVI->getIndices()[0] == 0)
Results.push_back(EVI);
else {
assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
for (const auto *U : EVI->users())
if (const auto *B = dyn_cast<BranchInst>(U)) {
assert(B->isConditional() && "How else is it using an i1?");
GuardingBranches.push_back(B);
}
}
} else {
// We are using the aggregate directly in a way we don't want to analyze
// here (storing it to a global, say).
return false;
}
}
auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
if (!NoWrapEdge.isSingleEdge())
return false;
// Check if all users of the add are provably no-wrap.
for (const auto *Result : Results) {
// If the extractvalue itself is not executed on overflow, the we don't
// need to check each use separately, since domination is transitive.
if (DT.dominates(NoWrapEdge, Result->getParent()))
continue;
for (auto &RU : Result->uses())
if (!DT.dominates(NoWrapEdge, RU))
return false;
}
return true;
};
return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
}
static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
// See whether I has flags that may create poison
if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
return true;
}
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
if (ExactOp->isExact())
return true;
if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
auto FMF = FP->getFastMathFlags();
if (FMF.noNaNs() || FMF.noInfs())
return true;
}
unsigned Opcode = Op->getOpcode();
// Check whether opcode is a poison/undef-generating operation
switch (Opcode) {
case Instruction::Shl:
case Instruction::AShr:
case Instruction::LShr: {
// Shifts return poison if shiftwidth is larger than the bitwidth.
if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
SmallVector<Constant *, 4> ShiftAmounts;
if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
unsigned NumElts = FVTy->getNumElements();
for (unsigned i = 0; i < NumElts; ++i)
ShiftAmounts.push_back(C->getAggregateElement(i));
} else if (isa<ScalableVectorType>(C->getType()))
return true; // Can't tell, just return true to be safe
else
ShiftAmounts.push_back(C);
bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
auto *CI = dyn_cast_or_null<ConstantInt>(C);
return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
});
return !Safe;
}
return true;
}
case Instruction::FPToSI:
case Instruction::FPToUI:
// fptosi/ui yields poison if the resulting value does not fit in the
// destination type.
return true;
case Instruction::Call:
if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
switch (II->getIntrinsicID()) {
// TODO: Add more intrinsics.
case Intrinsic::ctpop:
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::umul_with_overflow:
return false;
}
}
LLVM_FALLTHROUGH;
case Instruction::CallBr:
case Instruction::Invoke: {
const auto *CB = cast<CallBase>(Op);
return !CB->hasRetAttr(Attribute::NoUndef);
}
case Instruction::InsertElement:
case Instruction::ExtractElement: {
// If index exceeds the length of the vector, it returns poison
auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
return true;
return false;
}
case Instruction::ShuffleVector: {
// shufflevector may return undef.
if (PoisonOnly)
return false;
ArrayRef<int> Mask = isa<ConstantExpr>(Op)
? cast<ConstantExpr>(Op)->getShuffleMask()
: cast<ShuffleVectorInst>(Op)->getShuffleMask();
return is_contained(Mask, UndefMaskElem);
}
case Instruction::FNeg:
case Instruction::PHI:
case Instruction::Select:
case Instruction::URem:
case Instruction::SRem:
case Instruction::ExtractValue:
case Instruction::InsertValue:
case Instruction::Freeze:
case Instruction::ICmp:
case Instruction::FCmp:
return false;
case Instruction::GetElementPtr: {
const auto *GEP = cast<GEPOperator>(Op);
return GEP->isInBounds();
}
default: {
const auto *CE = dyn_cast<ConstantExpr>(Op);
if (isa<CastInst>(Op) || (CE && CE->isCast()))
return false;
else if (Instruction::isBinaryOp(Opcode))
return false;
// Be conservative and return true.
return true;
}
}
}
bool llvm::canCreateUndefOrPoison(const Operator *Op) {
return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
}
bool llvm::canCreatePoison(const Operator *Op) {
return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
}
static bool directlyImpliesPoison(const Value *ValAssumedPoison,
const Value *V, unsigned Depth) {
if (ValAssumedPoison == V)
return true;
const unsigned MaxDepth = 2;
if (Depth >= MaxDepth)
return false;
if (const auto *I = dyn_cast<Instruction>(V)) {
if (propagatesPoison(cast<Operator>(I)))
return any_of(I->operands(), [=](const Value *Op) {
return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
});
// 'select ValAssumedPoison, _, _' is poison.
if (const auto *SI = dyn_cast<SelectInst>(I))
return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
Depth + 1);
// V = extractvalue V0, idx
// V2 = extractvalue V0, idx2
// V0's elements are all poison or not. (e.g., add_with_overflow)
const WithOverflowInst *II;
if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
match(ValAssumedPoison, m_ExtractValue(m_Specific(II))))
return true;
}
return false;
}
static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
unsigned Depth) {
if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
return true;
if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
return true;
const unsigned MaxDepth = 2;
if (Depth >= MaxDepth)
return false;
const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
if (I && !canCreatePoison(cast<Operator>(I))) {
return all_of(I->operands(), [=](const Value *Op) {
return impliesPoison(Op, V, Depth + 1);
});
}
return false;
}
bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
}
static bool programUndefinedIfUndefOrPoison(const Value *V,
bool PoisonOnly);
static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT,
unsigned Depth, bool PoisonOnly) {
if (Depth >= MaxAnalysisRecursionDepth)
return false;
if (isa<MetadataAsValue>(V))
return false;
if (const auto *A = dyn_cast<Argument>(V)) {
if (A->hasAttribute(Attribute::NoUndef))
return true;
}
if (auto *C = dyn_cast<Constant>(V)) {
if (isa<UndefValue>(C))
return PoisonOnly && !isa<PoisonValue>(C);
if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
isa<ConstantPointerNull>(C) || isa<Function>(C))
return true;
if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
return (PoisonOnly ? !C->containsPoisonElement()
: !C->containsUndefOrPoisonElement()) &&
!C->containsConstantExpression();
}
// Strip cast operations from a pointer value.
// Note that stripPointerCastsSameRepresentation can strip off getelementptr
// inbounds with zero offset. To guarantee that the result isn't poison, the
// stripped pointer is checked as it has to be pointing into an allocated
// object or be null `null` to ensure `inbounds` getelement pointers with a
// zero offset could not produce poison.
// It can strip off addrspacecast that do not change bit representation as
// well. We believe that such addrspacecast is equivalent to no-op.
auto *StrippedV = V->stripPointerCastsSameRepresentation();
if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
return true;
auto OpCheck = [&](const Value *V) {
return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
PoisonOnly);
};
if (auto *Opr = dyn_cast<Operator>(V)) {
// If the value is a freeze instruction, then it can never
// be undef or poison.
if (isa<FreezeInst>(V))
return true;
if (const auto *CB = dyn_cast<CallBase>(V)) {
if (CB->hasRetAttr(Attribute::NoUndef))
return true;
}
if (const auto *PN = dyn_cast<PHINode>(V)) {
unsigned Num = PN->getNumIncomingValues();
bool IsWellDefined = true;
for (unsigned i = 0; i < Num; ++i) {
auto *TI = PN->getIncomingBlock(i)->getTerminator();
if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
DT, Depth + 1, PoisonOnly)) {
IsWellDefined = false;
break;
}
}
if (IsWellDefined)
return true;
} else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
return true;
}
if (auto *I = dyn_cast<LoadInst>(V))
if (I->getMetadata(LLVMContext::MD_noundef))
return true;
if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
return true;
// CxtI may be null or a cloned instruction.
if (!CtxI || !CtxI->getParent() || !DT)
return false;
auto *DNode = DT->getNode(CtxI->getParent());
if (!DNode)
// Unreachable block
return false;
// If V is used as a branch condition before reaching CtxI, V cannot be
// undef or poison.
// br V, BB1, BB2
// BB1:
// CtxI ; V cannot be undef or poison here
auto *Dominator = DNode->getIDom();
while (Dominator) {
auto *TI = Dominator->getBlock()->getTerminator();
Value *Cond = nullptr;
if (auto BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional())
Cond = BI->getCondition();
} else if (auto SI = dyn_cast<SwitchInst>(TI)) {
Cond = SI->getCondition();
}
if (Cond) {
if (Cond == V)
return true;
else if (PoisonOnly && isa<Operator>(Cond)) {
// For poison, we can analyze further
auto *Opr = cast<Operator>(Cond);
if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
return true;
}
}
Dominator = Dominator->getIDom();
}
SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
return true;
return false;
}
bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
}
bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT, unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
}
OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Add, DL, AC, CxtI, DT);
}
OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
// Note: An atomic operation isn't guaranteed to return in a reasonable amount
// of time because it's possible for another thread to interfere with it for an
// arbitrary length of time, but programs aren't allowed to rely on that.
// If there is no successor, then execution can't transfer to it.
if (isa<ReturnInst>(I))
return false;
if (isa<UnreachableInst>(I))
return false;
// An instruction that returns without throwing must transfer control flow
// to a successor.
return !I->mayThrow() && I->willReturn();
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
// TODO: This is slightly conservative for invoke instruction since exiting
// via an exception *is* normal control for them.
for (const Instruction &I : *BB)
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return false;
return true;
}
bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
const Loop *L) {
// The loop header is guaranteed to be executed for every iteration.
//
// FIXME: Relax this constraint to cover all basic blocks that are
// guaranteed to be executed at every iteration.
if (I->getParent() != L->getHeader()) return false;
for (const Instruction &LI : *L->getHeader()) {
if (&LI == I) return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
}
llvm_unreachable("Instruction not contained in its own parent basic block.");
}
bool llvm::propagatesPoison(const Operator *I) {
switch (I->getOpcode()) {
case Instruction::Freeze:
case Instruction::Select:
case Instruction::PHI:
case Instruction::Invoke:
return false;
case Instruction::Call:
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
// TODO: Add more intrinsics.
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::umul_with_overflow:
// If an input is a vector containing a poison element, the
// two output vectors (calculated results, overflow bits)'
// corresponding lanes are poison.
return true;
}
}
return false;
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::GetElementPtr:
return true;
default:
if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
return true;
// Be conservative and return false.
return false;
}
}
void llvm::getGuaranteedWellDefinedOps(
const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
switch (I->getOpcode()) {
case Instruction::Store:
Operands.insert(cast<StoreInst>(I)->getPointerOperand());
break;
case Instruction::Load:
Operands.insert(cast<LoadInst>(I)->getPointerOperand());
break;
// Since dereferenceable attribute imply noundef, atomic operations
// also implicitly have noundef pointers too
case Instruction::AtomicCmpXchg:
Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
break;
case Instruction::AtomicRMW:
Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
break;
case Instruction::Call:
case Instruction::Invoke: {
const CallBase *CB = cast<CallBase>(I);
if (CB->isIndirectCall())
Operands.insert(CB->getCalledOperand());
for (unsigned i = 0; i < CB->arg_size(); ++i) {
if (CB->paramHasAttr(i, Attribute::NoUndef) ||
CB->paramHasAttr(i, Attribute::Dereferenceable))
Operands.insert(CB->getArgOperand(i));
}
break;
}
default:
break;
}
}
void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
SmallPtrSetImpl<const Value *> &Operands) {
getGuaranteedWellDefinedOps(I, Operands);
switch (I->getOpcode()) {
// Divisors of these operations are allowed to be partially undef.
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
Operands.insert(I->getOperand(1));
break;
default:
break;
}
}
bool llvm::mustTriggerUB(const Instruction *I,
const SmallSet<const Value *, 16>& KnownPoison) {
SmallPtrSet<const Value *, 4> NonPoisonOps;
getGuaranteedNonPoisonOps(I, NonPoisonOps);
for (const auto *V : NonPoisonOps)
if (KnownPoison.count(V))
return true;
return false;
}
static bool programUndefinedIfUndefOrPoison(const Value *V,
bool PoisonOnly) {
// We currently only look for uses of values within the same basic
// block, as that makes it easier to guarantee that the uses will be
// executed given that Inst is executed.
//
// FIXME: Expand this to consider uses beyond the same basic block. To do
// this, look out for the distinction between post-dominance and strong
// post-dominance.
const BasicBlock *BB = nullptr;
BasicBlock::const_iterator Begin;
if (const auto *Inst = dyn_cast<Instruction>(V)) {
BB = Inst->getParent();
Begin = Inst->getIterator();
Begin++;
} else if (const auto *Arg = dyn_cast<Argument>(V)) {
BB = &Arg->getParent()->getEntryBlock();
Begin = BB->begin();
} else {
return false;
}
BasicBlock::const_iterator End = BB->end();
if (!PoisonOnly) {
// Since undef does not propagate eagerly, be conservative & just check
// whether a value is directly passed to an instruction that must take
// well-defined operands.
for (auto &I : make_range(Begin, End)) {
SmallPtrSet<const Value *, 4> WellDefinedOps;
getGuaranteedWellDefinedOps(&I, WellDefinedOps);
for (auto *Op : WellDefinedOps) {
if (Op == V)
return true;
}
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
break;
}
return false;
}
// Set of instructions that we have proved will yield poison if Inst
// does.
SmallSet<const Value *, 16> YieldsPoison;
SmallSet<const BasicBlock *, 4> Visited;
YieldsPoison.insert(V);
auto Propagate = [&](const User *User) {
if (propagatesPoison(cast<Operator>(User)))
YieldsPoison.insert(User);
};
for_each(V->users(), Propagate);
Visited.insert(BB);
unsigned Iter = 0;
while (Iter++ < MaxAnalysisRecursionDepth) {
for (auto &I : make_range(Begin, End)) {
if (mustTriggerUB(&I, YieldsPoison))
return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return false;
// Mark poison that propagates from I through uses of I.
if (YieldsPoison.count(&I))
for_each(I.users(), Propagate);
}
if (auto *NextBB = BB->getSingleSuccessor()) {
if (Visited.insert(NextBB).second) {
BB = NextBB;
Begin = BB->getFirstNonPHI()->getIterator();
End = BB->end();
continue;
}
}
break;
}
return false;
}
bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
return ::programUndefinedIfUndefOrPoison(Inst, false);
}
bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
return ::programUndefinedIfUndefOrPoison(Inst, true);
}
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
if (FMF.noNaNs())
return true;
if (auto *C = dyn_cast<ConstantFP>(V))
return !C->isNaN();
if (auto *C = dyn_cast<ConstantDataVector>(V)) {
if (!C->getElementType()->isFloatingPointTy())
return false;
for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
if (C->getElementAsAPFloat(I).isNaN())
return false;
}
return true;
}
if (isa<ConstantAggregateZero>(V))
return true;
return false;
}
static bool isKnownNonZero(const Value *V) {
if (auto *C = dyn_cast<ConstantFP>(V))
return !C->isZero();
if (auto *C = dyn_cast<ConstantDataVector>(V)) {
if (!C->getElementType()->isFloatingPointTy())
return false;
for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
if (C->getElementAsAPFloat(I).isZero())
return false;
}
return true;
}
return false;
}
/// Match clamp pattern for float types without care about NaNs or signed zeros.
/// Given non-min/max outer cmp/select from the clamp pattern this
/// function recognizes if it can be substitued by a "canonical" min/max
/// pattern.
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS) {
// Try to match
// X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
// X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
// and return description of the outer Max/Min.
// First, check if select has inverse order:
if (CmpRHS == FalseVal) {
std::swap(TrueVal, FalseVal);
Pred = CmpInst::getInversePredicate(Pred);
}
// Assume success now. If there's no match, callers should not use these anyway.
LHS = TrueVal;
RHS = FalseVal;
const APFloat *FC1;
if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
return {SPF_UNKNOWN, SPNB_NA, false};
const APFloat *FC2;
switch (Pred) {
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
if (match(FalseVal,
m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
*FC1 < *FC2)
return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_UGE:
if (match(FalseVal,
m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
*FC1 > *FC2)
return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
break;
default:
break;
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
/// Recognize variations of:
/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal) {
// Swap the select operands and predicate to match the patterns below.
if (CmpRHS != TrueVal) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(TrueVal, FalseVal);
}
const APInt *C1;
if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
const APInt *C2;
// (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
return {SPF_SMAX, SPNB_NA, false};
// (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
return {SPF_SMIN, SPNB_NA, false};
// (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
return {SPF_UMAX, SPNB_NA, false};
// (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
return {SPF_UMIN, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
/// Recognize variations of:
/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TVal, Value *FVal,
unsigned Depth) {
// TODO: Allow FP min/max with nnan/nsz.
assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
Value *A = nullptr, *B = nullptr;
SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
if (!SelectPatternResult::isMinOrMax(L.Flavor))
return {SPF_UNKNOWN, SPNB_NA, false};
Value *C = nullptr, *D = nullptr;
SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
if (L.Flavor != R.Flavor)
return {SPF_UNKNOWN, SPNB_NA, false};
// We have something like: x Pred y ? min(a, b) : min(c, d).
// Try to match the compare to the min/max operations of the select operands.
// First, make sure we have the right compare predicate.
switch (L.Flavor) {
case SPF_SMIN:
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_SMAX:
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_UMIN:
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_UMAX:
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
default:
return {SPF_UNKNOWN, SPNB_NA, false};
}
// If there is a common operand in the already matched min/max and the other
// min/max operands match the compare operands (either directly or inverted),
// then this is min/max of the same flavor.
// a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
// ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
if (D == B) {
if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
match(A, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
// a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
// ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
if (C == B) {
if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
match(A, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
// b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
// ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
if (D == A) {
if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
match(B, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
// b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
// ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
if (C == A) {
if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
match(B, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
/// If the input value is the result of a 'not' op, constant integer, or vector
/// splat of a constant integer, return the bitwise-not source value.
/// TODO: This could be extended to handle non-splat vector integer constants.
static Value *getNotValue(Value *V) {
Value *NotV;
if (match(V, m_Not(m_Value(NotV))))
return NotV;
const APInt *C;
if (match(V, m_APInt(C)))
return ConstantInt::get(V->getType(), ~(*C));
return nullptr;
}
/// Match non-obvious integer minimum and maximum sequences.
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS,
unsigned Depth) {
// Assume success. If there's no match, callers should not use these anyway.
LHS = TrueVal;
RHS = FalseVal;
SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
return SPR;
SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
return SPR;
// Look through 'not' ops to find disguised min/max.
// (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
// (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
switch (Pred) {
case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
default: break;
}
}
// (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
// (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
switch (Pred) {
case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
default: break;
}
}
if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
return {SPF_UNKNOWN, SPNB_NA, false};
// Z = X -nsw Y
// (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
// (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
if (match(TrueVal, m_Zero()) &&
match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
// Z = X -nsw Y
// (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
// (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
if (match(FalseVal, m_Zero()) &&
match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
const APInt *C1;
if (!match(CmpRHS, m_APInt(C1)))
return {SPF_UNKNOWN, SPNB_NA, false};
// An unsigned min/max can be written with a signed compare.
const APInt *C2;
if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
(CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
// Is the sign bit set?
// (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
// (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
C2->isMaxSignedValue())
return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
// Is the sign bit clear?
// (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
// (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
C2->isMinSignedValue())
return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
assert(X && Y && "Invalid operand");
// X = sub (0, Y) || X = sub nsw (0, Y)
if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
(NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
return true;
// Y = sub (0, X) || Y = sub nsw (0, X)
if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
(NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
return true;
// X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
Value *A, *B;
return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
(NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
}
static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
FastMathFlags FMF,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS,
unsigned Depth) {
if (CmpInst::isFPPredicate(Pred)) {
// IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
// 0.0 operand, set the compare's 0.0 operands to that same value for the
// purpose of identifying min/max. Disregard vector constants with undefined
// elements because those can not be back-propagated for analysis.
Value *OutputZeroVal = nullptr;
if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
!cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
OutputZeroVal = TrueVal;
else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
!cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
OutputZeroVal = FalseVal;
if (OutputZeroVal) {
if (match(CmpLHS, m_AnyZeroFP()))
CmpLHS = OutputZeroVal;
if (match(CmpRHS, m_AnyZeroFP()))
CmpRHS = OutputZeroVal;
}
}
LHS = CmpLHS;
RHS = CmpRHS;
// Signed zero may return inconsistent results between implementations.
// (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
// minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
// Therefore, we behave conservatively and only proceed if at least one of the
// operands is known to not be zero or if we don't care about signed zero.
switch (Pred) {
default: break;
// FIXME: Include OGT/OLT/UGT/ULT.
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
!isKnownNonZero(CmpRHS))
return {SPF_UNKNOWN, SPNB_NA, false};
}
SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
bool Ordered = false;
// When given one NaN and one non-NaN input:
// - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
// - A simple C99 (a < b ? a : b) construction will return 'b' (as the
// ordered comparison fails), which could be NaN or non-NaN.
// so here we discover exactly what NaN behavior is required/accepted.
if (CmpInst::isFPPredicate(Pred)) {
bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
if (LHSSafe && RHSSafe) {
// Both operands are known non-NaN.
NaNBehavior = SPNB_RETURNS_ANY;
} else if (CmpInst::isOrdered(Pred)) {
// An ordered comparison will return false when given a NaN, so it
// returns the RHS.
Ordered = true;
if (LHSSafe)
// LHS is non-NaN, so if RHS is NaN then NaN will be returned.
NaNBehavior = SPNB_RETURNS_NAN;
else if (RHSSafe)
NaNBehavior = SPNB_RETURNS_OTHER;
else
// Completely unsafe.
return {SPF_UNKNOWN, SPNB_NA, false};
} else {
Ordered = false;
// An unordered comparison will return true when given a NaN, so it
// returns the LHS.
if (LHSSafe)
// LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
NaNBehavior = SPNB_RETURNS_OTHER;
else if (RHSSafe)
NaNBehavior = SPNB_RETURNS_NAN;
else
// Completely unsafe.
return {SPF_UNKNOWN, SPNB_NA, false};
}
}
if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
std::swap(CmpLHS, CmpRHS);
Pred = CmpInst::getSwappedPredicate(Pred);
if (NaNBehavior == SPNB_RETURNS_NAN)
NaNBehavior = SPNB_RETURNS_OTHER;
else if (NaNBehavior == SPNB_RETURNS_OTHER)
NaNBehavior = SPNB_RETURNS_NAN;
Ordered = !Ordered;
}
// ([if]cmp X, Y) ? X : Y
if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
switch (Pred) {
default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGT:
case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLT:
case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
}
}
if (isKnownNegation(TrueVal, FalseVal)) {
// Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
// match against either LHS or sext(LHS).
auto MaybeSExtCmpLHS =
m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
if (match(TrueVal, MaybeSExtCmpLHS)) {
// Set the return values. If the compare uses the negated value (-X >s 0),
// swap the return values because the negated value is always 'RHS'.
LHS = TrueVal;
RHS = FalseVal;
if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
std::swap(LHS, RHS);
// (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
// (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
return {SPF_ABS, SPNB_NA, false};
// (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
return {SPF_ABS, SPNB_NA, false};
// (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
// (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
return {SPF_NABS, SPNB_NA, false};
}
else if (match(FalseVal, MaybeSExtCmpLHS)) {
// Set the return values. If the compare uses the negated value (-X >s 0),
// swap the return values because the negated value is always 'RHS'.
LHS = FalseVal;
RHS = TrueVal;
if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
std::swap(LHS, RHS);
// (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
// (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
return {SPF_NABS, SPNB_NA, false};
// (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
// (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
return {SPF_ABS, SPNB_NA, false};
}
}
if (CmpInst::isIntPredicate(Pred))
return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
// According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
// may return either -0.0 or 0.0, so fcmp/select pair has stricter
// semantics than minNum. Be conservative in such case.
if (NaNBehavior != SPNB_RETURNS_ANY ||
(!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
!isKnownNonZero(CmpRHS)))
return {SPF_UNKNOWN, SPNB_NA, false};
return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
}
/// Helps to match a select pattern in case of a type mismatch.
///
/// The function processes the case when type of true and false values of a
/// select instruction differs from type of the cmp instruction operands because
/// of a cast instruction. The function checks if it is legal to move the cast
/// operation after "select". If yes, it returns the new second value of
/// "select" (with the assumption that cast is moved):
/// 1. As operand of cast instruction when both values of "select" are same cast
/// instructions.
/// 2. As restored constant (by applying reverse cast operation) when the first
/// value of the "select" is a cast operation and the second value is a
/// constant.
/// NOTE: We return only the new second value because the first value could be
/// accessed as operand of cast instruction.
static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
Instruction::CastOps *CastOp) {
auto *Cast1 = dyn_cast<CastInst>(V1);
if (!Cast1)
return nullptr;
*CastOp = Cast1->getOpcode();
Type *SrcTy = Cast1->getSrcTy();
if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
// If V1 and V2 are both the same cast from the same type, look through V1.
if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
return Cast2->getOperand(0);
return nullptr;
}
auto *C = dyn_cast<Constant>(V2);
if (!C)
return nullptr;
Constant *CastedTo = nullptr;
switch (*CastOp) {
case Instruction::ZExt:
if (CmpI->isUnsigned())
CastedTo = ConstantExpr::getTrunc(C, SrcTy);
break;
case Instruction::SExt:
if (CmpI->isSigned())
CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
break;
case Instruction::Trunc:
Constant *CmpConst;
if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
CmpConst->getType() == SrcTy) {
// Here we have the following case:
//
// %cond = cmp iN %x, CmpConst
// %tr = trunc iN %x to iK
// %narrowsel = select i1 %cond, iK %t, iK C
//
// We can always move trunc after select operation:
//
// %cond = cmp iN %x, CmpConst
// %widesel = select i1 %cond, iN %x, iN CmpConst
// %tr = trunc iN %widesel to iK
//
// Note that C could be extended in any way because we don't care about
// upper bits after truncation. It can't be abs pattern, because it would
// look like:
//
// select i1 %cond, x, -x.
//
// So only min/max pattern could be matched. Such match requires widened C
// == CmpConst. That is why set widened C = CmpConst, condition trunc
// CmpConst == C is checked below.
CastedTo = CmpConst;
} else {
CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
}
break;
case Instruction::FPTrunc:
CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
break;
case Instruction::FPExt:
CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
break;
case Instruction::FPToUI:
CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
break;
case Instruction::FPToSI:
CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
break;
case Instruction::UIToFP:
CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
break;
case Instruction::SIToFP:
CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
break;
default:
break;
}
if (!CastedTo)
return nullptr;
// Make sure the cast doesn't lose any information.
Constant *CastedBack =
ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
if (CastedBack != C)
return nullptr;
return CastedTo;
}
SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Instruction::CastOps *CastOp,
unsigned Depth) {
if (Depth >= MaxAnalysisRecursionDepth)
return {SPF_UNKNOWN, SPNB_NA, false};
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
CastOp, Depth);
}
SelectPatternResult llvm::matchDecomposedSelectPattern(
CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
Instruction::CastOps *CastOp, unsigned Depth) {
CmpInst::Predicate Pred = CmpI->getPredicate();
Value *CmpLHS = CmpI->getOperand(0);
Value *CmpRHS = CmpI->getOperand(1);
FastMathFlags FMF;
if (isa<FPMathOperator>(CmpI))
FMF = CmpI->getFastMathFlags();
// Bail out early.
if (CmpI->isEquality())
return {SPF_UNKNOWN, SPNB_NA, false};
// Deal with type mismatches.
if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
// If this is a potential fmin/fmax with a cast to integer, then ignore
// -0.0 because there is no corresponding integer value.
if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
FMF.setNoSignedZeros();
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
cast<CastInst>(TrueVal)->getOperand(0), C,
LHS, RHS, Depth);
}
if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
// If this is a potential fmin/fmax with a cast to integer, then ignore
// -0.0 because there is no corresponding integer value.
if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
FMF.setNoSignedZeros();
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
C, cast<CastInst>(FalseVal)->getOperand(0),
LHS, RHS, Depth);
}
}
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
LHS, RHS, Depth);
}
CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
if (SPF == SPF_FMINNUM)
return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
if (SPF == SPF_FMAXNUM)
return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
llvm_unreachable("unhandled!");
}
SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
if (SPF == SPF_SMIN) return SPF_SMAX;
if (SPF == SPF_UMIN) return SPF_UMAX;
if (SPF == SPF_SMAX) return SPF_SMIN;
if (SPF == SPF_UMAX) return SPF_UMIN;
llvm_unreachable("unhandled!");
}
Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
switch (MinMaxID) {
case Intrinsic::smax: return Intrinsic::smin;
case Intrinsic::smin: return Intrinsic::smax;
case Intrinsic::umax: return Intrinsic::umin;
case Intrinsic::umin: return Intrinsic::umax;
default: llvm_unreachable("Unexpected intrinsic");
}
}
CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
return getMinMaxPred(getInverseMinMaxFlavor(SPF));
}
std::pair<Intrinsic::ID, bool>
llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
// Check if VL contains select instructions that can be folded into a min/max
// vector intrinsic and return the intrinsic if it is possible.
// TODO: Support floating point min/max.
bool AllCmpSingleUse = true;
SelectPatternResult SelectPattern;
SelectPattern.Flavor = SPF_UNKNOWN;
if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
Value *LHS, *RHS;
auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
CurrentPattern.Flavor == SPF_FMINNUM ||
CurrentPattern.Flavor == SPF_FMAXNUM ||
!I->getType()->isIntOrIntVectorTy())
return false;
if (SelectPattern.Flavor != SPF_UNKNOWN &&
SelectPattern.Flavor != CurrentPattern.Flavor)
return false;
SelectPattern = CurrentPattern;
AllCmpSingleUse &=
match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
return true;
})) {
switch (SelectPattern.Flavor) {
case SPF_SMIN:
return {Intrinsic::smin, AllCmpSingleUse};
case SPF_UMIN:
return {Intrinsic::umin, AllCmpSingleUse};
case SPF_SMAX:
return {Intrinsic::smax, AllCmpSingleUse};
case SPF_UMAX:
return {Intrinsic::umax, AllCmpSingleUse};
default:
llvm_unreachable("unexpected select pattern flavor");
}
}
return {Intrinsic::not_intrinsic, false};
}
bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
Value *&Start, Value *&Step) {
// Handle the case of a simple two-predecessor recurrence PHI.
// There's a lot more that could theoretically be done here, but
// this is sufficient to catch some interesting cases.
if (P->getNumIncomingValues() != 2)
return false;
for (unsigned i = 0; i != 2; ++i) {
Value *L = P->getIncomingValue(i);
Value *R = P->getIncomingValue(!i);
Operator *LU = dyn_cast<Operator>(L);
if (!LU)
continue;
unsigned Opcode = LU->getOpcode();
switch (Opcode) {
default:
continue;
// TODO: Expand list -- xor, div, gep, uaddo, etc..
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Mul: {
Value *LL = LU->getOperand(0);
Value *LR = LU->getOperand(1);
// Find a recurrence.
if (LL == P)
L = LR;
else if (LR == P)
L = LL;
else
continue; // Check for recurrence with L and R flipped.
break; // Match!
}
};
// We have matched a recurrence of the form:
// %iv = [R, %entry], [%iv.next, %backedge]
// %iv.next = binop %iv, L
// OR
// %iv = [R, %entry], [%iv.next, %backedge]
// %iv.next = binop L, %iv
BO = cast<BinaryOperator>(LU);
Start = R;
Step = L;
return true;
}
return false;
}
bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
Value *&Start, Value *&Step) {
BinaryOperator *BO = nullptr;
P = dyn_cast<PHINode>(I->getOperand(0));
if (!P)
P = dyn_cast<PHINode>(I->getOperand(1));
return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
}
/// Return true if "icmp Pred LHS RHS" is always true.
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
const Value *RHS, const DataLayout &DL,
unsigned Depth) {
assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
return true;
switch (Pred) {
default:
return false;
case CmpInst::ICMP_SLE: {
const APInt *C;
// LHS s<= LHS +_{nsw} C if C >= 0
if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
return !C->isNegative();
return false;
}
case CmpInst::ICMP_ULE: {
const APInt *C;
// LHS u<= LHS +_{nuw} C for any C
if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
return true;
// Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
const Value *&X,
const APInt *&CA, const APInt *&CB) {
if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
return true;
// If X & C == 0 then (X | C) == X +_{nuw} C
if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
KnownBits Known(CA->getBitWidth());
computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
/*CxtI*/ nullptr, /*DT*/ nullptr);
if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
return true;
}
return false;
};
const Value *X;
const APInt *CLHS, *CRHS;
if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
return CLHS->ule(*CRHS);
return false;
}
}
}
/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
/// ALHS ARHS" is true. Otherwise, return None.
static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
const Value *ARHS, const Value *BLHS, const Value *BRHS,
const DataLayout &DL, unsigned Depth) {
switch (Pred) {
default:
return None;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
return true;
return None;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
return true;
return None;
}
}
/// Return true if the operands of the two compares match. IsSwappedOps is true
/// when the operands match, but are swapped.
static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
const Value *BLHS, const Value *BRHS,
bool &IsSwappedOps) {
bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
return IsMatchingOps || IsSwappedOps;
}
/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
/// Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
CmpInst::Predicate BPred,
bool AreSwappedOps) {
// Canonicalize the predicate as if the operands were not commuted.
if (AreSwappedOps)
BPred = ICmpInst::getSwappedPredicate(BPred);
if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
return true;
if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
return false;
return None;
}
/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
/// Otherwise, return None if we can't infer anything.
static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
const ConstantInt *C1,
CmpInst::Predicate BPred,
const ConstantInt *C2) {
ConstantRange DomCR =
ConstantRange::makeExactICmpRegion(APred, C1->getValue());
ConstantRange CR =
ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
ConstantRange Intersection = DomCR.intersectWith(CR);
ConstantRange Difference = DomCR.difference(CR);
if (Intersection.isEmptySet())
return false;
if (Difference.isEmptySet())
return true;
return None;
}
/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
/// false. Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
CmpInst::Predicate BPred,
const Value *BLHS, const Value *BRHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
Value *ALHS = LHS->getOperand(0);
Value *ARHS = LHS->getOperand(1);
// The rest of the logic assumes the LHS condition is true. If that's not the
// case, invert the predicate to make it so.
CmpInst::Predicate APred =
LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
// Can we infer anything when the two compares have matching operands?
bool AreSwappedOps;
if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
if (Optional<bool> Implication = isImpliedCondMatchingOperands(
APred, BPred, AreSwappedOps))
return Implication;
// No amount of additional analysis will infer the second condition, so
// early exit.
return None;
}
// Can we infer anything when the LHS operands match and the RHS operands are
// constants (not necessarily matching)?
if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
return Implication;
// No amount of additional analysis will infer the second condition, so
// early exit.
return None;
}
if (APred == BPred)
return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
return None;
}
/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
/// false. Otherwise, return None if we can't infer anything. We expect the
/// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
static Optional<bool>
isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
const Value *RHSOp0, const Value *RHSOp1,
const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
// The LHS must be an 'or', 'and', or a 'select' instruction.
assert((LHS->getOpcode() == Instruction::And ||
LHS->getOpcode() == Instruction::Or ||
LHS->getOpcode() == Instruction::Select) &&
"Expected LHS to be 'and', 'or', or 'select'.");
assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
// If the result of an 'or' is false, then we know both legs of the 'or' are
// false. Similarly, if the result of an 'and' is true, then we know both
// legs of the 'and' are true.
const Value *ALHS, *ARHS;
if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
(LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
// FIXME: Make this non-recursion.
if (Optional<bool> Implication = isImpliedCondition(
ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
return Implication;
if (Optional<bool> Implication = isImpliedCondition(
ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
return Implication;
return None;
}
return None;
}
Optional<bool>
llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
const Value *RHSOp0, const Value *RHSOp1,
const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
// Bail out when we hit the limit.
if (Depth == MaxAnalysisRecursionDepth)
return None;
// A mismatch occurs when we compare a scalar cmp to a vector cmp, for
// example.
if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
return None;
Type *OpTy = LHS->getType();
assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
// FIXME: Extending the code below to handle vectors.
if (OpTy->isVectorTy())
return None;
assert(OpTy->isIntegerTy(1) && "implied by above");
// Both LHS and RHS are icmps.
const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
if (LHSCmp)
return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
Depth);
/// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
/// the RHS to be an icmp.
/// FIXME: Add support for and/or/select on the RHS.
if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
if ((LHSI->getOpcode() == Instruction::And ||
LHSI->getOpcode() == Instruction::Or ||
LHSI->getOpcode() == Instruction::Select))
return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
Depth);
}
return None;
}
Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
// LHS ==> RHS by definition
if (LHS == RHS)
return LHSIsTrue;
const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
if (RHSCmp)
return isImpliedCondition(LHS, RHSCmp->getPredicate(),
RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
LHSIsTrue, Depth);
return None;
}
// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
// condition dominating ContextI or nullptr, if no condition is found.
static std::pair<Value *, bool>
getDomPredecessorCondition(const Instruction *ContextI) {
if (!ContextI || !ContextI->getParent())
return {nullptr, false};
// TODO: This is a poor/cheap way to determine dominance. Should we use a
// dominator tree (eg, from a SimplifyQuery) instead?
const BasicBlock *ContextBB = ContextI->getParent();
const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
if (!PredBB)
return {nullptr, false};
// We need a conditional branch in the predecessor.
Value *PredCond;
BasicBlock *TrueBB, *FalseBB;
if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
return {nullptr, false};
// The branch should get simplified. Don't bother simplifying this condition.
if (TrueBB == FalseBB)
return {nullptr, false};
assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
"Predecessor block does not point to successor?");
// Is this condition implied by the predecessor condition?
return {PredCond, TrueBB == ContextBB};
}
Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
const Instruction *ContextI,
const DataLayout &DL) {
assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
auto PredCond = getDomPredecessorCondition(ContextI);
if (PredCond.first)
return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
return None;
}
Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
const Value *LHS, const Value *RHS,
const Instruction *ContextI,
const DataLayout &DL) {
auto PredCond = getDomPredecessorCondition(ContextI);
if (PredCond.first)
return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
PredCond.second);
return None;
}
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
APInt &Upper, const InstrInfoQuery &IIQ) {
unsigned Width = Lower.getBitWidth();
const APInt *C;
switch (BO.getOpcode()) {
case Instruction::Add:
if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
// FIXME: If we have both nuw and nsw, we should reduce the range further.
if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
// 'add nuw x, C' produces [C, UINT_MAX].
Lower = *C;
} else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
if (C->isNegative()) {
// 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
Lower = APInt::getSignedMinValue(Width);
Upper = APInt::getSignedMaxValue(Width) + *C + 1;
} else {
// 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
Lower = APInt::getSignedMinValue(Width) + *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
}
}
}
break;
case Instruction::And:
if (match(BO.getOperand(1), m_APInt(C)))
// 'and x, C' produces [0, C].
Upper = *C + 1;
break;
case Instruction::Or:
if (match(BO.getOperand(1), m_APInt(C)))
// 'or x, C' produces [C, UINT_MAX].
Lower = *C;
break;
case Instruction::AShr:
if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
// 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
Lower = APInt::getSignedMinValue(Width).ashr(*C);
Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
} else if (match(BO.getOperand(0), m_APInt(C))) {
unsigned ShiftAmount = Width - 1;
if (!C->isNullValue() && IIQ.isExact(&BO))
ShiftAmount = C->countTrailingZeros();
if (C->isNegative()) {
// 'ashr C, x' produces [C, C >> (Width-1)]
Lower = *C;
Upper = C->ashr(ShiftAmount) + 1;
} else {
// 'ashr C, x' produces [C >> (Width-1), C]
Lower = C->ashr(ShiftAmount);
Upper = *C + 1;
}
}
break;
case Instruction::LShr:
if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
// 'lshr x, C' produces [0, UINT_MAX >> C].
Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
} else if (match(BO.getOperand(0), m_APInt(C))) {
// 'lshr C, x' produces [C >> (Width-1), C].
unsigned ShiftAmount = Width - 1;
if (!C->isNullValue() && IIQ.isExact(&BO))
ShiftAmount = C->countTrailingZeros();
Lower = C->lshr(ShiftAmount);
Upper = *C + 1;
}
break;
case Instruction::Shl:
if (match(BO.getOperand(0), m_APInt(C))) {
if (IIQ.hasNoUnsignedWrap(&BO)) {
// 'shl nuw C, x' produces [C, C << CLZ(C)]
Lower = *C;
Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
} else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
if (C->isNegative()) {
// 'shl nsw C, x' produces [C << CLO(C)-1, C]
unsigned ShiftAmount = C->countLeadingOnes() - 1;
Lower = C->shl(ShiftAmount);
Upper = *C + 1;
} else {
// 'shl nsw C, x' produces [C, C << CLZ(C)-1]
unsigned ShiftAmount = C->countLeadingZeros() - 1;
Lower = *C;
Upper = C->shl(ShiftAmount) + 1;
}
}
}
break;
case Instruction::SDiv:
if (match(BO.getOperand(1), m_APInt(C))) {
APInt IntMin = APInt::getSignedMinValue(Width);
APInt IntMax = APInt::getSignedMaxValue(Width);
if (C->isAllOnesValue()) {
// 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
// where C != -1 and C != 0 and C != 1
Lower = IntMin + 1;
Upper = IntMax + 1;
} else if (C->countLeadingZeros() < Width - 1) {
// 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
// where C != -1 and C != 0 and C != 1
Lower = IntMin.sdiv(*C);
Upper = IntMax.sdiv(*C);
if (Lower.sgt(Upper))
std::swap(Lower, Upper);
Upper = Upper + 1;
assert(Upper != Lower && "Upper part of range has wrapped!");
}
} else if (match(BO.getOperand(0), m_APInt(C))) {
if (C->isMinSignedValue()) {
// 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
Lower = *C;
Upper = Lower.lshr(1) + 1;
} else {
// 'sdiv C, x' produces [-|C|, |C|].
Upper = C->abs() + 1;
Lower = (-Upper) + 1;
}
}
break;
case Instruction::UDiv:
if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
// 'udiv x, C' produces [0, UINT_MAX / C].
Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
} else if (match(BO.getOperand(0), m_APInt(C))) {
// 'udiv C, x' produces [0, C].
Upper = *C + 1;
}
break;
case Instruction::SRem:
if (match(BO.getOperand(1), m_APInt(C))) {
// 'srem x, C' produces (-|C|, |C|).
Upper = C->abs();
Lower = (-Upper) + 1;
}
break;
case Instruction::URem:
if (match(BO.getOperand(1), m_APInt(C)))
// 'urem x, C' produces [0, C).
Upper = *C;
break;
default:
break;
}
}
static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
APInt &Upper) {
unsigned Width = Lower.getBitWidth();
const APInt *C;
switch (II.getIntrinsicID()) {
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
// Maximum of set/clear bits is the bit width.
assert(Lower == 0 && "Expected lower bound to be zero");
Upper = Width + 1;
break;
case Intrinsic::uadd_sat:
// uadd.sat(x, C) produces [C, UINT_MAX].
if (match(II.getOperand(0), m_APInt(C)) ||
match(II.getOperand(1), m_APInt(C)))
Lower = *C;
break;
case Intrinsic::sadd_sat:
if (match(II.getOperand(0), m_APInt(C)) ||
match(II.getOperand(1), m_APInt(C))) {
if (C->isNegative()) {
// sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
Lower = APInt::getSignedMinValue(Width);
Upper = APInt::getSignedMaxValue(Width) + *C + 1;
} else {
// sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
Lower = APInt::getSignedMinValue(Width) + *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
}
}
break;
case Intrinsic::usub_sat:
// usub.sat(C, x) produces [0, C].
if (match(II.getOperand(0), m_APInt(C)))
Upper = *C + 1;
// usub.sat(x, C) produces [0, UINT_MAX - C].
else if (match(II.getOperand(1), m_APInt(C)))
Upper = APInt::getMaxValue(Width) - *C + 1;
break;
case Intrinsic::ssub_sat:
if (match(II.getOperand(0), m_APInt(C))) {
if (C->isNegative()) {
// ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
Lower = APInt::getSignedMinValue(Width);
Upper = *C - APInt::getSignedMinValue(Width) + 1;
} else {
// ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
Lower = *C - APInt::getSignedMaxValue(Width);
Upper = APInt::getSignedMaxValue(Width) + 1;
}
} else if (match(II.getOperand(1), m_APInt(C))) {
if (C->isNegative()) {
// ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
Lower = APInt::getSignedMinValue(Width) - *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
} else {
// ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
Lower = APInt::getSignedMinValue(Width);
Upper = APInt::getSignedMaxValue(Width) - *C + 1;
}
}
break;
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax:
if (!match(II.getOperand(0), m_APInt(C)) &&
!match(II.getOperand(1), m_APInt(C)))
break;
switch (II.getIntrinsicID()) {
case Intrinsic::umin:
Upper = *C + 1;
break;
case Intrinsic::umax:
Lower = *C;
break;
case Intrinsic::smin:
Lower = APInt::getSignedMinValue(Width);
Upper = *C + 1;
break;
case Intrinsic::smax:
Lower = *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
break;
default:
llvm_unreachable("Must be min/max intrinsic");
}
break;
case Intrinsic::abs:
// If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
// otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
if (match(II.getOperand(1), m_One()))
Upper = APInt::getSignedMaxValue(Width) + 1;
else
Upper = APInt::getSignedMinValue(Width) + 1;
break;
default:
break;
}
}
static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
APInt &Upper, const InstrInfoQuery &IIQ) {
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
if (R.Flavor == SPF_UNKNOWN)
return;
unsigned BitWidth = SI.getType()->getScalarSizeInBits();
if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
// If the negation part of the abs (in RHS) has the NSW flag,
// then the result of abs(X) is [0..SIGNED_MAX],
// otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
Lower = APInt::getNullValue(BitWidth);
if (match(RHS, m_Neg(m_Specific(LHS))) &&
IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
Upper = APInt::getSignedMaxValue(BitWidth) + 1;
else
Upper = APInt::getSignedMinValue(BitWidth) + 1;
return;
}
if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
// The result of -abs(X) is <= 0.
Lower = APInt::getSignedMinValue(BitWidth);
Upper = APInt(BitWidth, 1);
return;
}
const APInt *C;
if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
return;
switch (R.Flavor) {
case SPF_UMIN:
Upper = *C + 1;
break;
case SPF_UMAX:
Lower = *C;
break;
case SPF_SMIN:
Lower = APInt::getSignedMinValue(BitWidth);
Upper = *C + 1;
break;
case SPF_SMAX:
Lower = *C;
Upper = APInt::getSignedMaxValue(BitWidth) + 1;
break;
default:
break;
}
}
ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
AssumptionCache *AC,
const Instruction *CtxI,
unsigned Depth) {
assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
if (Depth == MaxAnalysisRecursionDepth)
return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
const APInt *C;
if (match(V, m_APInt(C)))
return ConstantRange(*C);
InstrInfoQuery IIQ(UseInstrInfo);
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt Lower = APInt(BitWidth, 0);
APInt Upper = APInt(BitWidth, 0);
if (auto *BO = dyn_cast<BinaryOperator>(V))
setLimitsForBinOp(*BO, Lower, Upper, IIQ);
else if (auto *II = dyn_cast<IntrinsicInst>(V))
setLimitsForIntrinsic(*II, Lower, Upper);
else if (auto *SI = dyn_cast<SelectInst>(V))
setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
if (auto *I = dyn_cast<Instruction>(V))
if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
if (CtxI && AC) {
// Try to restrict the range based on information from assumptions.
for (auto &AssumeVH : AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
"Got assumption for the wrong function!");
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
if (!isValidAssumeForContext(I, CtxI, nullptr))
continue;
Value *Arg = I->getArgOperand(0);
ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
// Currently we just use information from comparisons.
if (!Cmp || Cmp->getOperand(0) != V)
continue;
ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
AC, I, Depth + 1);
CR = CR.intersectWith(
ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
}
}
return CR;
}
static Optional<int64_t>
getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
// Skip over the first indices.
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1; i != Idx; ++i, ++GTI)
/*skip along*/;
// Compute the offset implied by the rest of the indices.
int64_t Offset = 0;
for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!OpC)
return None;
if (OpC->isZero())
continue; // No offset.
// Handle struct indices, which add their field offset to the pointer.
if (StructType *STy = GTI.getStructTypeOrNull()) {
Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
continue;
}
// Otherwise, we have a sequential type like an array or fixed-length
// vector. Multiply the index by the ElementSize.
TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
if (Size.isScalable())
return None;
Offset += Size.getFixedSize() * OpC->getSExtValue();
}
return Offset;
}
Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
const DataLayout &DL) {
Ptr1 = Ptr1->stripPointerCasts();
Ptr2 = Ptr2->stripPointerCasts();
// Handle the trivial case first.
if (Ptr1 == Ptr2) {
return 0;
}
const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
// If one pointer is a GEP see if the GEP is a constant offset from the base,
// as in "P" and "gep P, 1".
// Also do this iteratively to handle the the following case:
// Ptr_t1 = GEP Ptr1, c1
// Ptr_t2 = GEP Ptr_t1, c2
// Ptr2 = GEP Ptr_t2, c3
// where we will return c1+c2+c3.
// TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
// -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
// are the same, and return the difference between offsets.
auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
const Value *Ptr) -> Optional<int64_t> {
const GEPOperator *GEP_T = GEP;
int64_t OffsetVal = 0;
bool HasSameBase = false;
while (GEP_T) {
auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
if (!Offset)
return None;
OffsetVal += *Offset;
auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
if (Op0 == Ptr) {
HasSameBase = true;
break;
}
GEP_T = dyn_cast<GEPOperator>(Op0);
}
if (!HasSameBase)
return None;
return OffsetVal;
};
if (GEP1) {
auto Offset = getOffsetFromBase(GEP1, Ptr2);
if (Offset)
return -*Offset;
}
if (GEP2) {
auto Offset = getOffsetFromBase(GEP2, Ptr1);
if (Offset)
return Offset;
}
// Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
// base. After that base, they may have some number of common (and
// potentially variable) indices. After that they handle some constant
// offset, which determines their offset from each other. At this point, we
// handle no other case.
if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
return None;
// Skip any common indices and track the GEP types.
unsigned Idx = 1;
for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
break;
auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
if (!Offset1 || !Offset2)
return None;
return *Offset2 - *Offset1;
}