1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp
Matthias Braun 91722d430e MachineFunction: Return reference for getFrameInfo(); NFC
getFrameInfo() never returns nullptr so we should use a reference
instead of a pointer.

llvm-svn: 277017
2016-07-28 18:40:00 +00:00

986 lines
36 KiB
C++

//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code. When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUAsmPrinter.h"
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
#include "InstPrinter/AMDGPUInstPrinter.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "AMDGPURuntimeMetadata.h"
using namespace ::AMDGPU;
using namespace llvm;
// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).
// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
const SISubtarget& ST = F.getSubtarget<SISubtarget>();
// TODO: Is there any real use for the flush in only / flush out only modes?
uint32_t FP32Denormals =
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
uint32_t FP64Denormals =
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
FP_DENORM_MODE_SP(FP32Denormals) |
FP_DENORM_MODE_DP(FP64Denormals);
}
static AsmPrinter *
createAMDGPUAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
}
extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)) {}
const char *AMDGPUAsmPrinter::getPassName() const {
return "AMDGPU Assembly Printer";
}
void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
return;
// Need to construct an MCSubtargetInfo here in case we have no functions
// in the module.
std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
TM.getTargetTriple().str(), TM.getTargetCPU(),
TM.getTargetFeatureString()));
AMDGPUTargetStreamer *TS =
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->EmitDirectiveHSACodeObjectVersion(2, 1);
AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(STI->getFeatureBits());
TS->EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor, ISA.Stepping,
"AMD", "AMDGPU");
emitStartOfRuntimeMetadata(M);
}
void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
if (STM.isAmdHsaOS()) {
getSIProgramInfo(KernelInfo, *MF);
EmitAmdKernelCodeT(*MF, KernelInfo);
}
}
void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
if (MFI->isKernel() && STM.isAmdHsaOS()) {
AMDGPUTargetStreamer *TS =
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->EmitAMDGPUSymbolType(CurrentFnSym->getName(),
ELF::STT_AMDGPU_HSA_KERNEL);
}
AsmPrinter::EmitFunctionEntryLabel();
}
void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
// Group segment variables aren't emitted in HSA.
if (AMDGPU::isGroupSegment(GV))
return;
AsmPrinter::EmitGlobalVariable(GV);
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// The starting address of all shader programs must be 256 bytes aligned.
MF.setAlignment(8);
SetupMachineFunction(MF);
MCContext &Context = getObjFileLowering().getContext();
MCSectionELF *ConfigSection =
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(ConfigSection);
const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
getSIProgramInfo(KernelInfo, MF);
if (!STM.isAmdHsaOS()) {
EmitProgramInfoSI(MF, KernelInfo);
}
} else {
EmitProgramInfoR600(MF);
}
DisasmLines.clear();
HexLines.clear();
DisasmLineMaxLen = 0;
EmitFunctionBody();
if (isVerbose()) {
MCSectionELF *CommentSection =
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(CommentSection);
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
OutStreamer->emitRawComment(" Kernel info:", false);
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
false);
OutStreamer->emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
false);
OutStreamer->emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
false);
OutStreamer->emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
false);
OutStreamer->emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
false);
OutStreamer->emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
false);
OutStreamer->emitRawComment(" LDSByteSize: " + Twine(KernelInfo.LDSSize) +
" bytes/workgroup (compile time only)", false);
OutStreamer->emitRawComment(" ReservedVGPRFirst: " + Twine(KernelInfo.ReservedVGPRFirst),
false);
OutStreamer->emitRawComment(" ReservedVGPRCount: " + Twine(KernelInfo.ReservedVGPRCount),
false);
if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
OutStreamer->emitRawComment(" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
Twine(KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
OutStreamer->emitRawComment(" DebuggerPrivateSegmentBufferSGPR: s" +
Twine(KernelInfo.DebuggerPrivateSegmentBufferSGPR), false);
}
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " +
Twine(G_00B84C_USER_SGPR(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
Twine(G_00B84C_TGID_X_EN(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
Twine(G_00B84C_TGID_Y_EN(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
Twine(G_00B84C_TGID_Z_EN(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
Twine(G_00B84C_TIDIG_COMP_CNT(KernelInfo.ComputePGMRSrc2)),
false);
} else {
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
OutStreamer->emitRawComment(
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize)));
}
}
if (STM.dumpCode()) {
OutStreamer->SwitchSection(
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
for (size_t i = 0; i < DisasmLines.size(); ++i) {
std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
Comment += " ; " + HexLines[i] + "\n";
OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
OutStreamer->EmitBytes(StringRef(Comment));
}
}
emitRuntimeMetadata(*MF.getFunction());
return false;
}
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
unsigned MaxGPR = 0;
bool killPixel = false;
const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
const R600RegisterInfo *RI = STM.getRegisterInfo();
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::KILLGT)
killPixel = true;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
if (!MO.isReg())
continue;
unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;
// Register with value > 127 aren't GPR
if (HWReg > 127)
continue;
MaxGPR = std::max(MaxGPR, HWReg);
}
}
}
unsigned RsrcReg;
if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
// Evergreen / Northern Islands
switch (MF.getFunction()->getCallingConv()) {
default: // Fall through
case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
}
} else {
// R600 / R700
switch (MF.getFunction()->getCallingConv()) {
default: // Fall through
case CallingConv::AMDGPU_GS: // Fall through
case CallingConv::AMDGPU_CS: // Fall through
case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
}
}
OutStreamer->EmitIntValue(RsrcReg, 4);
OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
S_STACK_SIZE(MFI->CFStackSize), 4);
OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4);
}
}
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) const {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
uint64_t CodeSize = 0;
unsigned MaxSGPR = 0;
unsigned MaxVGPR = 0;
bool VCCUsed = false;
bool FlatUsed = false;
const SIRegisterInfo *RI = STM.getRegisterInfo();
const SIInstrInfo *TII = STM.getInstrInfo();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
// TODO: Should we count size of debug info?
if (MI.isDebugValue())
continue;
CodeSize += TII->getInstSizeInBytes(MI);
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
unsigned width = 0;
bool isSGPR = false;
if (!MO.isReg())
continue;
unsigned reg = MO.getReg();
switch (reg) {
case AMDGPU::EXEC:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::SCC:
case AMDGPU::M0:
continue;
case AMDGPU::VCC:
case AMDGPU::VCC_LO:
case AMDGPU::VCC_HI:
VCCUsed = true;
continue;
case AMDGPU::FLAT_SCR:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
FlatUsed = true;
continue;
case AMDGPU::TBA:
case AMDGPU::TBA_LO:
case AMDGPU::TBA_HI:
case AMDGPU::TMA:
case AMDGPU::TMA_LO:
case AMDGPU::TMA_HI:
llvm_unreachable("trap handler registers should not be used");
default:
break;
}
if (AMDGPU::SReg_32RegClass.contains(reg)) {
assert(!AMDGPU::TTMP_32RegClass.contains(reg) &&
"trap handler registers should not be used");
isSGPR = true;
width = 1;
} else if (AMDGPU::VGPR_32RegClass.contains(reg)) {
isSGPR = false;
width = 1;
} else if (AMDGPU::SReg_64RegClass.contains(reg)) {
assert(!AMDGPU::TTMP_64RegClass.contains(reg) &&
"trap handler registers should not be used");
isSGPR = true;
width = 2;
} else if (AMDGPU::VReg_64RegClass.contains(reg)) {
isSGPR = false;
width = 2;
} else if (AMDGPU::VReg_96RegClass.contains(reg)) {
isSGPR = false;
width = 3;
} else if (AMDGPU::SReg_128RegClass.contains(reg)) {
isSGPR = true;
width = 4;
} else if (AMDGPU::VReg_128RegClass.contains(reg)) {
isSGPR = false;
width = 4;
} else if (AMDGPU::SReg_256RegClass.contains(reg)) {
isSGPR = true;
width = 8;
} else if (AMDGPU::VReg_256RegClass.contains(reg)) {
isSGPR = false;
width = 8;
} else if (AMDGPU::SReg_512RegClass.contains(reg)) {
isSGPR = true;
width = 16;
} else if (AMDGPU::VReg_512RegClass.contains(reg)) {
isSGPR = false;
width = 16;
} else {
llvm_unreachable("Unknown register class");
}
unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
unsigned maxUsed = hwReg + width - 1;
if (isSGPR) {
MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
} else {
MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
}
}
}
}
unsigned ExtraSGPRs = 0;
if (VCCUsed)
ExtraSGPRs = 2;
if (STM.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
if (FlatUsed)
ExtraSGPRs = 4;
} else {
if (STM.isXNACKEnabled())
ExtraSGPRs = 4;
if (FlatUsed)
ExtraSGPRs = 6;
}
MaxSGPR += ExtraSGPRs;
// Record first reserved register and reserved register count fields, and
// update max register counts if "amdgpu-debugger-reserve-regs" attribute was
// specified.
if (STM.debuggerReserveRegs()) {
ProgInfo.ReservedVGPRFirst = MaxVGPR + 1;
ProgInfo.ReservedVGPRCount = MFI->getDebuggerReservedVGPRCount();
MaxVGPR += MFI->getDebuggerReservedVGPRCount();
}
// Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
// DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
// attribute was specified.
if (STM.debuggerEmitPrologue()) {
ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
ProgInfo.DebuggerPrivateSegmentBufferSGPR =
RI->getHWRegIndex(MFI->getScratchRSrcReg());
}
// We found the maximum register index. They start at 0, so add one to get the
// number of registers.
ProgInfo.NumVGPR = MaxVGPR + 1;
ProgInfo.NumSGPR = MaxSGPR + 1;
if (STM.hasSGPRInitBug()) {
if (ProgInfo.NumSGPR > SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG) {
LLVMContext &Ctx = MF.getFunction()->getContext();
DiagnosticInfoResourceLimit Diag(*MF.getFunction(),
"SGPRs with SGPR init bug",
ProgInfo.NumSGPR, DS_Error);
Ctx.diagnose(Diag);
}
ProgInfo.NumSGPR = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG;
}
if (MFI->NumUserSGPRs > STM.getMaxNumUserSGPRs()) {
LLVMContext &Ctx = MF.getFunction()->getContext();
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs",
MFI->NumUserSGPRs, DS_Error);
Ctx.diagnose(Diag);
}
if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
LLVMContext &Ctx = MF.getFunction()->getContext();
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory",
MFI->getLDSSize(), DS_Error);
Ctx.diagnose(Diag);
}
ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4;
ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8;
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(MF);
ProgInfo.IEEEMode = 0;
// Make clamp modifier on NaN input returns 0.
ProgInfo.DX10Clamp = 1;
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
ProgInfo.ScratchSize = FrameInfo.getStackSize();
ProgInfo.FlatUsed = FlatUsed;
ProgInfo.VCCUsed = VCCUsed;
ProgInfo.CodeLen = CodeSize;
unsigned LDSAlignShift;
if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
// LDS is allocated in 64 dword blocks.
LDSAlignShift = 8;
} else {
// LDS is allocated in 128 dword blocks.
LDSAlignShift = 9;
}
unsigned LDSSpillSize = MFI->LDSWaveSpillSize *
MFI->getMaximumWorkGroupSize(MF);
ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
ProgInfo.LDSBlocks =
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
// scratch memory used per thread.
ProgInfo.ScratchBlocks =
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
1ULL << ScratchAlignShift) >>
ScratchAlignShift;
ProgInfo.ComputePGMRSrc1 =
S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
S_00B848_PRIORITY(ProgInfo.Priority) |
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
S_00B848_PRIV(ProgInfo.Priv) |
S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
// 0 = X, 1 = XY, 2 = XYZ
unsigned TIDIGCompCnt = 0;
if (MFI->hasWorkItemIDZ())
TIDIGCompCnt = 2;
else if (MFI->hasWorkItemIDY())
TIDIGCompCnt = 1;
ProgInfo.ComputePGMRSrc2 =
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
S_00B84C_EXCP_EN_MSB(0) |
S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks) |
S_00B84C_EXCP_EN(0);
}
static unsigned getRsrcReg(CallingConv::ID CallConv) {
switch (CallConv) {
default: // Fall through
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
}
}
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv());
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc1, 4);
OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc2, 4);
OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
OutStreamer->EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4);
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
// 0" comment but I don't see a corresponding field in the register spec.
} else {
OutStreamer->EmitIntValue(RsrcReg, 4);
OutStreamer->EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) |
S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4);
if (STM.isVGPRSpillingEnabled(*MF.getFunction())) {
OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4);
}
}
if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) {
OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4);
OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
OutStreamer->EmitIntValue(MFI->PSInputEna, 4);
OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
}
OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
}
// This is supposed to be log2(Size)
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
switch (Size) {
case 4:
return AMD_ELEMENT_4_BYTES;
case 8:
return AMD_ELEMENT_8_BYTES;
case 16:
return AMD_ELEMENT_16_BYTES;
default:
llvm_unreachable("invalid private_element_size");
}
}
void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
amd_kernel_code_t header;
AMDGPU::initDefaultAMDKernelCodeT(header, STM.getFeatureBits());
header.compute_pgm_resource_registers =
KernelInfo.ComputePGMRSrc1 |
(KernelInfo.ComputePGMRSrc2 << 32);
header.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
AMD_HSA_BITS_SET(header.code_properties,
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
getElementByteSizeValue(STM.getMaxPrivateElementSize()));
if (MFI->hasPrivateSegmentBuffer()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
}
if (MFI->hasDispatchPtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (MFI->hasQueuePtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
if (MFI->hasKernargSegmentPtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
if (MFI->hasDispatchID())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
if (MFI->hasFlatScratchInit())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
// TODO: Private segment size
if (MFI->hasGridWorkgroupCountX()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
}
if (MFI->hasGridWorkgroupCountY()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
}
if (MFI->hasGridWorkgroupCountZ()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
}
if (MFI->hasDispatchPtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (STM.debuggerSupported())
header.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
if (STM.isXNACKEnabled())
header.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
// FIXME: Should use getKernArgSize
header.kernarg_segment_byte_size = MFI->getABIArgOffset();
header.wavefront_sgpr_count = KernelInfo.NumSGPR;
header.workitem_vgpr_count = KernelInfo.NumVGPR;
header.workitem_private_segment_byte_size = KernelInfo.ScratchSize;
header.workgroup_group_segment_byte_size = KernelInfo.LDSSize;
header.reserved_vgpr_first = KernelInfo.ReservedVGPRFirst;
header.reserved_vgpr_count = KernelInfo.ReservedVGPRCount;
if (STM.debuggerEmitPrologue()) {
header.debug_wavefront_private_segment_offset_sgpr =
KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
header.debug_private_segment_buffer_sgpr =
KernelInfo.DebuggerPrivateSegmentBufferSGPR;
}
AMDGPUTargetStreamer *TS =
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
TS->EmitAMDKernelCodeT(header);
}
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'r':
break;
}
}
AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O,
*TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo());
return false;
}
// Emit a key and an integer value for runtime metadata.
static void emitRuntimeMDIntValue(MCStreamer &Streamer,
RuntimeMD::Key K, uint64_t V,
unsigned Size) {
Streamer.EmitIntValue(K, 1);
Streamer.EmitIntValue(V, Size);
}
// Emit a key and a string value for runtime metadata.
static void emitRuntimeMDStringValue(MCStreamer &Streamer,
RuntimeMD::Key K, StringRef S) {
Streamer.EmitIntValue(K, 1);
Streamer.EmitIntValue(S.size(), 4);
Streamer.EmitBytes(S);
}
// Emit a key and three integer values for runtime metadata.
// The three integer values are obtained from MDNode \p Node;
static void emitRuntimeMDThreeIntValues(MCStreamer &Streamer,
RuntimeMD::Key K, MDNode *Node,
unsigned Size) {
assert(Node->getNumOperands() == 3);
Streamer.EmitIntValue(K, 1);
for (const MDOperand &Op : Node->operands()) {
const ConstantInt *CI = mdconst::extract<ConstantInt>(Op);
Streamer.EmitIntValue(CI->getZExtValue(), Size);
}
}
void AMDGPUAsmPrinter::emitStartOfRuntimeMetadata(const Module &M) {
OutStreamer->SwitchSection(getObjFileLowering().getContext()
.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyMDVersion,
RuntimeMD::MDVersion << 8 | RuntimeMD::MDRevision, 2);
if (auto MD = M.getNamedMetadata("opencl.ocl.version")) {
if (MD->getNumOperands() != 0) {
auto Node = MD->getOperand(0);
if (Node->getNumOperands() > 1) {
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguage,
RuntimeMD::OpenCL_C, 1);
uint16_t Major = mdconst::extract<ConstantInt>(Node->getOperand(0))
->getZExtValue();
uint16_t Minor = mdconst::extract<ConstantInt>(Node->getOperand(1))
->getZExtValue();
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguageVersion,
Major * 100 + Minor * 10, 2);
}
}
}
}
static std::string getOCLTypeName(Type *Ty, bool Signed) {
switch (Ty->getTypeID()) {
case Type::HalfTyID:
return "half";
case Type::FloatTyID:
return "float";
case Type::DoubleTyID:
return "double";
case Type::IntegerTyID: {
if (!Signed)
return (Twine('u') + getOCLTypeName(Ty, true)).str();
unsigned BW = Ty->getIntegerBitWidth();
switch (BW) {
case 8:
return "char";
case 16:
return "short";
case 32:
return "int";
case 64:
return "long";
default:
return (Twine('i') + Twine(BW)).str();
}
}
case Type::VectorTyID: {
VectorType *VecTy = cast<VectorType>(Ty);
Type *EleTy = VecTy->getElementType();
unsigned Size = VecTy->getVectorNumElements();
return (Twine(getOCLTypeName(EleTy, Signed)) + Twine(Size)).str();
}
default:
llvm_unreachable("invalid type");
}
}
static RuntimeMD::KernelArg::ValueType getRuntimeMDValueType(
Type *Ty, StringRef TypeName) {
switch (Ty->getTypeID()) {
case Type::HalfTyID:
return RuntimeMD::KernelArg::F16;
case Type::FloatTyID:
return RuntimeMD::KernelArg::F32;
case Type::DoubleTyID:
return RuntimeMD::KernelArg::F64;
case Type::IntegerTyID: {
bool Signed = !TypeName.startswith("u");
switch (Ty->getIntegerBitWidth()) {
case 8:
return Signed ? RuntimeMD::KernelArg::I8 : RuntimeMD::KernelArg::U8;
case 16:
return Signed ? RuntimeMD::KernelArg::I16 : RuntimeMD::KernelArg::U16;
case 32:
return Signed ? RuntimeMD::KernelArg::I32 : RuntimeMD::KernelArg::U32;
case 64:
return Signed ? RuntimeMD::KernelArg::I64 : RuntimeMD::KernelArg::U64;
default:
// Runtime does not recognize other integer types. Report as struct type.
return RuntimeMD::KernelArg::Struct;
}
}
case Type::VectorTyID:
return getRuntimeMDValueType(Ty->getVectorElementType(), TypeName);
case Type::PointerTyID:
return getRuntimeMDValueType(Ty->getPointerElementType(), TypeName);
default:
return RuntimeMD::KernelArg::Struct;
}
}
void AMDGPUAsmPrinter::emitRuntimeMetadata(const Function &F) {
if (!F.getMetadata("kernel_arg_type"))
return;
MCContext &Context = getObjFileLowering().getContext();
OutStreamer->SwitchSection(
Context.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
OutStreamer->EmitIntValue(RuntimeMD::KeyKernelBegin, 1);
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyKernelName, F.getName());
for (auto &Arg : F.args()) {
// Emit KeyArgBegin.
unsigned I = Arg.getArgNo();
OutStreamer->EmitIntValue(RuntimeMD::KeyArgBegin, 1);
// Emit KeyArgSize and KeyArgAlign.
Type *T = Arg.getType();
const DataLayout &DL = F.getParent()->getDataLayout();
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgSize,
DL.getTypeAllocSize(T), 4);
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAlign,
DL.getABITypeAlignment(T), 4);
// Emit KeyArgTypeName.
auto TypeName = dyn_cast<MDString>(F.getMetadata(
"kernel_arg_type")->getOperand(I))->getString();
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyArgTypeName, TypeName);
// Emit KeyArgName.
if (auto ArgNameMD = F.getMetadata("kernel_arg_name")) {
auto ArgName = cast<MDString>(ArgNameMD->getOperand(I))->getString();
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyArgName, ArgName);
}
// Emit KeyArgIsVolatile, KeyArgIsRestrict, KeyArgIsConst and KeyArgIsPipe.
auto TypeQual = cast<MDString>(F.getMetadata(
"kernel_arg_type_qual")->getOperand(I))->getString();
SmallVector<StringRef, 1> SplitQ;
TypeQual.split(SplitQ, " ", -1, false /* Drop empty entry */);
for (StringRef KeyName : SplitQ) {
auto Key = StringSwitch<RuntimeMD::Key>(KeyName)
.Case("volatile", RuntimeMD::KeyArgIsVolatile)
.Case("restrict", RuntimeMD::KeyArgIsRestrict)
.Case("const", RuntimeMD::KeyArgIsConst)
.Case("pipe", RuntimeMD::KeyArgIsPipe)
.Default(RuntimeMD::KeyNull);
OutStreamer->EmitIntValue(Key, 1);
}
// Emit KeyArgTypeKind.
auto BaseTypeName = cast<MDString>(
F.getMetadata("kernel_arg_base_type")->getOperand(I))->getString();
auto TypeKind = StringSwitch<RuntimeMD::KernelArg::TypeKind>(BaseTypeName)
.Case("sampler_t", RuntimeMD::KernelArg::Sampler)
.Case("queue_t", RuntimeMD::KernelArg::Queue)
.Cases("image1d_t", "image1d_array_t", "image1d_buffer_t",
"image2d_t" , "image2d_array_t", RuntimeMD::KernelArg::Image)
.Cases("image2d_depth_t", "image2d_array_depth_t",
"image2d_msaa_t", "image2d_array_msaa_t",
"image2d_msaa_depth_t", RuntimeMD::KernelArg::Image)
.Cases("image2d_array_msaa_depth_t", "image3d_t",
RuntimeMD::KernelArg::Image)
.Default(isa<PointerType>(T) ? RuntimeMD::KernelArg::Pointer :
RuntimeMD::KernelArg::Value);
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgTypeKind, TypeKind, 1);
// Emit KeyArgValueType.
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgValueType,
getRuntimeMDValueType(T, BaseTypeName), 2);
// Emit KeyArgAccQual.
auto AccQual = cast<MDString>(F.getMetadata(
"kernel_arg_access_qual")->getOperand(I))->getString();
auto AQ = StringSwitch<RuntimeMD::KernelArg::AccessQualifer>(AccQual)
.Case("read_only", RuntimeMD::KernelArg::ReadOnly)
.Case("write_only", RuntimeMD::KernelArg::WriteOnly)
.Case("read_write", RuntimeMD::KernelArg::ReadWrite)
.Default(RuntimeMD::KernelArg::None);
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAccQual, AQ, 1);
// Emit KeyArgAddrQual.
if (auto *PT = dyn_cast<PointerType>(T)) {
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAddrQual,
PT->getAddressSpace(), 1);
}
// Emit KeyArgEnd
OutStreamer->EmitIntValue(RuntimeMD::KeyArgEnd, 1);
}
// Emit KeyReqdWorkGroupSize, KeyWorkGroupSizeHint, and KeyVecTypeHint.
if (auto RWGS = F.getMetadata("reqd_work_group_size")) {
emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyReqdWorkGroupSize,
RWGS, 4);
}
if (auto WGSH = F.getMetadata("work_group_size_hint")) {
emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyWorkGroupSizeHint,
WGSH, 4);
}
if (auto VTH = F.getMetadata("vec_type_hint")) {
auto TypeName = getOCLTypeName(cast<ValueAsMetadata>(
VTH->getOperand(0))->getType(), mdconst::extract<ConstantInt>(
VTH->getOperand(1))->getZExtValue());
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyVecTypeHint, TypeName);
}
// Emit KeyKernelEnd
OutStreamer->EmitIntValue(RuntimeMD::KeyKernelEnd, 1);
}