1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 13:02:52 +02:00
llvm-mirror/lib/Target/AMDGPU/VOP1Instructions.td
Daniel Sanders 811dc2eda3 Check that emitted instructions meet their predicates on all targets except ARM, Mips, and X86.
Summary:
* ARM is omitted from this patch because this check appears to expose bugs in this target.
* Mips is omitted from this patch because this check either detects bugs or deliberate
  emission of instructions that don't satisfy their predicates. One deliberate
  use is the SYNC instruction where the version with an operand is correctly
  defined as requiring MIPS32 while the version without an operand is defined
  as an alias of 'SYNC 0' and requires MIPS2.
* X86 is omitted from this patch because it doesn't use the tablegen-erated
  MCCodeEmitter infrastructure.

Patches for ARM and Mips will follow.

Depends on D25617

Reviewers: tstellarAMD, jmolloy

Subscribers: wdng, jmolloy, aemerson, rengolin, arsenm, jyknight, nemanjai, nhaehnle, tstellarAMD, llvm-commits

Differential Revision: https://reviews.llvm.org/D25618

llvm-svn: 287439
2016-11-19 13:05:44 +00:00

615 lines
24 KiB
TableGen

//===-- VOP1Instructions.td - Vector Instruction Defintions ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// VOP1 Classes
//===----------------------------------------------------------------------===//
class VOP1e <bits<8> op, VOPProfile P> : Enc32 {
bits<8> vdst;
bits<9> src0;
let Inst{8-0} = !if(P.HasSrc0, src0{8-0}, 0);
let Inst{16-9} = op;
let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0);
let Inst{31-25} = 0x3f; //encoding
}
class VOP1_Pseudo <string opName, VOPProfile P, list<dag> pattern=[]> :
InstSI <P.Outs32, P.Ins32, "", pattern>,
VOP <opName>,
SIMCInstr <opName#"_e32", SIEncodingFamily.NONE>,
MnemonicAlias<opName#"_e32", opName> {
let isPseudo = 1;
let isCodeGenOnly = 1;
let UseNamedOperandTable = 1;
string Mnemonic = opName;
string AsmOperands = P.Asm32;
let Size = 4;
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SubtargetPredicate = isGCN;
let VOP1 = 1;
let VALU = 1;
let Uses = [EXEC];
let AsmVariantName = AMDGPUAsmVariants.Default;
VOPProfile Pfl = P;
}
class VOP1_Real <VOP1_Pseudo ps, int EncodingFamily> :
InstSI <ps.OutOperandList, ps.InOperandList, ps.Mnemonic # ps.AsmOperands, []>,
SIMCInstr <ps.PseudoInstr, EncodingFamily> {
let isPseudo = 0;
let isCodeGenOnly = 0;
// copy relevant pseudo op flags
let SubtargetPredicate = ps.SubtargetPredicate;
let AsmMatchConverter = ps.AsmMatchConverter;
let AsmVariantName = ps.AsmVariantName;
let Constraints = ps.Constraints;
let DisableEncoding = ps.DisableEncoding;
let TSFlags = ps.TSFlags;
}
class getVOP1Pat64 <SDPatternOperator node, VOPProfile P> : LetDummies {
list<dag> ret = !if(P.HasModifiers,
[(set P.DstVT:$vdst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0,
i32:$src0_modifiers, i1:$clamp, i32:$omod))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0))]);
}
multiclass VOP1Inst <string opName, VOPProfile P,
SDPatternOperator node = null_frag> {
def _e32 : VOP1_Pseudo <opName, P>;
def _e64 : VOP3_Pseudo <opName, P, getVOP1Pat64<node, P>.ret>;
}
//===----------------------------------------------------------------------===//
// VOP1 Instructions
//===----------------------------------------------------------------------===//
let VOPAsmPrefer32Bit = 1 in {
defm V_NOP : VOP1Inst <"v_nop", VOP_NONE>;
}
let isMoveImm = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in {
defm V_MOV_B32 : VOP1Inst <"v_mov_b32", VOP_I32_I32>;
} // End isMoveImm = 1
// FIXME: Specify SchedRW for READFIRSTLANE_B32
// TODO: Make profile for this, there is VOP3 encoding also
def V_READFIRSTLANE_B32 :
InstSI <(outs SReg_32:$vdst),
(ins VGPR_32:$src0),
"v_readfirstlane_b32 $vdst, $src0",
[(set i32:$vdst, (int_amdgcn_readfirstlane i32:$src0))]>,
Enc32 {
let isCodeGenOnly = 0;
let UseNamedOperandTable = 1;
let Size = 4;
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SubtargetPredicate = isGCN;
let VOP1 = 1;
let VALU = 1;
let Uses = [EXEC];
let isConvergent = 1;
bits<8> vdst;
bits<9> src0;
let Inst{8-0} = src0;
let Inst{16-9} = 0x2;
let Inst{24-17} = vdst;
let Inst{31-25} = 0x3f; //encoding
}
let SchedRW = [WriteQuarterRate32] in {
defm V_CVT_I32_F64 : VOP1Inst <"v_cvt_i32_f64", VOP_I32_F64, fp_to_sint>;
defm V_CVT_F64_I32 : VOP1Inst <"v_cvt_f64_i32", VOP_F64_I32, sint_to_fp>;
defm V_CVT_F32_I32 : VOP1Inst <"v_cvt_f32_i32", VOP_F32_I32, sint_to_fp>;
defm V_CVT_F32_U32 : VOP1Inst <"v_cvt_f32_u32", VOP_F32_I32, uint_to_fp>;
defm V_CVT_U32_F32 : VOP1Inst <"v_cvt_u32_f32", VOP_I32_F32, fp_to_uint>;
defm V_CVT_I32_F32 : VOP1Inst <"v_cvt_i32_f32", VOP_I32_F32, fp_to_sint>;
defm V_CVT_F16_F32 : VOP1Inst <"v_cvt_f16_f32", VOP_I32_F32, fp_to_f16>;
defm V_CVT_F32_F16 : VOP1Inst <"v_cvt_f32_f16", VOP_F32_I32, f16_to_fp>;
defm V_CVT_RPI_I32_F32 : VOP1Inst <"v_cvt_rpi_i32_f32", VOP_I32_F32, cvt_rpi_i32_f32>;
defm V_CVT_FLR_I32_F32 : VOP1Inst <"v_cvt_flr_i32_f32", VOP_I32_F32, cvt_flr_i32_f32>;
defm V_CVT_OFF_F32_I4 : VOP1Inst <"v_cvt_off_f32_i4", VOP_F32_I32>;
defm V_CVT_F32_F64 : VOP1Inst <"v_cvt_f32_f64", VOP_F32_F64, fpround>;
defm V_CVT_F64_F32 : VOP1Inst <"v_cvt_f64_f32", VOP_F64_F32, fpextend>;
defm V_CVT_F32_UBYTE0 : VOP1Inst <"v_cvt_f32_ubyte0", VOP_F32_I32, AMDGPUcvt_f32_ubyte0>;
defm V_CVT_F32_UBYTE1 : VOP1Inst <"v_cvt_f32_ubyte1", VOP_F32_I32, AMDGPUcvt_f32_ubyte1>;
defm V_CVT_F32_UBYTE2 : VOP1Inst <"v_cvt_f32_ubyte2", VOP_F32_I32, AMDGPUcvt_f32_ubyte2>;
defm V_CVT_F32_UBYTE3 : VOP1Inst <"v_cvt_f32_ubyte3", VOP_F32_I32, AMDGPUcvt_f32_ubyte3>;
defm V_CVT_U32_F64 : VOP1Inst <"v_cvt_u32_f64", VOP_I32_F64, fp_to_uint>;
defm V_CVT_F64_U32 : VOP1Inst <"v_cvt_f64_u32", VOP_F64_I32, uint_to_fp>;
} // End SchedRW = [WriteQuarterRate32]
defm V_FRACT_F32 : VOP1Inst <"v_fract_f32", VOP_F32_F32, AMDGPUfract>;
defm V_TRUNC_F32 : VOP1Inst <"v_trunc_f32", VOP_F32_F32, ftrunc>;
defm V_CEIL_F32 : VOP1Inst <"v_ceil_f32", VOP_F32_F32, fceil>;
defm V_RNDNE_F32 : VOP1Inst <"v_rndne_f32", VOP_F32_F32, frint>;
defm V_FLOOR_F32 : VOP1Inst <"v_floor_f32", VOP_F32_F32, ffloor>;
defm V_EXP_F32 : VOP1Inst <"v_exp_f32", VOP_F32_F32, fexp2>;
let SchedRW = [WriteQuarterRate32] in {
defm V_LOG_F32 : VOP1Inst <"v_log_f32", VOP_F32_F32, flog2>;
defm V_RCP_F32 : VOP1Inst <"v_rcp_f32", VOP_F32_F32, AMDGPUrcp>;
defm V_RCP_IFLAG_F32 : VOP1Inst <"v_rcp_iflag_f32", VOP_F32_F32>;
defm V_RSQ_F32 : VOP1Inst <"v_rsq_f32", VOP_F32_F32, AMDGPUrsq>;
} // End SchedRW = [WriteQuarterRate32]
let SchedRW = [WriteDouble] in {
defm V_RCP_F64 : VOP1Inst <"v_rcp_f64", VOP_F64_F64, AMDGPUrcp>;
defm V_RSQ_F64 : VOP1Inst <"v_rsq_f64", VOP_F64_F64, AMDGPUrsq>;
} // End SchedRW = [WriteDouble];
defm V_SQRT_F32 : VOP1Inst <"v_sqrt_f32", VOP_F32_F32, fsqrt>;
let SchedRW = [WriteDouble] in {
defm V_SQRT_F64 : VOP1Inst <"v_sqrt_f64", VOP_F64_F64, fsqrt>;
} // End SchedRW = [WriteDouble]
let SchedRW = [WriteQuarterRate32] in {
defm V_SIN_F32 : VOP1Inst <"v_sin_f32", VOP_F32_F32, AMDGPUsin>;
defm V_COS_F32 : VOP1Inst <"v_cos_f32", VOP_F32_F32, AMDGPUcos>;
} // End SchedRW = [WriteQuarterRate32]
defm V_NOT_B32 : VOP1Inst <"v_not_b32", VOP_I32_I32>;
defm V_BFREV_B32 : VOP1Inst <"v_bfrev_b32", VOP_I32_I32>;
defm V_FFBH_U32 : VOP1Inst <"v_ffbh_u32", VOP_I32_I32>;
defm V_FFBL_B32 : VOP1Inst <"v_ffbl_b32", VOP_I32_I32>;
defm V_FFBH_I32 : VOP1Inst <"v_ffbh_i32", VOP_I32_I32>;
defm V_FREXP_EXP_I32_F64 : VOP1Inst <"v_frexp_exp_i32_f64", VOP_I32_F64, int_amdgcn_frexp_exp>;
let SchedRW = [WriteDoubleAdd] in {
defm V_FREXP_MANT_F64 : VOP1Inst <"v_frexp_mant_f64", VOP_F64_F64, int_amdgcn_frexp_mant>;
defm V_FRACT_F64 : VOP1Inst <"v_fract_f64", VOP_F64_F64, AMDGPUfract>;
} // End SchedRW = [WriteDoubleAdd]
defm V_FREXP_EXP_I32_F32 : VOP1Inst <"v_frexp_exp_i32_f32", VOP_I32_F32, int_amdgcn_frexp_exp>;
defm V_FREXP_MANT_F32 : VOP1Inst <"v_frexp_mant_f32", VOP_F32_F32, int_amdgcn_frexp_mant>;
let VOPAsmPrefer32Bit = 1 in {
defm V_CLREXCP : VOP1Inst <"v_clrexcp", VOP_NO_EXT<VOP_NONE>>;
}
// Restrict src0 to be VGPR
def VOP_I32_VI32_NO_EXT : VOPProfile<[i32, i32, untyped, untyped]> {
let Src0RC32 = VRegSrc_32;
let Src0RC64 = VRegSrc_32;
let HasExt = 0;
}
// Special case because there are no true output operands. Hack vdst
// to be a src operand. The custom inserter must add a tied implicit
// def and use of the super register since there seems to be no way to
// add an implicit def of a virtual register in tablegen.
def VOP_MOVRELD : VOPProfile<[untyped, i32, untyped, untyped]> {
let Src0RC32 = VOPDstOperand<VGPR_32>;
let Src0RC64 = VOPDstOperand<VGPR_32>;
let Outs = (outs);
let Ins32 = (ins Src0RC32:$vdst, VSrc_b32:$src0);
let Ins64 = (ins Src0RC64:$vdst, VSrc_b32:$src0);
let InsDPP = (ins Src0RC32:$vdst, Src0RC32:$src0, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl);
let InsSDWA = (ins Src0RC32:$vdst, Int32InputMods:$src0_modifiers, VCSrc_b32:$src0,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel);
let Asm32 = getAsm32<1, 1>.ret;
let Asm64 = getAsm64<1, 1, 0>.ret;
let AsmDPP = getAsmDPP<1, 1, 0>.ret;
let AsmSDWA = getAsmSDWA<1, 1, 0>.ret;
let HasExt = 0;
let HasDst = 0;
let EmitDst = 1; // force vdst emission
}
let SubtargetPredicate = HasMovrel, Uses = [M0, EXEC] in {
// v_movreld_b32 is a special case because the destination output
// register is really a source. It isn't actually read (but may be
// written), and is only to provide the base register to start
// indexing from. Tablegen seems to not let you define an implicit
// virtual register output for the super register being written into,
// so this must have an implicit def of the register added to it.
defm V_MOVRELD_B32 : VOP1Inst <"v_movreld_b32", VOP_MOVRELD>;
defm V_MOVRELS_B32 : VOP1Inst <"v_movrels_b32", VOP_I32_VI32_NO_EXT>;
defm V_MOVRELSD_B32 : VOP1Inst <"v_movrelsd_b32", VOP_NO_EXT<VOP_I32_I32>>;
} // End Uses = [M0, EXEC]
// These instruction only exist on SI and CI
let SubtargetPredicate = isSICI in {
let SchedRW = [WriteQuarterRate32] in {
defm V_MOV_FED_B32 : VOP1Inst <"v_mov_fed_b32", VOP_I32_I32>;
defm V_LOG_CLAMP_F32 : VOP1Inst <"v_log_clamp_f32", VOP_F32_F32, int_amdgcn_log_clamp>;
defm V_RCP_CLAMP_F32 : VOP1Inst <"v_rcp_clamp_f32", VOP_F32_F32>;
defm V_RCP_LEGACY_F32 : VOP1Inst <"v_rcp_legacy_f32", VOP_F32_F32, AMDGPUrcp_legacy>;
defm V_RSQ_CLAMP_F32 : VOP1Inst <"v_rsq_clamp_f32", VOP_F32_F32, AMDGPUrsq_clamp>;
defm V_RSQ_LEGACY_F32 : VOP1Inst <"v_rsq_legacy_f32", VOP_F32_F32, AMDGPUrsq_legacy>;
} // End SchedRW = [WriteQuarterRate32]
let SchedRW = [WriteDouble] in {
defm V_RCP_CLAMP_F64 : VOP1Inst <"v_rcp_clamp_f64", VOP_F64_F64>;
defm V_RSQ_CLAMP_F64 : VOP1Inst <"v_rsq_clamp_f64", VOP_F64_F64, AMDGPUrsq_clamp>;
} // End SchedRW = [WriteDouble]
} // End SubtargetPredicate = isSICI
let SubtargetPredicate = isCIVI in {
let SchedRW = [WriteDoubleAdd] in {
defm V_TRUNC_F64 : VOP1Inst <"v_trunc_f64", VOP_F64_F64, ftrunc>;
defm V_CEIL_F64 : VOP1Inst <"v_ceil_f64", VOP_F64_F64, fceil>;
defm V_FLOOR_F64 : VOP1Inst <"v_floor_f64", VOP_F64_F64, ffloor>;
defm V_RNDNE_F64 : VOP1Inst <"v_rndne_f64", VOP_F64_F64, frint>;
} // End SchedRW = [WriteDoubleAdd]
let SchedRW = [WriteQuarterRate32] in {
defm V_LOG_LEGACY_F32 : VOP1Inst <"v_log_legacy_f32", VOP_F32_F32>;
defm V_EXP_LEGACY_F32 : VOP1Inst <"v_exp_legacy_f32", VOP_F32_F32>;
} // End SchedRW = [WriteQuarterRate32]
} // End SubtargetPredicate = isCIVI
let SubtargetPredicate = isVI in {
defm V_CVT_F16_U16 : VOP1Inst <"v_cvt_f16_u16", VOP_F16_I16, uint_to_fp>;
defm V_CVT_F16_I16 : VOP1Inst <"v_cvt_f16_i16", VOP_F16_I16, sint_to_fp>;
defm V_CVT_U16_F16 : VOP1Inst <"v_cvt_u16_f16", VOP_I16_F16, fp_to_uint>;
defm V_CVT_I16_F16 : VOP1Inst <"v_cvt_i16_f16", VOP_I16_F16, fp_to_sint>;
defm V_RCP_F16 : VOP1Inst <"v_rcp_f16", VOP_F16_F16, AMDGPUrcp>;
defm V_SQRT_F16 : VOP1Inst <"v_sqrt_f16", VOP_F16_F16, fsqrt>;
defm V_RSQ_F16 : VOP1Inst <"v_rsq_f16", VOP_F16_F16, AMDGPUrsq>;
defm V_LOG_F16 : VOP1Inst <"v_log_f16", VOP_F16_F16, flog2>;
defm V_EXP_F16 : VOP1Inst <"v_exp_f16", VOP_F16_F16, fexp2>;
defm V_FREXP_MANT_F16 : VOP1Inst <"v_frexp_mant_f16", VOP_F16_F16, int_amdgcn_frexp_mant>;
defm V_FREXP_EXP_I16_F16 : VOP1Inst <"v_frexp_exp_i16_f16", VOP_I16_F16, int_amdgcn_frexp_exp>;
defm V_FLOOR_F16 : VOP1Inst <"v_floor_f16", VOP_F16_F16, ffloor>;
defm V_CEIL_F16 : VOP1Inst <"v_ceil_f16", VOP_F16_F16, fceil>;
defm V_TRUNC_F16 : VOP1Inst <"v_trunc_f16", VOP_F16_F16, ftrunc>;
defm V_RNDNE_F16 : VOP1Inst <"v_rndne_f16", VOP_F16_F16, frint>;
defm V_FRACT_F16 : VOP1Inst <"v_fract_f16", VOP_F16_F16, AMDGPUfract>;
defm V_SIN_F16 : VOP1Inst <"v_sin_f16", VOP_F16_F16, AMDGPUsin>;
defm V_COS_F16 : VOP1Inst <"v_cos_f16", VOP_F16_F16, AMDGPUcos>;
}
let Predicates = [isVI] in {
def : Pat<
(f32 (f16_to_fp i16:$src)),
(V_CVT_F32_F16_e32 $src)
>;
def : Pat<
(i16 (fp_to_f16 f32:$src)),
(V_CVT_F16_F32_e32 $src)
>;
}
//===----------------------------------------------------------------------===//
// Target
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SI
//===----------------------------------------------------------------------===//
multiclass VOP1_Real_si <bits<9> op> {
let AssemblerPredicates = [isSICI], DecoderNamespace = "SICI" in {
def _e32_si :
VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.SI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>;
def _e64_si :
VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.SI>,
VOP3e_si <{1, 1, op{6-0}}, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>;
}
}
defm V_NOP : VOP1_Real_si <0x0>;
defm V_MOV_B32 : VOP1_Real_si <0x1>;
defm V_CVT_I32_F64 : VOP1_Real_si <0x3>;
defm V_CVT_F64_I32 : VOP1_Real_si <0x4>;
defm V_CVT_F32_I32 : VOP1_Real_si <0x5>;
defm V_CVT_F32_U32 : VOP1_Real_si <0x6>;
defm V_CVT_U32_F32 : VOP1_Real_si <0x7>;
defm V_CVT_I32_F32 : VOP1_Real_si <0x8>;
defm V_MOV_FED_B32 : VOP1_Real_si <0x9>;
defm V_CVT_F16_F32 : VOP1_Real_si <0xa>;
defm V_CVT_F32_F16 : VOP1_Real_si <0xb>;
defm V_CVT_RPI_I32_F32 : VOP1_Real_si <0xc>;
defm V_CVT_FLR_I32_F32 : VOP1_Real_si <0xd>;
defm V_CVT_OFF_F32_I4 : VOP1_Real_si <0xe>;
defm V_CVT_F32_F64 : VOP1_Real_si <0xf>;
defm V_CVT_F64_F32 : VOP1_Real_si <0x10>;
defm V_CVT_F32_UBYTE0 : VOP1_Real_si <0x11>;
defm V_CVT_F32_UBYTE1 : VOP1_Real_si <0x12>;
defm V_CVT_F32_UBYTE2 : VOP1_Real_si <0x13>;
defm V_CVT_F32_UBYTE3 : VOP1_Real_si <0x14>;
defm V_CVT_U32_F64 : VOP1_Real_si <0x15>;
defm V_CVT_F64_U32 : VOP1_Real_si <0x16>;
defm V_FRACT_F32 : VOP1_Real_si <0x20>;
defm V_TRUNC_F32 : VOP1_Real_si <0x21>;
defm V_CEIL_F32 : VOP1_Real_si <0x22>;
defm V_RNDNE_F32 : VOP1_Real_si <0x23>;
defm V_FLOOR_F32 : VOP1_Real_si <0x24>;
defm V_EXP_F32 : VOP1_Real_si <0x25>;
defm V_LOG_CLAMP_F32 : VOP1_Real_si <0x26>;
defm V_LOG_F32 : VOP1_Real_si <0x27>;
defm V_RCP_CLAMP_F32 : VOP1_Real_si <0x28>;
defm V_RCP_LEGACY_F32 : VOP1_Real_si <0x29>;
defm V_RCP_F32 : VOP1_Real_si <0x2a>;
defm V_RCP_IFLAG_F32 : VOP1_Real_si <0x2b>;
defm V_RSQ_CLAMP_F32 : VOP1_Real_si <0x2c>;
defm V_RSQ_LEGACY_F32 : VOP1_Real_si <0x2d>;
defm V_RSQ_F32 : VOP1_Real_si <0x2e>;
defm V_RCP_F64 : VOP1_Real_si <0x2f>;
defm V_RCP_CLAMP_F64 : VOP1_Real_si <0x30>;
defm V_RSQ_F64 : VOP1_Real_si <0x31>;
defm V_RSQ_CLAMP_F64 : VOP1_Real_si <0x32>;
defm V_SQRT_F32 : VOP1_Real_si <0x33>;
defm V_SQRT_F64 : VOP1_Real_si <0x34>;
defm V_SIN_F32 : VOP1_Real_si <0x35>;
defm V_COS_F32 : VOP1_Real_si <0x36>;
defm V_NOT_B32 : VOP1_Real_si <0x37>;
defm V_BFREV_B32 : VOP1_Real_si <0x38>;
defm V_FFBH_U32 : VOP1_Real_si <0x39>;
defm V_FFBL_B32 : VOP1_Real_si <0x3a>;
defm V_FFBH_I32 : VOP1_Real_si <0x3b>;
defm V_FREXP_EXP_I32_F64 : VOP1_Real_si <0x3c>;
defm V_FREXP_MANT_F64 : VOP1_Real_si <0x3d>;
defm V_FRACT_F64 : VOP1_Real_si <0x3e>;
defm V_FREXP_EXP_I32_F32 : VOP1_Real_si <0x3f>;
defm V_FREXP_MANT_F32 : VOP1_Real_si <0x40>;
defm V_CLREXCP : VOP1_Real_si <0x41>;
defm V_MOVRELD_B32 : VOP1_Real_si <0x42>;
defm V_MOVRELS_B32 : VOP1_Real_si <0x43>;
defm V_MOVRELSD_B32 : VOP1_Real_si <0x44>;
//===----------------------------------------------------------------------===//
// CI
//===----------------------------------------------------------------------===//
multiclass VOP1_Real_ci <bits<9> op> {
let AssemblerPredicates = [isCIOnly], DecoderNamespace = "CI" in {
def _e32_ci :
VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.SI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>;
def _e64_ci :
VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.SI>,
VOP3e_si <{1, 1, op{6-0}}, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>;
}
}
defm V_TRUNC_F64 : VOP1_Real_ci <0x17>;
defm V_CEIL_F64 : VOP1_Real_ci <0x18>;
defm V_FLOOR_F64 : VOP1_Real_ci <0x1A>;
defm V_RNDNE_F64 : VOP1_Real_ci <0x19>;
defm V_LOG_LEGACY_F32 : VOP1_Real_ci <0x45>;
defm V_EXP_LEGACY_F32 : VOP1_Real_ci <0x46>;
//===----------------------------------------------------------------------===//
// VI
//===----------------------------------------------------------------------===//
class VOP1_SDWA <bits<8> op, VOP1_Pseudo ps, VOPProfile P = ps.Pfl> :
VOP_SDWA <ps.OpName, P> {
let Defs = ps.Defs;
let Uses = ps.Uses;
let SchedRW = ps.SchedRW;
let hasSideEffects = ps.hasSideEffects;
let AsmMatchConverter = "cvtSdwaVOP1";
bits<8> vdst;
let Inst{8-0} = 0xf9; // sdwa
let Inst{16-9} = op;
let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0);
let Inst{31-25} = 0x3f; // encoding
}
class VOP1_DPP <bits<8> op, VOP1_Pseudo ps, VOPProfile P = ps.Pfl> :
VOP_DPP <ps.OpName, P> {
let Defs = ps.Defs;
let Uses = ps.Uses;
let SchedRW = ps.SchedRW;
let hasSideEffects = ps.hasSideEffects;
bits<8> vdst;
let Inst{8-0} = 0xfa; // dpp
let Inst{16-9} = op;
let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0);
let Inst{31-25} = 0x3f; //encoding
}
multiclass VOP1_Real_vi <bits<10> op> {
let AssemblerPredicates = [isVI], DecoderNamespace = "VI" in {
def _e32_vi :
VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.VI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>;
def _e64_vi :
VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3e_vi <!add(0x140, op), !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>;
}
// for now left sdwa/dpp only for asm/dasm
// TODO: add corresponding pseudo
def _sdwa : VOP1_SDWA<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32")>;
def _dpp : VOP1_DPP<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32")>;
}
defm V_NOP : VOP1_Real_vi <0x0>;
defm V_MOV_B32 : VOP1_Real_vi <0x1>;
defm V_CVT_I32_F64 : VOP1_Real_vi <0x3>;
defm V_CVT_F64_I32 : VOP1_Real_vi <0x4>;
defm V_CVT_F32_I32 : VOP1_Real_vi <0x5>;
defm V_CVT_F32_U32 : VOP1_Real_vi <0x6>;
defm V_CVT_U32_F32 : VOP1_Real_vi <0x7>;
defm V_CVT_I32_F32 : VOP1_Real_vi <0x8>;
defm V_CVT_F16_F32 : VOP1_Real_vi <0xa>;
defm V_CVT_F32_F16 : VOP1_Real_vi <0xb>;
defm V_CVT_RPI_I32_F32 : VOP1_Real_vi <0xc>;
defm V_CVT_FLR_I32_F32 : VOP1_Real_vi <0xd>;
defm V_CVT_OFF_F32_I4 : VOP1_Real_vi <0xe>;
defm V_CVT_F32_F64 : VOP1_Real_vi <0xf>;
defm V_CVT_F64_F32 : VOP1_Real_vi <0x10>;
defm V_CVT_F32_UBYTE0 : VOP1_Real_vi <0x11>;
defm V_CVT_F32_UBYTE1 : VOP1_Real_vi <0x12>;
defm V_CVT_F32_UBYTE2 : VOP1_Real_vi <0x13>;
defm V_CVT_F32_UBYTE3 : VOP1_Real_vi <0x14>;
defm V_CVT_U32_F64 : VOP1_Real_vi <0x15>;
defm V_CVT_F64_U32 : VOP1_Real_vi <0x16>;
defm V_FRACT_F32 : VOP1_Real_vi <0x1b>;
defm V_TRUNC_F32 : VOP1_Real_vi <0x1c>;
defm V_CEIL_F32 : VOP1_Real_vi <0x1d>;
defm V_RNDNE_F32 : VOP1_Real_vi <0x1e>;
defm V_FLOOR_F32 : VOP1_Real_vi <0x1f>;
defm V_EXP_F32 : VOP1_Real_vi <0x20>;
defm V_LOG_F32 : VOP1_Real_vi <0x21>;
defm V_RCP_F32 : VOP1_Real_vi <0x22>;
defm V_RCP_IFLAG_F32 : VOP1_Real_vi <0x23>;
defm V_RSQ_F32 : VOP1_Real_vi <0x24>;
defm V_RCP_F64 : VOP1_Real_vi <0x25>;
defm V_RSQ_F64 : VOP1_Real_vi <0x26>;
defm V_SQRT_F32 : VOP1_Real_vi <0x27>;
defm V_SQRT_F64 : VOP1_Real_vi <0x28>;
defm V_SIN_F32 : VOP1_Real_vi <0x29>;
defm V_COS_F32 : VOP1_Real_vi <0x2a>;
defm V_NOT_B32 : VOP1_Real_vi <0x2b>;
defm V_BFREV_B32 : VOP1_Real_vi <0x2c>;
defm V_FFBH_U32 : VOP1_Real_vi <0x2d>;
defm V_FFBL_B32 : VOP1_Real_vi <0x2e>;
defm V_FFBH_I32 : VOP1_Real_vi <0x2f>;
defm V_FREXP_EXP_I32_F64 : VOP1_Real_vi <0x30>;
defm V_FREXP_MANT_F64 : VOP1_Real_vi <0x31>;
defm V_FRACT_F64 : VOP1_Real_vi <0x32>;
defm V_FREXP_EXP_I32_F32 : VOP1_Real_vi <0x33>;
defm V_FREXP_MANT_F32 : VOP1_Real_vi <0x34>;
defm V_CLREXCP : VOP1_Real_vi <0x35>;
defm V_MOVRELD_B32 : VOP1_Real_vi <0x36>;
defm V_MOVRELS_B32 : VOP1_Real_vi <0x37>;
defm V_MOVRELSD_B32 : VOP1_Real_vi <0x38>;
defm V_TRUNC_F64 : VOP1_Real_vi <0x17>;
defm V_CEIL_F64 : VOP1_Real_vi <0x18>;
defm V_FLOOR_F64 : VOP1_Real_vi <0x1A>;
defm V_RNDNE_F64 : VOP1_Real_vi <0x19>;
defm V_LOG_LEGACY_F32 : VOP1_Real_vi <0x4c>;
defm V_EXP_LEGACY_F32 : VOP1_Real_vi <0x4b>;
defm V_CVT_F16_U16 : VOP1_Real_vi <0x39>;
defm V_CVT_F16_I16 : VOP1_Real_vi <0x3a>;
defm V_CVT_U16_F16 : VOP1_Real_vi <0x3b>;
defm V_CVT_I16_F16 : VOP1_Real_vi <0x3c>;
defm V_RCP_F16 : VOP1_Real_vi <0x3d>;
defm V_SQRT_F16 : VOP1_Real_vi <0x3e>;
defm V_RSQ_F16 : VOP1_Real_vi <0x3f>;
defm V_LOG_F16 : VOP1_Real_vi <0x40>;
defm V_EXP_F16 : VOP1_Real_vi <0x41>;
defm V_FREXP_MANT_F16 : VOP1_Real_vi <0x42>;
defm V_FREXP_EXP_I16_F16 : VOP1_Real_vi <0x43>;
defm V_FLOOR_F16 : VOP1_Real_vi <0x44>;
defm V_CEIL_F16 : VOP1_Real_vi <0x45>;
defm V_TRUNC_F16 : VOP1_Real_vi <0x46>;
defm V_RNDNE_F16 : VOP1_Real_vi <0x47>;
defm V_FRACT_F16 : VOP1_Real_vi <0x48>;
defm V_SIN_F16 : VOP1_Real_vi <0x49>;
defm V_COS_F16 : VOP1_Real_vi <0x4a>;
// Copy of v_mov_b32 with $vdst as a use operand for use with VGPR
// indexing mode. vdst can't be treated as a def for codegen purposes,
// and an implicit use and def of the super register should be added.
def V_MOV_B32_indirect : VPseudoInstSI<(outs),
(ins getVALUDstForVT<i32>.ret:$vdst, getVOPSrc0ForVT<i32>.ret:$src0)>,
PseudoInstExpansion<(V_MOV_B32_e32_vi getVALUDstForVT<i32>.ret:$vdst,
getVOPSrc0ForVT<i32>.ret:$src0)> {
let VOP1 = 1;
let SubtargetPredicate = isVI;
}
// This is a pseudo variant of the v_movreld_b32 instruction in which the
// vector operand appears only twice, once as def and once as use. Using this
// pseudo avoids problems with the Two Address instructions pass.
class V_MOVRELD_B32_pseudo<RegisterClass rc> : VPseudoInstSI <
(outs rc:$vdst),
(ins rc:$vsrc, VSrc_b32:$val, i32imm:$offset)> {
let VOP1 = 1;
let Constraints = "$vsrc = $vdst";
let Uses = [M0, EXEC];
let SubtargetPredicate = HasMovrel;
}
def V_MOVRELD_B32_V1 : V_MOVRELD_B32_pseudo<VGPR_32>;
def V_MOVRELD_B32_V2 : V_MOVRELD_B32_pseudo<VReg_64>;
def V_MOVRELD_B32_V4 : V_MOVRELD_B32_pseudo<VReg_128>;
def V_MOVRELD_B32_V8 : V_MOVRELD_B32_pseudo<VReg_256>;
def V_MOVRELD_B32_V16 : V_MOVRELD_B32_pseudo<VReg_512>;
let Predicates = [isVI] in {
def : Pat <
(i32 (int_amdgcn_mov_dpp i32:$src, imm:$dpp_ctrl, imm:$row_mask, imm:$bank_mask,
imm:$bound_ctrl)),
(V_MOV_B32_dpp $src, (as_i32imm $dpp_ctrl), (as_i32imm $row_mask),
(as_i32imm $bank_mask), (as_i1imm $bound_ctrl))
>;
def : Pat<
(i32 (anyext i16:$src)),
(COPY $src)
>;
def : Pat<
(i64 (anyext i16:$src)),
(REG_SEQUENCE VReg_64,
(i32 (COPY $src)), sub0,
(V_MOV_B32_e32 (i32 0)), sub1)
>;
def : Pat<
(i16 (trunc i32:$src)),
(COPY $src)
>;
def : Pat<
(i1 (trunc i16:$src)),
(COPY $src)
>;
def : Pat <
(i16 (trunc i64:$src)),
(EXTRACT_SUBREG $src, sub0)
>;
} // End Predicates = [isVI]